如何选择热电阻与热电偶温度传感器
热电偶和热电阻的区别与识别方法

热电偶和热电阻的区别与识别方法热电偶和热电阻是工业上常用的两种温度传感器,它们在测量温度方面具有很好的性能。
然而,它们的工作原理和特点有很大的区别。
本文将就热电偶和热电阻的区别及识别方法进行详细的介绍,希望能够为大家对这两种传感器有一个更深入的了解。
一、热电偶和热电阻的工作原理1. 热电偶的工作原理热电偶是利用两种不同材料的热电势差产生的原理来测量温度的。
当两种不同金属相接形成闭合回路后,如果两个接头处于不同的温度下,就会在回路中产生一个热电动势,这种现象称为热电效应。
通过测量这个热电动势的大小,就可以确定两个接头处的温度差,从而测量出被测物体的温度。
热电偶的优点是测量范围广,精度高,响应速度快,但是对环境条件和测量电路的影响比较敏感。
2. 热电阻的工作原理热电阻是利用材料的电阻随温度变化的特性来测量温度的。
一般情况下,热电阻的电阻值随温度升高而增大,利用这个特性可以通过测量热电阻的电阻值来确定被测物体的温度。
热电阻的优点是测量精度高,线性好,但是响应速度相对较慢,不适合对温度变化较快的物体进行测量。
二、热电偶和热电阻的区别1. 原理区别热电偶利用热电效应来测量温度,而热电阻利用电阻随温度变化的特性来测量温度,两者的工作原理完全不同。
2. 测量范围区别热电偶的测量范围更广,可以用于测量-200℃至1800℃范围内的温度;而热电阻的测量范围相对较窄,一般在-200℃至600℃之间。
3. 线性特性区别热电偶的温度-电压变化是非线性的,而热电阻的温度-电阻变化是线性的。
4. 响应速度区别热电偶由于其工作原理的特性,响应速度比较快,适合对温度变化较快的物体进行测量;而热电阻的响应速度相对较慢,不适合对温度变化较快的物体进行测量。
5. 环境条件影响区别热电偶对环境条件和测量电路的影响比较敏感,容易受到干扰;而热电阻对环境条件和测量电路的影响相对较小。
6. 价格区别由于其工作原理和特性的不同,热电偶的制作工艺相对较为复杂,成本较高;而热电阻的制作工艺相对简单,成本较低。
温度测量中的热电偶和热电阻的区别和联系,以及如何选用?

温度测量中的热电偶和热电阻的区别和联系,以及如何选用?温度测量是电气自动化,工业自动化,科技自动化中必不可少的测量参数。
温度是衡量工况条件的重要指标,一般情况下温度的测量都是通过热电阻测量或者热电偶测量,这两种测量设备都应用很多。
关于热电偶和热电阻的使用,很多人都不是很清楚。
今天我们就重点来学习一下(温度测量中的热电偶和热电阻。
具体来看一下热电偶和热电阻的区别和联系,以及怎么选用?)一、热电阻和热电偶(1)热电阻利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。
当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。
(2)热电偶热电偶与热电阻的测量原理:两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现像热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)将它插入待测温度的介质中;而热电偶的另一端」(参比端或自由端)与显示仪表相连。
如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。
二、如何选择热电偶和热电阻?根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热电阻根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶根据测量范围选择:热电偶所测量的般指“点”温,热电阻所测量的般指空间平均温度。
热电偶的使用原理温差电偶测量温度的优点:(1)测量范围广:可以从4.2K(-268.950C)的深低温直至28000C 的高温如液态空气的低温或炼钢炉温(~2000℃)。
(2)测量精度高:因热电偶直接与被测对象接触,不受中间介质的影响灵敏度和准确度高(可达10-3度),特别是铂姥一铂热电偶。
(3)受热面积和热容量可做得很小,如研究金相变化、小生物体温变化,水银温度计则难于可比。
如何选择热电阻或热电偶

如何选择热电阻或热电偶热电阻和热电偶都是测温传感器,只是两种传感器检测的温度范围不一样,热阻一般检测-200~600度温度范围,热电偶(分度号K)可检测-40~1000度的温度范围(分度号N、S、R、B甚至更高)所以,前者一般用于低温检测,后者用于高温检测。
1.信号的性质虽然都是接触式测温仪表,但它们的测温范围不同。
热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热电偶是产生感应电压的变化,他随温度的改变而改变。
热电偶使用在温度较高的环境,如铂铑30---铂铑6(B型)测量范围为300度~~1600度,短期可测1800度。
S型测一20~~1300(短期1600),K型测一50~~1000,短期1200).XK型一50~~600(800),E型一40~~800(900).还有J型,T型等。
这类仪表一般用于500度以上的较高温度,低温区时输出热电势很,当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。
这时在中低温度时,一般使用热电阻测温范围为一200~~500,甚至还可测更低的温度(如用碳电阻可测到1K左右的低温).现在正常使用铂热电阻Pt100,(也有Pt50、100和50代表热电阻在0度时的阻值。
在旧分度号中用BA1,BA2来表示,BA1在0度时阻值为46欧姆,在工业上也有用铜电阻,分度号为CU50和CU100,但测温范围较小,在一50~~150之间,在一些特殊场合还有铟电阻、锰电阻等)。
2.测温范围两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围(当然可以检测负温度),热电偶可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。
3.材质区分从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热电偶是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。
如何正确选择热电阻及热电偶.

