(整理)多元统计分析思考题.
(完整版)多元统计分析思考题答案

《多元统计分析》思考题答案记得老师课堂上说过考试内容不会超出这九道思考题,如下九道题题目中有错误的或不清楚的地方,欢迎大家指出、更改、补充。
1、 简述信度分析答题提示:要答可靠度概念,可靠度度量,克朗巴哈α系数、拆半系数、单项与总体相关系数、稀释相关系数等(至少要答四个系数,至少要给出两个指标的公式)答:信度(Reliability )即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
信度分析的方法主要有以下四种:1)、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。
重测信度属于稳定系数。
重测信度法特别适用于事实式问卷,如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。
由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。
2)、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。
复本信度属于等值系数。
复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
3)、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。
折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。
这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。
在问卷调查中,态度测量最常见的形式是5级李克特(Likert )量表。
进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数。
zz-多元统计分析方法(含答案)

判别分析是一种(C)的统计方法。
A. “无师可循”,对个体归类 B. “无师可循”,对群体分 类 C. “有师可循”,对个体归类 D. “有师可循”,对群体分 类
E. 以上都不对
Fisher准则下的判别分析,判别临界值YC的确定从 理论上讲,(B)方法最合理。
新样品的判断分类也越可靠。√
逐步判别中Λ大,表明该函数在K类之间的判别能
力越强。×
Q型聚类分析是对变量进行聚类。 ×
有序样品聚类中,为了求出最优分割,必须定义
类的直径和目标函数。 √
有序样品聚类中,如果Si到Sj为一类,其间有j-i+1个样品, 则类直径只能定义为j-i+1个样品观察值的离均差平方和。 ×
多元线性回归要求应变量为定量资料;
Logistic回归要求应变量为二分类或多分类资料; Cox比例风险回归要求应变量为表示时间长短的资
料。
8. 某医师用B超测量一批4岁男孩心脏纵径x1(cm)、 心脏横径x2(cm)和心象面积y(cm2)三项指标,在 统计软件包的支持下,得到多元线性回归方程:
3. 聚类分析常被分为哪两大类?常用的距离 有哪几种?
聚类分析常被分为:
R型聚类(变量聚类)
Q型聚类(样品聚类) 常用的距离:
绝对值距离、欧氏距离、马氏距离、明氏距 离、切比雪夫距离和兰氏距离。
4. 常用的类间距离分类的方法有哪几种?
最短距离法、最长距离法、中间距离法、重心法、 类平均法、可变类平均法、离差平方和法和可变 法。
无=0,有=1 对照=0,病例=1
对上面6个危险因素按连续变量采用逐步法 进行多变量筛选,最终进入方程的危险因素分 别为X2,X3,X4,X6结果见下表:
多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
多元统计分析整理版.doc

1、主成分分析的目的是什么?主成分分析是考虑各指标间的相互关系,利用降维的思想把多个指标转换成较少的几个相互独立的、能够解释原始变量绝大部分信息的综合指标,从而使进一步研究变得简单的一种统计方法。
它的目的是希望用较少的变量去解释原始资料的大部分变异,即数据压缩,数据的解释。
常被用来寻找判断事物或现象的综合指标,并对综合指标所包含的信息进行适当的解释。
2、主成分分析基本思想?主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标。
同时根据实际需要从中选取几个较少的综合指标尽可能多地反映原来的指标的信息。
● 设p 个原始变量为 ,新的变量(即主成分)为 ,主成分和原始变量之间的关系表示为?3、在进行主成分分析时是否要对原来的p 个指标进行标准化?SPSS 软件是否能对数据自动进行标准化?标准化的目的是什么?需要进行标准化,因为因素之间的数值或者数量级存在较大差距,导致较小的数被淹没,导致主成分偏差较大,所以要进行数据标准化; 进行主成分分析时SPSS 可以自动进行标准化;标准化的目的是消除变量在水平和量纲上的差异造成的影响。
求解步骤⏹ 对原来的p 个指标进行标准化,以消除变量在水平和量纲上的影响 ⏹ 根据标准化后的数据矩阵求出相关系数矩阵 ⏹ 求出协方差矩阵的特征根和特征向量⏹ 确定主成分,并对各主成分所包含的信息给予适当的解释版本二:根据我国31个省市自治区2006年的6项主要经济指标数据,表二至表五,是SPSS 的输出表,试解释从每张表可以得出哪些结论,进行主成分分析,找出主成分并进行适当的解释:(下面是SPSS 的输出结果,请根据结果写出结论) 表一:数据输入界面p 21p x x x ,,, 21p ,21p y y y ,,, 21表二:数据输出界面a)此表为相关系数矩阵,表示的是各个变量之间的相关关系,说明变量之间存在较强的相关系数,适合做主成分分析。
观察各相关系数,若相关矩阵中的大部分相关系数小于0.3,则不适合作因子分析。
应用多元统计分析习题解答主成分分析

