因式分解(第二课时)

合集下载

因式分解-人教版数学八年级上第十四章14.3第二课时PPT课件

因式分解-人教版数学八年级上第十四章14.3第二课时PPT课件

-
25
动笔练一练
分解下列因式
9a2−4b2=
(3a+2b)(3a−2b)
x2y – 4y=
y(x+2)(x-2)
–a4 +16=
(4+a2)(2+a)(2−a)
-
26
动笔练一练
分解下列因式
-2xy-x2-y2=
−(x+y)2
4x2-4x+1=
(2x−1)2
ax2+2a2x+a3=
a(a+x)2
-3x2+6xy-3y2=
-
7
动脑想一想
分解因式:4x2−9
解:原式=(2x)2−32 =(2x+3)(2x−3)
4x2 = (2x)2 9=32
a2−b2 =(a+b)(a−b)
-
8
动脑想一想
分解因式:(x+p)2 – (x+q)2
解:原式=[(x+p)+(x+q)][(x+p)–(x+q)]
=(2x+p+q)(p−q)
先提公因式
进一步用平方差公式进行分解。
-
11
动脑想一想
观察下面的多项式,它们有什么特点?
x2−4x+4 x2−2·2x+22 a2±2ab+b2
y2+2x+1 y2+2·1x+12
你还记得你在哪里见 过类似这样的式子吗?
-
12
完全平方式
• 形如下式的,带有两个同号平方项的二次 三项式,叫做完全平方式:
-
21
-

14.3因式分解(第2课时)

14.3因式分解(第2课时)



学 试一试:举一个要同时用两种方

法进行因式分解的多项式。
1.如果多项式各项含有公因式,则第一步是提 出这个公因式.
2.如果多项式各项没有公因式,则第一步考 虑用公式分解因式.
3.第一步分解因式以后,如果所含的多项式
倍 速
还可以继续分解, 则需要进一步分解因式.直 到每个多项式因式都不能分解为止.
倍 速 课 时 学 练
例1 分解因式: (1)4x2-9
(2)(x+p)2-(x+q)
倍 速 课 时 学 练
例2 分解因式:
(1)x4-y4;
(2) a3b – ab.
分析:(1)x4-y4可以写成(x2)2-(y2)2的形式,这样 就可以利用平方差公式进行因式分解 了.(2)a3b-ab有公因式ab,应先提出公因式,再 进一步分解.
14.3因式分解 ——平方差公式
人教新课标
问题1:你能将a2-b2分解因式吗?
a2-b2=(a+b)(a-b).
如果被分解的多项式符合公式的条件,就可以直接
倍 速 课
写出因式分解的结果,这种分解因式的方法称为运 用公式法.今天我们就来学习利用平方差公式分解

因式


观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、 符号有什么特点?




倍 速 课 时 学 练
倍 解:(1) x4-y4

课 时
= (x2+y2)(x2-y2)
学 练
= (x2+y2)(x+y)(x-y)
(2) a3b-ab =ab(a2-1) =ab(a+1)(a-1).

因式分解(第2课时)教学案

因式分解(第2课时)教学案

课题因式分解(第2课时)课型:新授课执笔:审核:七年级数学科备课组上课班:上课时间:【教学目标】1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.【重点难点】1、重点:运用平方差公式来分解因式.2、难点:运用平方差公式来分解因式.【教学媒体的应用】电子媒体和传统媒体相结合。

【教学方法】讲练结合、合作交流【自主复习、预习】【教学过程】一、检查自主复习、预习把下列各式分解因式:(1)x2+x (2)4a2b-6abc (3) x (a+1)-y(a+1)二、点评、讲授你能将多项式y2-25与多项式x2-4 分解因式吗?(1)本题你能用提公因式法分解因式吗?(2)这两个多项式有什么共同的特点?(3)你能利用整式的乘法公式——平方差公式(a+b)(a-b) =a2-b2来解决这个问题吗?你对因式分解的方法有什么新的发现?请尝试着概括你的发现.把整式的乘法公式——平方差公式(a+b)(a-b) =a2-b2反过来就得到因式分解的平方差公式:a2-b2 =(a+b)(a-b)(1)平方差公式的结构特征是什么?(2)两个平方项的符号有什么特点?适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个平方项的符号相反.例题:分解因式(1)4x2-9 (2) (x+p)2-(x+q)2例2分解因式:(1) x4-y4 (2) a3b-ab通过对例2的学习,你有什么收获?(1)分解因式必须进行到每一个多项式都不能再分解为止;(2)对具体问题选准方法加以解决.三、巩固练习练习1下列多项式能否用平方差公式来分解因式,为什么?(1) x2+y2 (2) x2-y2 (3) -m2+n2(4) -a2-b22、把下列各式分解因式:(1)a2-1/25b2(2)9a2-4b2(3)-1+36b2(4)(2x+y)2-(2x-y)23、16x4-1四、测试(或点拨、释难)五、小结与导学(一)小结:(1)本节课学习了哪些主要内容?(2)因式分解的平方差公式的结构特征是什么?(3)综合运用提公因式法和平方差公式进行因式分解时要注意什么?(二)导学:【作业布置】P119 1【板书设计】【个别学生面对面辅导情况】【课后反思】。