如何正确选择热电阻及热电偶热电阻的应用原理热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
1.热电阻测温原理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。
2.热电阻的结构(1)精通型热电阻从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。
为消除引线电阻的影响同般采用三线制或四线制,热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
(1)热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
热电阻与热电偶

热电阻与热电偶热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中广泛应用。
它们都能够将温度变化转化为电信号,但原理和特性有所不同。
一、热电阻热电阻是一种利用材料电阻随温度变化的特性来测量温度的传感器。
常见的热电阻材料有铂、镍、铜等。
其中,铂热电阻是最常用的一种。
铂热电阻的优点是抗腐蚀性好、线性度高、稳定性好等。
它的工作原理是根据热电阻材料的电阻随温度的变化规律,通过测量电阻值来推算温度。
热电阻的测量精度较高,通常可以达到0.1℃。
但它的响应速度较慢,适用于温度变化较缓慢的场合。
在工业控制系统中,热电阻常被用于测量液体、气体等介质的温度。
二、热电偶热电偶是利用两种不同材料的导电性能差异产生的热电效应来测量温度的传感器。
常见的热电偶材料有铜/常铜、铜/镍等。
工作原理是当两种不同材料的接触点温度不同时,会产生热电势差,通过测量热电势差来推算温度。
热电偶具有响应速度快、测量范围广的特点。
它可以测量极高和极低温度,适用于温度变化较快的场合。
在工业控制系统中,热电偶常被用于测量高温炉、燃烧器等的温度。
三、热电阻与热电偶的比较热电阻和热电偶都是常见的温度传感器,它们各有优缺点,应根据具体的应用场景选择合适的传感器。
热电阻的优点是测量精度高、稳定性好,适用于温度变化缓慢的场合。
但它的响应速度较慢,不适用于温度变化较快的场合。
热电偶的优点是响应速度快、测量范围广,适用于温度变化较快的场合。
但它的测量精度相对较低,受到环境干扰较大。
在选择热电阻或热电偶时,还需考虑以下因素:测量范围、测量精度、响应速度、使用环境等。
根据具体需求,选择适合的传感器。
总结:热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中被广泛应用。
热电阻利用材料电阻随温度变化的特性来测量温度,热电偶利用两种不同材料的导电性能差异产生的热电效应来测量温度。
热电阻测量精度高,稳定性好,适用于温度变化缓慢的场合;热电偶响应速度快,测量范围广,适用于温度变化较快的场合。
如何选择热电阻或热电偶

如何选择热电阻或热电偶
热电阻和热电偶是两种常见的温度传感器。
它们的作用是将温度信号
转换为电信号,以便进行测量和控制。
在选择热电阻或热电偶时,需要考
虑以下几个因素。
1.温度范围:热电偶通常能够在更广范围内测量温度,可以达到几千
摄氏度甚至更高,而热电阻一般适用于较低的温度范围,一般在-200摄
氏度到600摄氏度之间。
2.响应时间:热电偶由于其结构和原理的不同,响应时间一般比热电
阻快,适用于需要较快响应的应用。
3.精度要求:热电阻一般具有较高的精度,通常能够达到0.1摄氏度
或更高的精度要求。
热电偶的精度一般较低,通常在1摄氏度或更高。
4.成本考虑:热电阻相对于热电偶更昂贵,如果经济成本是一个考虑
因素,可以考虑选择热电偶。
5.环境条件:热电偶由于其结构的特性,较为耐用,能够适应恶劣的
环境条件,例如高温、腐蚀等。
热电阻相对较脆弱,需要额外的保护措施,适用于相对较为温和的环境。
6.安装和使用简便性:热电偶的灵活性较好,较容易安装和使用。
热
电阻的安装和使用相对复杂一些,一般需要额外的电桥电路和连接器。
热电偶和热电阻的区别详解

