热电阻与热电偶的区别

热电阻与热电偶的区别
热电阻与热电偶的区别

热电阻与热电偶

1. 外形:

热电阻接三根线,热电偶接两根线

2. 材料

热电阻可以用普通的线,热电偶一定要用补偿线。

热电阻使用贵金属制造,价格稍高一点,一般来说相差不大

3. 测温时间

热电阻检测温度似乎更快一些。

4. 测温原理

热电阻是通过电阻大小的变化来反映温度的变化;热电偶是通过电势的变化来反映温度变化

(热电阻是基于随温度的升高电阻而增大的原理工作的,而热电偶是基于随温度的升高输出电势而增大的原理工作的。)

热电阻是根据导体(测温电阻)的电阻值随温度而变化的特性而工作的。

热电偶是由两种不同材料的金属制作出来的,其中一头两种金属焊接在一起,作为测温端(热端),另一头两根线(冷端)接入仪表。当冷端与热端有温度差时,热电偶回路中就会有电势产生,根据该电势差查该种型号热电偶的分度表,就能知道热端的温度。

5. 精度

热电阻精度高一点,热电偶的测温范围一般比热电阻宽。

6. 信号类型

一个是变化的毫伏电压,一个是变化的电阻.。)

7. 处理这两种信号的温控仪(智能型除外

热电阻是利用电阻的温度特性来测量温度的.热电偶是一种把温度转换成电压信号的温度传感器.热电阻性能稳定,特别是铂电阻,性能很稳定,常用作标准测温器件.在-259.34至630.74度之间,可以用铂电阻温度计作为温度测量的基准.热电偶是由两种自由电子浓度不同的金属(合金)组成,其端点焊接在一起.热电偶的特点是测量温度的范围宽,但灵敏度不高,且产生的热电势较低,抗干扰能力较弱.

8. 输入功能:

输入信号为小电压,常为毫伏电压(热电偶),毫伏电压范围为:–100mV ~+100mV,主要用于热电偶信号的测量。

TCB铂铑30 铂铑60: 0℃~1820℃对映0~14mV

TCT铜-铜镍: -270℃~400℃对映-6.3~21mV

TCEEA镍铬-铜镍: -270℃~1000℃对映-10~77mV

TCJ铁-铜镍: -210℃~1200℃对映-8.1~69.536mV

TCKEU镍铬-镍硅: -270℃~1372℃对映-6.5~55mV

TCN镍铬硅-镍硅: -270℃~1300℃对映-4.4~48mV

TCR铂铑13-铂热电偶: 0℃~1700℃对映0~21mV

TCS铂铑10: -50℃~1770℃对映-0.3~19mV

输入信号为电阻(热电阻)信号,可用于热电阻或应变片电阻信号的测量,测量范围为1~500Ω,接线方式为三线制接线。

RTDPt100 18.49~391Ω对映-200~850度

RTDPt10 1.849~39.1Ω对映-200~850度

RTD Cu100 78~166Ω对映-50~150度

RTD Cu10 7.8~16.6Ω对映-50~150度

RTD Cu50 39~82Ω对映-50~150度

热电偶热电阻的区别

热电偶/热电阻的区别 热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于: 一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。 二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度)。 热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。 三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。 四、PLC对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC都直接接入4~20ma信号,而热电阻和热电偶一般都带有变送器才接入PLC。要是接入DCS的话就不必用变送器了!热电阻是RTD信号,热电偶是TC信号! 五、PLC也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。 六、热电偶有J、T、N、K、S等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。 热电阻是电阻信号,热电偶是电压信号。 七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10)、铜电阻Cu50(负50-150度)。 热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S,测量范围0~1300度)、镍铬——镍硅(分度号K,测量范围0~900度)、镍铬——康铜(分度号E,