因式分解法(第2课时)课件

因式分解法(第2课时)课件
式分解式。
05
2. 交叉相乘,将得到的
步骤
02
04 两个积相加,若等于一
次项系数,则分解成功;
典型例题解析
例1
分解因式 $x^2 + 5x + 6$
分析
将常数项6分解成1和6的乘积,将二次项系数1分解成1和1 的乘积,交叉相乘后得到1×6+1×1=7,不等于一次项系数 5,因此分解失败。
正确解法
将常数项6分解成2和3的乘积,将二次项系数1分解成1和1 的乘积,交叉相乘后得到1×3+1×2=5,等于一次项系数5, 因此分解成功。所以 $x^2 + 5x + 6 = (x + 2)(x + 3)$。
练习题2
分解因式 $5a^2b^2 + 10ab + 5$。
练习题1答案
$4x^2y^2(2x + 3y)$。
练习题2答案
$5(a^2b^2 + 2ab + 1) = 5(ab + 1)^2$。
04 分组分解法
分组原则与技巧
分组原则:将多项式按照一定的规则分 成几组,使每组内的项能提取公因式或 应用公式法进行分解。
因式分解法(第2课时)课件
contents
目录
• 引言 • 因式分解法基本概念 • 提取公因式法 • 分组分解法 • 十字相乘法 • 综合应用与拓展
01 引言
回顾上节课内容
因式分解法的基本概念 提取公因式法
公式法(平方差公式、完全平方公式)
引入本节课主题
01
分组分解法
02
十字相乘法
03
拆项、添项法
答案
$x(x - y)(y - x + y) = x(x - y)(2y - x)$

因式分解第二节公式法第二课时ppt课件

因式分解第二节公式法第二课时ppt课件
2.完全平方公式:a2+2ab+b2=(a+b)2 ቤተ መጻሕፍቲ ባይዱ2-2ab+b2=(a-b)2
6
第三环节 落实基础
1.判别下列各式是不是完全平方式.
(1) x2 y2;不是 (2) x2 2xy y2; 是 (3) x2 2xy y2; 是 (4) x2 2xy y2; 不是 (5) x2 2xy y2.是
21
(1)形如________________形式的多项式可以 用完全平方公式分解因式。 (2)因式分解通常先考虑__提__取_公__因__式__法___方法。 再考虑_运__用__公__式__法___方法。 (3)因式分解要___彻__底___注意:一提二套三检查
22
作业
课本P103第1、2、3题
20052 4010 2003 20032
17
第六环节 联系拓广
1. 用简便方法计算:
20052 4010 2003 20032
18
2. 若a² +b² -6a+4b+13=0,
求a+b的值
19
3.将 4 x 2 1 再加上一个整式,使它成为完全平
方式,你有几种方法?
形如
的多项式称为完全平方式.
4
完全平方式的特点:
1、总含有三项; 2、其中两项可写成两数的平方和的形式,另一项刚好是两项积的2倍 ; 3、a和b即可以是数,也可以是单项式或多项式;
a2 2ab b2; a2 2ab b2
5
平方差公式法和完全平方公式 法统称公式法 1.平方差公式:a2-b2=(a+b)(a-b)
北师大版:第四章分解因式
(第二课时)
1
学习目标:
(1)会用完全平方公式进行因式分解; (2)了解分解因式先考虑提公因式法,

因式分解第2课时ppt课件新人教版八年级上册

因式分解第2课时ppt课件新人教版八年级上册
a2 -b2 =(a+b)(a-b)
点此播放讲课视频
理解平方差公式
下列多项式能否用平方差公式来分解因式,为什
么?
(1) x2+y2;
×
(2) x2 -y2;

(3) -x2+y2; √
(4) -x2 -y2. ×
理解平方差公式
(1)平方差公式的结构特征是什么? (2)两个平方项的符号有什么特点?
• 学习重点: 运用平方差公式来分解因式.
探索平方差公式
你能将多项式 y2-25 与多项式 x2-4 分解因式吗?
(1)本题你能用提公因式法分解因式吗? (2)这两个多项式有什么共同的特点? (3)你能利用整式的乘法公式——平方差公式 (a+b)(a-b)=a2-b2 来解决这个问题吗?
探索平方差公式
八年级 上册
14.3 因式分解 (第2课时)课是在学生学习了整式乘法公式的基础上,研究 具有特殊形式的多项式分解因式的方法——公式法; 学习运用平方差公式来分解因式.
点此播放教学视频
课件说明
• 学习目标: 1.探索并运用平方差公式进行因式分解,体会转化 思想. 2.会综合运用提公因式法和平方差公式对多项式进 行因式分解.
你能将多项式 y2-25 与多项式 x2-4 分解因式吗? y2 -25=(y+5)(y-5) x2 -4=(x+2)(x-2)
你对因式分解的方法有什么新的发现?请尝试着概 括你的发现.
探索平方差公式
把整式的乘法公式——平方差公式 (a+b)(a-b)=a2-b2 反过来就得到因式分解的平方差公 式:
应用平方差公式
练习1 将下列多项式分解因式:
(1) a2 - 1 b2; 25