在工业自动化领域中,测量温度是一项非常重要的任务。
而热电偶和热电阻是常用的两种测温元件,它们的工作原理和性质有所不同,因此在具体使用时需要根据实际需求进行选择。
下面将对热电偶和热电阻进行详细介绍,并比较它们之间的区别。
一、热电阻和热电偶的测量原理。
1、热电偶的测量原理。
热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。
将它插入待测温度的介质中;而热电偶的另一端(参比端或自由端)则与显示仪表相连。
如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。
2、热电阻的测量原理热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。
当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。
二、热电偶和热电阻的二次侧测量表性能比较。
1,热电偶测量温度的基本原理是热电效应。
二次表是一个检伏计或为了提高精度时使用电子电位差计等。
2,电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥。
三、热电偶和热电阻的基本线制。
1,由热电偶测温原理可知,只有在其冷端温度恒定时,被测温度才与热电势成单值函数关系。
在实际使用中,就用一种热电特性与相应热电偶特性相似的廉价的连接导线(也称为补偿导线),使热电偶冷端引伸到温度相对恒定的地方(最好为0度),如用铜--康铜做补偿导线来引申镍铬---镍硅热电阻。
因此,热电偶到二次表延长线是两根。
2,热电阻与二次表之间是用铜导线连接的,为了减小环境变化引起的测量误差,一般均采用三线制接法,其中有两根导线将热电阻串联于相邻的两个桥臂上,另一根导线是引来电源。
如何选择热电偶温度传感器与热电阻温度传感器?

如何选择热电偶温度传感器与热电阻温度传感器?本文将探讨如何选择热电偶温度传感器与热电阻温度传感器。
首先,我们需要了解热电偶和热电阻这两种常见的温度传感器。
热电偶和热电阻的原理热电偶利用热电效应来测量温度,在两个不同金属连接处会产生电动势,基于此可以计算出温度值。
热电偶的优势是可以测量高温、广泛的温度范围以及快速响应时间。
它们适用于特别高温、强变化和高真空的应用场合,适用于多而杂的工业环境,它们可以测量特别宽的范围,包括—200度 Celsius到1800度Celsius之间的任何温度。
热电阻以另一种方式工作,是一种电阻温度传感器,通过将电流传导到由特定材料制成的电阻器上进行测量,并依据电阻的变化来计算出温度值。
热电阻的优势是精准性高、长期稳定性好、成本相对较低。
它们最适合低温测量,通常用于宽范围温度测量,可在—200度Celsius到900度Celsius之间使用。
在选择哪种温度传感器时,您需要考虑以下几个因素:1.应用场合热电偶通常用于高温环境,如工业炉子,火炉,熔炉等,并用于测量高温介质。
当您需要在极端高温的环境下测量温度时,热电偶是最好的选择。
热电偶也适用于测量特别低温度而不简单受到高辐射或电磁场的干扰的情况。
热电阻通常用于较低温度的应用场合,如化学试验室和医疗设备。
2.温度范围另一个影响选择的因素是所需温度范围。
热电偶可以处理比热电阻更高和更低的温度范围,假如您需要测量极端高温或低温,那么热电偶可能是您的首选。
3.精准性另一个因素是测量精准性。
热电偶和热电阻都是精准明确,但是热电阻由于其结构和材料的不同,具有更高的精准性。
它们的精准度通常比热电偶更高,对于需要高精度测量的应用,如制药和电子设备制造,热电阻是更好的选择。
4.响应时间响应时间是另一个区分。
热电偶的响应时间比热电阻快得多,通常只需要几秒钟。
因此,假如您需要快速响应的温度测量,例如掌控过程变量,那么热电偶可能是更佳的选择。
5.成本最后,在选择热电偶和热电阻时,成本是另一个要考虑的因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何选择热电阻与热电偶温度传感器
热电阻和热电偶是温度传感器最常用的感温元件。
热电偶温度传感器工作原理是两种不同金属接触面两端在不同温度时产生不同微弱电压,经放大电路来测量温度,主要用于测量高温。
热电阻温度传感器的工作原理是电阻值随着温度变化,主要用于测量微小的温度变化。
当我们想要测量温度的时候,应当如何选择这两种温度传感器呢?
首先看测温范围。
热电阻和热电偶各有适宜的测温范围,根据实际测温点的温度及温度梯度分布情况酌情选择传感器。
高温测量通常选择热点偶,中低温则选择热电阻。
其次结合现场环境状况,尤其是要考虑现场电磁兼容性能,各种杂波、谐波、差模和共模干扰信号的情况。
当使用热电偶温度传感器时因温差热电势属于较微弱的电信号,易受干扰从而引入测量误差,而热电阻温度传感器因为是电流信号不易受干扰,而且又因为有三线制、四线制等可以进一步减少测量的系统误差,所以热电阻在满足测量范围的前提下还具有抗干扰性能强的优势,还没有热电偶的冷端补偿问题的麻烦。
另外,现场一般在测温点都是将热电阻温度传感器接到变送器上再输出给二次仪表,不怕线路长造成信号衰减,而且不必使用造价较高的补偿导线,而热电偶温度传感器则需要使用补偿导线,这些情况下均适宜使用热电阻。
当然热电阻的阻值随温度而非线性变化会引入系统误差,而且热电阻的热惯性略显大些,不能够较好的跟踪温度快速和大幅度的变化。
为避免系统误差过大,接入的二次仪表出的分辨率不宜过大。
再次由于热电阻温度传感器的校准简单,其所校准点只有零点和100度时对
应的电阻值,校准设备简单,校准时间很短。
而热电偶温度传感器的校准由于升温和退温的缓慢性,使热偶的校准不仅时间漫长,设备复杂,且对环境的要。