热电阻和热电偶地区别和联系

热电阻和热电偶的区别和联系热电阻WRN 热电阻WZP 工业用装配式热电偶作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用。它可以直接测量各种生产过程中从0℃~1800℃范围内的液体、蒸汽和气体介质以及固体的表面温度。根据国家规定,我厂从1987年起开始生产符合IEC国际标准分度号的铂铑30—铂铑6—铂铑10—铂、镍铬—镍硅、镍铬—铜镍、铜-铜镍、铁-铜镍等型式热电偶。规格与参数□主要技术指标◆温度测量范围和允许误差热电偶类别代号分度号测量范围℃ 允许偏差△t ℃ 铂铑30—铂铑6 WRR B 0~800 ±1.5℃或 ±0.25%t 铂铑10—铂 WRP S 0~1600 ±1.5℃或±0.25%t 镍铬-镍硅 WRN K 0~1300 ±2.5℃或±0.75%t 镍铬-铜镍 WRE E 0~800 ±2.5℃或±0.75%t ◆ 热响应时间在温度出现阶跃变化时,热电偶的输出变化至相当于该变化的50%,所需要的时间称为热响应时间,用t0.5表示□型号表示WR□-□□□ W 温度仪表 R 热电偶□热电偶材料 R)铂铑30-铂铑6 P)铂铑10-铂 N)镍铬-镍硅 E)镍铬-铜镍(镍铬-康铜)□安装固定形式 1)无固定式装置式 2)固定螺纹式 3)活动式法兰 4)固定法兰式 5)活动法兰角尺形式 6)固定螺纹锥形保护管式□ 接线盒形式 2)防溅式 3)防水式 4)隔爆式□设计序号 0)?16mm保护管 1)?25mm保护管(双层套管) 2)?16mm高铝质管(单层套管) 3)?20mm高铝质管◆热电偶公称压力一般是指在室温情况下保护管所能承受的静态外压而不破裂。实际上,容许工作压力不仅与保护管材料、直径壁厚有关,还与其结构形式,安装方法、置入深度以及被测介质的流速和种类等有关。◆热电偶最小置入深度应不小于其保护管外径的8~10倍(特殊产品例外)。◆热电偶绝缘电阻(常温)常温绝缘电阻的试验电压为直流500V±50V,测量常温绝缘电阻的大气条件为温度15~35℃,相对湿度45%,大气压力86~106kPa。 a.对于长度超过1米的热电偶它的常温绝缘电阻值与其长度的乘积应不小于100MΩ。M。即Rr.L≥100 MΩ。M L>1m 式中:Rr-热电偶的长度,m b.对于长度等于或不足1米的热电偶,它的常温绝缘电阻值应不小于100 MΩ ◆上限温度绝缘电阻热电偶的上限温度绝缘电阻应不小于下表现定:上限温度tm℃ 试验温度t℃ 电阻值MΩ100≤tm<300 t=tm 10 300≤tm<500 t=tm 2 500≤tm <850 t=tm 0.5 850≤tm<1000 t=tm 0.08 1000≤tm<1300 t=tm 0.02 tm>1300 t=1300 0.02 ◆工作原理热电偶的工作原理是:两种不同成分的导体两端经焊接、形成回路,直接测温端叫测量端,接线端子端叫参比端。当测量端和参比端存在温差时,就会在回路中产生热电流,接上显示仪表,仪表上就指示出热电偶,产生的热电动势的对应温度值。热电偶的热电动势将随着测量端温度升高而增长,热电动势的大小只和热电偶导体材质以及两端温差有关,和热电极的长度、直径无关。装配式热电偶主要由接线盒、保护管、绝缘套管、接线端子、热电极组成基本结构,并配以各种安装固定装置组成。备注:关于本型号具体技术要求(如长度、螺纹或法兰接等)可与公司洽询。工业用热电阻作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用。它可以直接测量各种生产过程中从-200℃~420℃范围内的液体、蒸汽和气体介质以及固体的表面温度。根据国家规定,我厂从1987年起开始生产符合IEC国际标准分度号的Pt100铂热电阻合符合专业标准分度号的Cu50铜热电阻两大类装配式、统一设计型电阻。规格与参数□ 主要技术指标◆测温范围和准确度热电阻类别测量范围℃ 分度号允许偏差△t ℃ WZP型铂电阻 -200~420 Pt100 B级(-200~