主成分分析6.1 试述主成分分析的基本思想。
答:我们处理的问题多是多指标变量问题,由于多个变量之间往往存在着一定程度的相关性,人们希望能通过线性组合的方式从这些指标中尽可能快的提取信息。
当第一个组合不能提取止。
这就是主成分分析的基本思想。
6.2 主成分分析的作用体现在何处?答:一般说来,在主成分分析适用的场合,用较少的主成分就可以得到较多的信息量。
以各个主成分为分量,就得到一个更低维的随机向量;主成分分析的作用就是在降低数据“维数”6.3 简述主成分分析中累积贡献率的具体含义。
答:主成分分析把p 个原始变量12,,,p X X X 的总方差()tr Σ分解成了p 个相互独立的变量p 个主成分的,忽略一些带有较小方差的主成分将不会给总方差带来太大的影响。
这里我们()m p <个主成分,则称11pmm kkk k ψλλ===∑∑ 为主成分1,,m Y Y 的累计贡献率,累计贡献率表明1,,m Y Y 综合12,,,p X X X 的能力。
通常取m ,使得累计贡献率达到一个较高的百分数(如85%以上)。
答:这个说法是正确的。
即原变量方差之和等于新的变量的方差之和6.5 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。
答:从相关阵求得的主成分与协差阵求得的主成分一般情况是不相同的。
从协方差矩阵出发的,其结果受变量单位的影响。
主成分倾向于多归纳方差大的变量的信息,对于方差小的变量就可能体现得不够,也存在“大数吃小数”的问题。
实际表明,这种差异有时很大。
我6.6 已知X =()’的协差阵为试进行主成分分析。
解:=0计算得当时,同理,计算得时,易知相互正交单位化向量得,,综上所述,第一主成分为第二主成分为第三主成分为6.7 设X=()’的协方差阵(p为, 0<p<1证明:为最大特征根,其对应的主成分为。
证明:==,为最大特征根当时,=所以,6.8利用主成分分析法,综合评价六个工业行业的经济效益指标。
2020年多元统计知识点总结老师思考题

十五、距离判别分析中,为何不用欧氏距 离?而用马氏距离。
首先由于判别分析中,对于分布理论非常关 注,它有一个基本假设;每一个类别都应取 自一个多元正态的样本,而且所有 正态总体 的协方差矩阵或相关矩阵都假定是相同的。 如不满足正态总体假定的做正态变换。因此 我们应该选择马氏。
分别删除D(1)表的相应的行和列,并新 增一行和一列添上的新类和旧类之间的距离。 结果,产生D(2)表。类推直至所有的样本点 归为一类为止。
最后所有的样本被归于一类。
聚类分析的步骤是什么?
§3 主要的步骤
1、选择变量
(1)变量与聚类分析的目的密切相关 (2)反映要分类变量的特征 (3)在不同研究对象上的值有明显的差异 (4)变量之间不要高度相关 2、计算相似性
3) 伪F统计量的定义为
F (W PG ) (G 1) PG (n G)
伪F统计量用于评价聚为G类的效果。如 果聚类的效果好,类间的离差平方和相对 于类内的离差平方和大,所以应该取伪F统 计量较大而类数较小的聚类水平。
十二、有序聚类与系统聚类有何不同?k均值聚类与系统聚类有何不同。
判别分析中的因变量或判别准则是定类变量, 而自变量或预测变量基本上是定距变量。
聚类分析并不是一种纯粹的统计技术,其方 法基本上与分布理论和显著性检验无关。一 般不从样本推断总体。而判别分析中,对于 分布理论非常关注,它有一个基本假设;每 一个类别都应取自一个多元正态的样本,而 且所有 正态总体的协方差矩阵或相关矩阵都
有序聚类与系统聚类有何不同?
第二章 聚类分析
系统聚类分析 直观, 易懂,速度慢;
多元统计分析练习题

多元统计分析练习题一、主成分练习题填空题1.主成分分析是通过适当的变量替换,使新变量成为原变量的___________,并寻求_________的一种方法。
2.主成分分析的基本思想是______________。
3.主成分的协方差矩阵为_________矩阵。
4.主成分表达式的系数向量是_______________的特征向量。
5.原始变量协方差矩阵的特征根的统计含义是________________。
6.原始数据经过标准化处理,转化为均值为____,方差为____的标准值,且其________矩阵与相关系数矩阵相等。
7.因子载荷量的统计含义是_____________________________。
8.样本主成分的总方差等于_____________。
9.变量按相关程度为,在__________程度下,主成分分析的效果较好。
10.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为________________。
11.SPSS 中主成分分析采用______________命令过程。
计算题1.设三个变量(x1,x2,x3)的样本协方差矩阵为:2121002222222<<−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡r s rs r s s r s r s s 试求主成分及每个主成分的方差贡献率。
2.在一项研究中,测量了376只鸡的骨骼,并利用相关系数矩阵进行主成分分析,见下表: Y1 Y2 Y3 Y4 Y5 Y6 头长x1 头宽x2 肱骨x3 尺骨x4 股骨x5 胫骨x6 0.35 0.33 0.44 0.44 0.43 0.44 0.53 0.70 0.19 0.25 0.28 0.22 0.76 -0.64 -0.05 -0.02 -0.06 -0.05 -0.05 0.00 0.53 0.48 0.51 0.48 -0.04 0.00 0.19 0.15 0.67 0.70 0.00 0.04 0.59 0.63 0.48 0.15 特征值4.570.710.410.170.080.06解释6个主成分的实际意义。
多元统计分析课后习题解答第四章