热电阻,热敏电阻及热电偶有哪些区别

热电阻,热敏电阻及热电偶有哪些区别? 热电阻、热电偶都是常见的温度传感器https://www.360docs.net/doc/401958164.html,/类型,都用于测量物体温度,但热电阻和热电偶也是存在一些区别的。下面我们主要讲讲热电阻和热电偶有哪些区别? 热电阻被广泛应用于工业领域,它可以将电信号运输较远距离,且具有稳定性好,精确度高,灵敏性好等特点,热电阻需要电源激励,不能测量温度变化的瞬时值,热电阻测温范围不是很大,工业上应用的热电阻主要有:Pt100,Pt10,Cu50,Cu100。热电阻不需要补偿导线,价格比热电偶要便宜。有些人容易将热敏电阻和热电阻混淆,其实热敏电阻和热电阻是完全2个不一样的概念,热电阻主要用于加热使用,如电热毯等等里面用的电热丝;热敏电阻,是根据温度的不同,自身的电阻值发生变化,主要用在温度传感器上面,如ntc热敏电阻https://www.360docs.net/doc/401958164.html,/,即负温度系数热敏电阻。 相对于热电阻,热电偶测温范围更广,动态响应好,结构也不复杂,稳定性能好,能够很好地进行自动集中控制。是应用最广泛的温度传感器,热电偶的测温原理是基于热电效应,又称为塞贝克效应。普通型和铠装型是热电偶的2种不同结构。热电偶需要补偿导线来传递电信号。 目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子

热电偶和热电阻的作用与区别

热电偶和热电阻的作用与区别 热电偶和热电阻的作用与区别 首先热电偶与热电阻在工业温度测控方面是最普通、最常用的,均属于温度测量中的接触式测温。但两者在原理,接线方式,测温范围都有所区别。 一、原理 1、热电偶的测温原理基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接端处的温度不同时,回路中将产生热电势,又称为seeback效应。 回路中产生的热电势有两种:温差电势和接触电势。 1)温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同, 2)接触电势是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。 2、测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性来进行温度测量的。 二、特点 1、热电偶主要特点就是测温范围宽,性能比较稳定,而且结构简单,动态响应好,可以远传4-20mA 电信号,便于自动控制和集中控制。 2、热电阻的其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。 三、接线方式 1、热电偶的材料一般都比较贵重,距离较远时,为节省材料费用,降低成本,通常采用补偿导线(补偿性、延长性)传递。ps:注意型号相配,极性不能接错(热电偶正极连接补偿导线的红色线,而负极则连接剩下的颜色。),补偿导线温度于热电偶连接端的温度不能超过100℃。 2、热电阻接线方式有两线、三线、四线制接线方式,1)两线制适合不需要精确温度的场合,使用可以预先测量出导线电阻,折合成温度在测量结果中扣除,是一种粗略的补偿方法。2)三线制是比较常用、比较专业的温度测量,消除导线电阻前提:相同的材质,相同的线径,相同的长度。3)四线制比较复杂,一般不采用。 四、种类 1、热电偶国际规定分为B,R,S,K,N,E,J和T,其中B,R,S属于铂系列的热电偶,铂属于贵重金属,它们又称为贵金属热电偶。 分为普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。 2、热电阻分为:1)普通型热电阻根据其原理引出线或各种导线的电阻变化会给温度测量带来影响;2)铠装热电阻外径一般为2-8 mm,比普通型优点:能弯曲,体积小,机械性能好、耐震、抗冲击,

热电偶的原理、结构、选型、常见故障及解决方法

热电偶的原理、结构、选型及常见故障和原因、解决方法等 一、热电偶测温原理 两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势,这种现象称为热电效应,该电动势称为热电势。这两种不同材料的导体或半导体的组合称为热电偶,导体A、B称为热电极。两个接点,一个称热端,又称测量端或工作端,测温时将它置于被测介质中;另一个称冷端,又称参考端或自由端,它通过导线与显示仪表相连。 电偶体结构图 接触电势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。两种导体接触时,自由电子由密度大的导体向密度小的导体扩散,在接触处失去电子一侧带正电,得到电子一侧带负电,扩散达到动平衡时,在接触面的两侧就形成稳定的接触电势。接触电势的数值取决于两种不同导体的性质和接触点的温度。两接点的接触电势e AB(T)和e AB(T0)可表示为 式中:K——波尔兹曼常数; e——单位电荷电量;NAT、NBT和N AT0、N BT0——温度分别为T和T0时,A、B两种材料的电子密度。 温差电势是同一导体的两端因其温度不同而产生的一种电动势。同一导体的两端温度不同时,高温端的电子能量要比低温端的电子能量大,因而从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正