习题解析
• 题目:简述多元统计分析的基本思想 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关 系和规律,进而解决实际问题的方法。其基本思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
• 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关系和规律,进而解决实际问题的方法。其基本 思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
汇报人:XX
多元统计分析的 方法和技术广泛 应用于各个领域, 如心理学、经济 学、医学等。
多元统计分析的 基本步骤包括数 据收集、数据探 索、模型选择、 模型拟合和模型 评估等。
多元统计分析的基本思想
综合多个变量进行全面分析,以揭示数据之间的内在联系和规律 强调变量之间的交互作用和协同效应,以实现更准确的预测和推断 通过对数据的降维处理,简化复杂数据集,提取关键信息
• 题目:解释因子分析的基本思想。 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共 同因子来解释变量之间的相互关系。通过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。 • 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共同因子来解释变量之间的相互关系。通 过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多元统计分析思考题》
第一章回归分析
1、回归分析是怎样的一种统计方法,用来解决什么问题?
概念:回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
解决的问题:自变量对因变量的影响程度、方向、形式
2、线性回归模型中线性关系指的是什么变量之间的关系?自变量与因变量之间一定是线
性关系形式才能做线性回归吗?为什么?
3、实际应用中,如何设定回归方程的形式?
4、多元线性回归理论模型中,每个系数(偏回归系数)的含义是什么?
5、经验回归模型中,参数是如何确定的?有哪些评判参数估计的统计标准?最小二乘估
计两有哪些统计性质?要想获得理想的参数估计值,需要注意一些什么问题?
6、理论回归模型中的随机误差项的实际意义是什么?为什么要在回归模型中加入随机误
差项?建立回归模型时,对随机误差项作了哪些假定?这些假定的实际意义是什么?
7、建立自变量与因变量的回归模型,是否意味着他们之间存在因果关系?为什么?
8、回归分析中,为什么要作假设检验?检验依据的统计原理是什么?检验的过程是怎样
的?
9、回归诊断可以大致确定哪些问题?回归分析有哪些基本假定?如果实际应用中不满足
这些假定,将可能引起怎样的后果?如何检验实际应用问题是否满足这些假定?对于各种不满足假定的情形,分别采用哪些改进方法?
10、回归分析中的R2有何意义?它能用来衡量模型优劣吗?
11、如何确定回归分析中变量之间的交互作用?存在交互作用时,偏回归系数的意义与不
存在交互作用的情形下是否相同?为什么?
12、有哪些确定最优回归模型的准则?如何选择回归变量?
13、在怎样的情况下需要建立标准化的回归模型?标准化回归模型与非标准化模型有何
关系?形式有否不同?
14、利用回归方法解决实际问题的大致步骤是怎样的?
15、你能够利用哪些软件实现进行回归分析?能否解释全部的软件输出结果?
第二章判别分析
1、判别分析的目的是什么?
根据分类对象个体的某些特征或指标来判断其属于已知的某个类中的哪一类。
2、有哪些常用的判别分析方法?这些方法的基本原理或步骤是怎样的?它们各有什么特
点或优劣之处?
3、判别分析与回归分析有何异同之处?
4、判别分析对变量与样本规模有何要求?
5、如何度量判别效果?有哪些影响判别效果的因素?
6、逐步判别是如何选择判别变量的?基本思想或步骤是什么?
7、判别分析有哪些现实应用?举例说明。
第三章聚类分析
1、聚类分析的目的是什么?与判别分析有何异同?这种方法有哪些局限或欠缺?
目的:把分类对象按照一定的规则分成若干类,这些类不是事先给定的,而是根据数据的特征确定的。
异同:判别分析事先知道“训练样本”,而聚类分析不给定分几类。
局限:聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似程度就可以产生不同的聚类结果。
2、有哪些常用的聚类统计量?
Q型聚类统计量(根据样品的距离),R型聚类统计量(根据变量即相似系数)
3、系统(谱系)聚类法的基本思想是怎样的?它包含哪些具体方法?
思想:先将待聚类的n个样品(或变量)各自看成一类,共有n类;然后按照事先选定的方法计算每两类之间的聚类统计量,即某种距离(或者相似系数),将关系最密切的两类并为一类,其余不变,即得n-1类;在按前面的计算方法计算新类与其他类之间的距离(或相似系数),再将关系最密切的两类并为一类,其余不变,的n-2类;如此继续下去,每次重复都减少一类,直到最后所有样品(或变量)归为一类为止。
方法:最短距离法,最大距离法,中间距离法,重心法,类平均法,离差平方和法。
步骤:1、n个样品(或变量)个自成一类,一共有n类,计算两两之间的距离,显然D(Gp,Gq)=d pq,构成一个对称阵D(0)=(d ij)n*n,其对角线上的元素全为零。
2、选择D(0)对角线元素以外的上(或者下)三角部分的最小元素,设其为D(Gp,Gq),
与其下标相对应,将类Gp和Gq合并成一个新类,记作Gr,计算新类Gr与其他类Gk(k非p、q)之间的距离。
3、在D(0)中划去与Gp和Gq所对应的两行和两列,并加入Gr与其他各类之间的
距离所组成的一行和一列,得到新的n-1阶对称距离矩阵D(1)
4、由D(1)出发,重复步骤二、步骤三得到对称矩阵D(2),;再由D(2)出发,重复步
骤二、步骤三得到对称矩阵D(3),…..,以此类推,直到n个样品(或者变量)聚为一个大类位置。
4、聚类分析对变量与样本规模有何要求?有哪些因素影响分类效果?要想减少不利因素
的影响,可以采取哪些改进方法?
5、实际应用问题,如何确定分类数目?
6、快速聚类法(K—均值法)的基本思想或步骤是怎样的?
思想:在待聚类的样品比较时,先给出一个大致的初始分类,然后用某种原则进行修改,直到分类结果比较合理为止。
步骤:
7、有序样品的最优分别法的基本思想或步骤是怎样的?
最优二分割或三分割
8、应用聚类分析解决实际问题的基本步骤是怎样的?应该注意哪些方面的问题?
第四章主成分分析与典型相关分析
1、主成分分析的基本思想是什么?在低维情况下,如何利用几何图形解释主成分的意
义?
2、什么是主成分的贡献率与累计贡献率?实际应用时,如何确定主成分的个数?
3、主成分有哪些基本性质?
4、对于任何情形的多个变量,都可以采取主成分方法降维吗?为什么?
5、怎样的情况下需要计算标准化的主成分?
6、主成分有哪些应用?
7、如何解释主成分的实际含义?
8、
9、典型相关分析的基本思想是什么?有何实际用途?
10、典型相关分析与回归分析、判别分析、主成分分析、因子分析有何关联?试比较这
些方法的异同之处。
10、典型相关分析有哪些基本假定?
11、如何解释典型相关函数的实际意义?
12、典型相关方法中冗余度分析的意义是什么?
第五章
第六章因子分析与对应分析
1、
2、因子分析是怎样的一种统计方法?它的基本目的和用途是什么?
3、因子分子中的KMO统计量与巴特莱特球形性检验的目的是什么?
4、因子分析有哪些类型?它们有何区别?Q型因子分析与聚类分析有何异同?
5、
6、因子分析中的变量类型是怎样的?因子分析对变量数目有没有要求?对样本规模有
没有要求?
7、因子分析有怎样的基本假定?对样本特点(或性质)有何要求?
8、因子分析模型中,因子载荷、变量共同度、方差贡献等统计量的统计意义是什么?
9、因子分析与主成分分析有何区别与联系?它们分别适用于怎样的情况?
10、
11、如何确定公共因子数目?如何解释公共因子的实际意义?
12、
13、怎样的情况下,需要作因子旋转?
10、有哪些估计因子得分的方法?因子得分的估计是普通意义下的参数估计吗?为什
么?
11、对应分析的基本思想或原理是什么?试举例说明它的应用。
12、对应分析中总惯量的意义是什么?。