电,低温端因获得多余的电子而带负电,因此,在导体两端便形成接触电势。 热电偶回路中产生的总热电势为 eAB(T, T0)=eAB(T)+eB(T,T0)-eAB(T0)-eA(T,T0) 在总热电势中,温差电势比接触电势小很多,可忽略不计,则热电偶的热电势可表示为:eAB(T,T0)=eAB(T)-eAB(T0) 对于已选定的热电偶,当参考端温度T0恒定时,eAB(T0)=c为常数,则总的热电动势就只与温度T成单值函数关系,即eAB(T,T0)=eAB(T)-c=f(T) 这一关系式在实际测量中是很有用的,即只要测出eAB(T,T0)的大小,就能得到被测温度T,这就是利用热电偶测温的原理。 二、热电偶基本定律 1、均质导体定律:由两种均质导体组成的热电偶,其热电动势的大小只与两材料及两接点温度有关,与热电偶的大小尺寸、形状及沿电极各处的温度分布无关。即如材料不均匀,当导体上存在温度梯度时,将会有附加电动势产生。这条定理说明,热电偶必须由两种不同性质的均质材料构成。 2、中间导体定律:利用热电偶进行测温,必须在回路中引入连接导线和仪表,接入导线和仪表后会不会影响回路中的热电势呢?中间导体定律说明,在热电偶测温回路内,接入第三种导体时,只要第三种导体的两端温度相同,则对回路的总热电势没有影响。 3、中间温度定律:在热电偶测温回路中,t c为热电极上某一点的温度,热电偶AB在接点温度为t、t0时的热电势eAB(t, t0)等于热电偶AB在接点温度t、t c 和tc、t0时的热电势eAB(t, t c)和eAB(tc, t0)的代数和,即eAB(t,t0)=eAB(t,t c)+eAB(tc,t0 该定律是参考端温度计算修正法的理论依据,在实际热电偶测温回路中, 利用热电偶这一性质, 可对参考端温度不为0℃的热电势进行修正。 三、热电偶的结构形式 为了适应不同生产对象的测温要求和条件,热电偶的结构形式有普通型热电偶、铠装型热电偶和薄膜热电偶等。

热电阻与热电偶的测量原理及区别

热电阻与热电偶的测量原理及区别 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50——+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电阻与热电偶的区别

热电阻与热电偶 1. 外形: 热电阻接三根线,热电偶接两根线 2. 材料 热电阻可以用普通的线,热电偶一定要用补偿线。 热电阻使用贵金属制造,价格稍高一点,一般来说相差不大 3. 测温时间 热电阻检测温度似乎更快一些。 4. 测温原理 热电阻是通过电阻大小的变化来反映温度的变化;热电偶是通过电势的变化来反映温度变化 (热电阻是基于随温度的升高电阻而增大的原理工作的,而热电偶是基于随温度的升高输出电势而增大的原理工作的。) 热电阻是根据导体(测温电阻)的电阻值随温度而变化的特性而工作的。 热电偶是由两种不同材料的金属制作出来的,其中一头两种金属焊接在一起,作为测温端(热端),另一头两根线(冷端)接入仪表。当冷端与热端有温度差时,热电偶回路中就会有电势产生,根据该电势差查该种型号热电偶的分度表,就能知道热端的温度。 5. 精度 热电阻精度高一点,热电偶的测温范围一般比热电阻宽。 6. 信号类型 一个是变化的毫伏电压,一个是变化的电阻.。) 7. 处理这两种信号的温控仪(智能型除外 热电阻是利用电阻的温度特性来测量温度的.热电偶是一种把温度转换成电压信号的温度传感器.热电阻性能稳定,特别是铂电阻,性能很稳定,常用作标准测温器件.在-259.34至630.74度之间,可以用铂电阻温度计作为温度测量的基准.热电偶是由两种自由电子浓度不同的金属(合金)组成,其端点焊接在一起.热电偶的特点是测量温度的范围宽,但灵敏度不高,且产生的热电势较低,抗干扰能力较弱. 8. 输入功能:

输入信号为小电压,常为毫伏电压(热电偶),毫伏电压范围为:–100mV ~+100mV,主要用于热电偶信号的测量。 TCB铂铑30 铂铑60: 0℃~1820℃对映0~14mV TCT铜-铜镍: -270℃~400℃对映-6.3~21mV TCEEA镍铬-铜镍: -270℃~1000℃对映-10~77mV TCJ铁-铜镍: -210℃~1200℃对映-8.1~69.536mV TCKEU镍铬-镍硅: -270℃~1372℃对映-6.5~55mV TCN镍铬硅-镍硅: -270℃~1300℃对映-4.4~48mV TCR铂铑13-铂热电偶: 0℃~1700℃对映0~21mV TCS铂铑10: -50℃~1770℃对映-0.3~19mV 输入信号为电阻(热电阻)信号,可用于热电阻或应变片电阻信号的测量,测量范围为1~500Ω,接线方式为三线制接线。 RTDPt100 18.49~391Ω对映-200~850度 RTDPt10 1.849~39.1Ω对映-200~850度 RTD Cu100 78~166Ω对映-50~150度 RTD Cu10 7.8~16.6Ω对映-50~150度 RTD Cu50 39~82Ω对映-50~150度

如何判别热电偶和热电阻的不同

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/401958164.html,)如何判别热电偶和热电阻的不同 热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同。 1、热电偶:热电偶是温度测量中应用最广泛的温度器件, ①主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20ma电信号,便于自动控制和集中控制。 ②热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。

③目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 2、热电阻:热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,

如何区分热电偶和热电阻热电阻与热电偶的区别.

如何区分热电偶和热电阻?热电阻与热电偶的区别 首先,介绍一下热电偶,热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测量范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。 热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。 目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。 其次我们介绍一下热电阻,热电阻虽然在工业中应用也比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。其优点也很多,也可以远传电信号,灵敏度高,稳定性强,互换性以及准确性都比较好,但是需要电源激励,不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt10,Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。热电阻和热电偶一样的区分类型,但是他却不需要补偿导线,而且比热点偶便宜。

热电偶热电阻产品选型样本详解

产品选型样本 温度仪表 一、热电偶 1、WR□□-□□□系列装配式热电偶 工业用装配式热电偶是一种常用温度传感器,通常 与温度变送器、调节器及显示仪表等配套使用,组成过程 控制系统。可以直接测量各种生产过程中液体、蒸汽和 气体介质及固体表面温度。 □型号构成表 型号举例:WRK2-230表示感温元件为镍铬-镍硅、双支、固定螺纹、保护管直径为Ф16mm 金属管(不作特殊标注为1Cr18Ni9Ti)的装配式热电偶。

□主要技术指标│ ◎热响应时间 在温度出现阶跃变化时,热电偶的输出变化至相当于该阶跃变化的50%所需要的时间,称为热响应时间。用t0.5表示。

◎公称压力 一般是指在工作温度下,保护管所能承受的静态外压而不破裂。实际上,容许工作压力不仅与保护管材料、直径、壁厚有关,而且还与其结构、安装方法、置入深度以及被测介质的流速和种类有关。 ◎热电偶最小插入深度 对陶瓷保护管而言,应不小于其保护管直径的8~10倍;对金属及合金保护管,应大于其保护管直径的10倍以上 ◎绝缘电阻 常温绝缘电阻的试验电压为直流500±50V,测量常温绝缘电阻的大气条件为:温度15~35℃,相对湿度45%,大气压力86~106KPa。热电偶在该条件下放置时间不小于2小时。 a.对于长度超过1米的热电偶,它的常温绝缘电阻值与其长度的乘积应不小于100MW·m。 即:Rr·L ≥100MW·m L ≥1m 式中:Rr-热电偶的常温绝缘电阻值,MW L -热电偶的长度,m b.对于长度等于或不足1m的热电偶,它的常温绝缘电阻值应不小于100MW。 ◎接线盒结构(统一设计型) ◎外形尺寸

热电偶和热电阻热敏电阻的区别

热电偶和热电阻、热敏电阻的区别 热电偶 热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

如何选择热电阻与热电偶温度传感器

如何选择热电阻与热电偶温度传感器 热电阻和热电偶是温度传感器最常用的感温元件。热电偶温度传感器工作原理是两种不同金属接触面两端在不同温度时产生不同微弱电压,经放大电路来测量温度,主要用于测量高温。热电阻温度传感器的工作原理是电阻值随着温度变化,主要用于测量微小的温度变化。当我们想要测量温度的时候,应当如何选择这两种温度传感器呢? 首先看测温范围。热电阻和热电偶各有适宜的测温范围,根据实际测温点的温度及温度梯度分布情况酌情选择传感器。高温测量通常选择热点偶,中低温则选择热电阻。 其次结合现场环境状况,尤其是要考虑现场电磁兼容性能,各种杂波、谐波、差模和共模干扰信号的情况。当使用热电偶温度传感器时因温差热电势属于较微弱的电信号,易受干扰从而引入测量误差,而热电阻温度传感器因为是电流信号不易受干扰,而且又因为有三线制、四线制等可以进一步减少测量的系统误差,所以热电阻在满足测量范围的前提下还具有抗干扰性能强的优势,还没有热电偶的冷端补偿问题的麻烦。另外,现场一般在测温点都是将热电阻温度传感器接到变送器上再输出给二次仪表,不怕线路长造成信号衰减,而且不必使用造价较高的补偿导线,而热电偶温度传感器则需要使用补偿导线,这些情况下均适宜使用热电阻。当然热电阻的阻值随温度而非线性变化会引入系统误差,而且热电阻的热惯性略显大些,不能够较好的跟踪温度快速和大幅度的变化。为避免系统误差过大,接入的二次仪表出的分辨率不宜过大。 再次由于热电阻温度传感器的校准简单,其所校准点只有零点和100度时对应的电阻值,校准设备简单,校准时间很短。而热电偶温度传感器的校准由于升温和退温的缓慢性,使热偶的校准不仅时间漫长,设备复杂,且对环境的要

热电偶型号

●结构与原理 工业热电偶作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中0~1800℃范围的液体、蒸汽和气体介质以及固体表面的温度。 若配接输出4~20mA、0~10V等标准电流、电压信号的温度变送器,使用更加方便、可靠。 装配式热电偶是由感温元件(热电偶芯)、不锈钢保护管、接线盒以及各种用途的固定装置组成。 铠装式热电偶比装配式热电偶具有外径小、可任意弯曲、抗震性强等特点。适宜安装在装配式热电偶无法安装的场合,它的外保护管采用不同材料的不锈钢管(适合不同使用温度的需要),内充满高密度氧化物质绝缘体,非常适合安装在环境恶劣的场合。 隔爆式热电偶通常用于生产现场伴有各种易燃、易爆等化学气体。如果使用普通热电偶极易引起环境气体爆炸,因此在这种场合必须使用隔爆热电偶,隔爆热电偶适用在dⅡBT1—6及dⅡCT1—6温度组别区间内具有爆炸性气体的危险场所内。 ●热电偶的工作原理是: 两种不同成份的导体,两端经焊接,形成回路,直接测量端叫工作端(热端)接线端子端叫冷端,当热端和冷端存在温差时,就会在回路里产生热电流,接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值,电动势随温度升高而增长。

热电动势的大小只和热电偶的材质以及两端的温度有关,和热电偶的长短粗细无关。 ●热电偶的种类 热电偶的主要种类区别在其热电偶芯(两根偶丝)的材质不同而不同,它所输出的电动势也不同,热电偶主要有以下几种(见下表), 说明:表中“t”为实测温度;代号后加“K”字即为铠装式热电偶。 1>装配热电偶 装配热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。 可选型号 B型、S型、K型、E型 主要技术参数 测量范围及基本误差限

热电偶与热电阻区别对比

热电偶与热电阻区别对比 热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于: 一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热偶,是产生感应电压的变化,他随温度的改变而改变。 二、两种传感器检测的温度范围不一样,热阻一般检测-250至500度温度范围,最高测量范围可达600度左右。热偶可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。 三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热偶是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。 1.热电偶的测量原理: 热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。 热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端(参比端或自由端)则与显示仪表相连。如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 2.热电阻的测量原理: 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 3.如何选择热电偶和热电阻? 根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热电阻;, 根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶; 根据测量范围选择:热电偶所测量的一般指“点”温,热电阻所测量的一般指空间平均温度;

各种热电偶的区别

S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差- 0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负 极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S 型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。 由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。1967年至1971年间,英国NPL,美国NBS和加拿大NRC三大研究机构进行了一项合作研究,其结果表明,R型热电偶的稳定性和复现性比S型热电偶均好,我国目前尚未开展这方面的研究。R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大 (B型热电偶)铂铑30-铂铑6热电偶 铂铑30-铂铑6热电偶(B型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(BN)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800℃。B型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长,测温上限高等优点。适用于氧化性和惰性气氛中,也可短期用于真空中,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。B型热电偶一个明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。B型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。

热电阻与热电偶的区别

热电阻与热电偶的区别 1、工作原理和结构的的区别 ①工作原理的区别 热电偶是由两根不同的导体或半导体材料焊接或绞接而成,分为热端和自由端,热端插入需要测温的设备中,冷端置于设备的外面,如果两端所处的温度不同则在热电偶回路中便会产生热电势,由于热电势是被测温度的函数,测得电动势的数值后,便可换算成温度值。 热电阻是根据导体的电阻值会随着温度的变化而变化的性质,将电阻的变化转换为电信号,从而进行温度测量的。 ②结构的区别 普通的热电偶通常由热电极、绝缘材料和电偶保护套管以及接线盒等构成。热电偶一般采用带孔的耐高温陶瓷管作为绝缘材料,热电极从耐高温陶瓷管孔中引出。保护套管材料需具备耐腐蚀、耐高温、机械强度高、气密性好、热导率高等性能主要有金属、非金属、金属陶瓷3类,目前最常用保护套管是1Cr18Ni9Ti不锈钢的,适宜在900℃以下的工况条件。 热电阻最主要的部分是电阻体加上绝缘套管、保护套管以及接线盒等部件,将电阻丝缠绕在石英、陶瓷或塑料等绝缘骨架上,再套上保护套管,并在热电阻丝与套管中间填充导热材料。 2、热电偶的分类及其特点 标准热电偶是指国家标准中规定了热电偶热电势与温度的关系,有统一标准分度表,允许存在一定误差的热电偶。 非标准热电偶一般没有统一的分度表,主要用于测量一些特殊的场合,使用范围和数量级比标准热电偶要小,组成热电偶的热电极必须牢固的焊接在一起,两个热电极之间应有比较好的绝缘,防止发生短路;补偿导线与热电偶自由端的连接要牢固可靠,保护套管要保证热电

极与外界的介质充分隔离,以保证热电偶可靠、稳定地工作。 3、热电阻的分类及其特点 ①根据热电阻的组成结构分类 普通型热电阻:根据热电阻的测温原理可知,被测量的温度变化是直接通过电阻值的变化来反映的,所以,热电阻引出的各种导线电阻的变化会给温度测量带来不良影响。需要消除引线电阻带来的影响,通常热电阻采用三线制或四线制进行补偿。 铠装型热电阻:与铠装热电偶类似,同样由感温元件、引线、绝缘材料和不锈钢套管组合而成,外径一般在φ2-φ8mm之间,相比普通型热电阻具有体积小、易安装、抗冲击、能弯曲并且使用寿命也更长。 端面热电阻:端面热电阻的感温元件是经过特殊处理的电阻丝绕制的,紧贴在温度计端面。它与一般的热电阻相比,能够更加快速准确的反映出被测端面的实际温度,适用于轴瓦等端面的温度测量。 防爆热电阻:防爆热电阻的接线盒结构特殊,可以把火花或电弧等影响而发生的爆炸、闪火控制在接线盒内,保证生产现场会产生明火,防爆型热电阻适用于含有易燃、易爆等化学气体、蒸气的场所。 ②根据热电阻的材质分类 铂电阻:铂的电阻率较大,电阻和温度的关系呈非线性,铂电阻的测温范围广、测量精度高、材料容易提纯、复现性也很好;恶劣和高温条件下其物理和化学性质都很稳定。现在工业用铂电阻分度号有Pt100和Pt10,其中Pt10是用粗的铂丝制成的,适用于600℃以上的温度测量。在0℃时,Ptl00的电阻值为100Ω,而Ptl0的在0℃电阻值为10Ω,所以Pt100也更为常用;铂电阻测温范围一般在-200℃~850℃。之间,超过550℃以上的高温只适合在氧

相关文档
最新文档