因式分解(二)(第2课时)教案(苏科版七年级下)doc

因式分解(二)(第2课时)教案(苏科版七年级下)doc

9.6 乘法公式的再认识——因式分解(二)第2课时运用完全平方公式进行因式分解教学目标:1. 了解完全平方公式的特征,会用完全平方公式进行因式分解.2. 通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.3. 通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力.4. 通过运用所学知识解决简单有趣的实际问题,激发了学生对数学学习的兴趣.说明本节课是在学生已经了解因式分解的意义,掌握了提公因式法、平方差公式的基础上进行教学的,是公式法的另一部分内容,由于教学内容的抽象性,建议创造愉快情景尤其重要,使学生对学习发生了强烈的兴趣,通过分组讨论完全平方公式的特征,激发了学生内在的学习愿望和学习动机,从而聚精会神,努力追源,并感到乐在其中.教学重点完全平方公式分解因式教学难点掌握完全平方公式的特点教学关键熟悉公式的形式和特点,根据多项式的项数选择公式.教学方法自主探索、教学互动,发挥学生的主体作用教具投影仪教学过程:(一)创置情境情境1前面我们学习了因式分解的意义,并且学会了一些因式分解的方法,运用学过的方法你能将a2+2a+1分解因式吗?说明设置问题情境使学生回忆了因式分解的意义和学过的方法——提公因式法,平方差公式但两法都无法分解a2+2a+1.由因式分解的意义知只要把a2+2a+1化为整式的积的形式即达到目的,由于学生熟悉(a+1)(a+1)即(a+1)2等于a2+2a+1,反之于是有a2+2a+1=(a+1)2,若学生想不到可问( )2=a2+2a+1,从而达到了分解因式的要求,这里在得到了a2+2a+1=(a+1)2的同时再次体会了整式乘法和因式分解是一个等式的两面性是互逆的,从而引入新课.情境2在括号内填上适当的式子,使等式成立:(1)(a+b)2=( ) (2)(a-b)2=( )(3)a2+( )+1=(a+1)2(4)a2-( )+1=(a-1)2思考:(1)你解答上述问题时的根据是什么?(2)第(1)(2)两式从左到右是什么变形?第(3)(4)两式从左到右是什么变形?(3)第(3)(4)两式是因式分解,反过来就是整式乘法中的完全平方.说明设计这组练习的目的是引导学生顺向、逆向运用完全平方公式,再通过几个循序渐进的问题,从而引入新课.情境3 观察一列整数:1,4,9,16,25,……,有什么特点?数式是相通的,在整式中也有这样的情况,你能看出下列式子的特点吗?(1)a2+2a+1 (2)a2+4a+4(3)a2-6a+9 (4)a2+2ab+b2(5)a2-2ab+b2学习了本节课后,你一定会明白的!说明由完全平方数自然过渡到完全平方式,当然学生不知道完全平方式的意义设置悬念,起到了触类旁通,承上启下,挑起学生求知欲的作用,再与本节课后面的小结拓展的完全平方式首尾呼应.情境4 上节课我们学习了用平方差公式分解因式,而在整式乘法时我们还学习了什么公式?大家猜想一下本节课我们将学习什么内容?说明此引入可谓开门见山,运用类比猜想的方法,引导学生借助上一节课学习平方差公式分解因式已有的经验,探索分解因式的完全平方公式法,而这个猜想,探索的过程就是培养学生直觉思维的过程,同时由于要对猜测进行验证,又可培养学生的推理能力.(二)认识完全平方公式把乘法公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2反过来,就得到a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2提出问题自主探索:问题1两公式左边是几项式?三项式,再考虑一下平方差公式.左边是几项式与之比较.问题2这三项式有什么特点?其中两项同号,且能写成两数的平方和的形式,另一项是这两数乘积的2倍,它的符号可正可负,口决:“首平方尾平方,二数乘积在中央”有了平方差公式的经验学生自已不难得出,教师重在引导,不要替学生解答好,学法上可采取小组讨论,全班交流.问题3若用△代表a,○代表b,两式是什么形式?△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2说明经过观察、比较、思考、类比,培养了学生的思维能力,这里学生自己观察、自主探索出公式的本质特征,轻松地掌握本节的重点,同时化解了难点.问题4 将a2-4a-4符合吗?为什么?问题5a2+6a+9符合吗?相当于a,相当于b.a2+6a+9=a2+2×( )×( )+( )2=( )2a2-6a+9=a2-2×( )×( )+( )2=( )2(三)知识运用例1 把下列各式分解因式(1)x2+10x+25 (2)4a2+36ab+81b2分析重点是指出什么相当于公式中的a、b,并适当的改写为公式的形式,解:(1)x2+10x+25 (2) 4a2+36ab+81b2=x2+2×x×5+52 =(2a)2-2×2a×9b+(9b)2=(x+5)2 =(2a-9b)2说明本题是基础题,使学生体会用完全平方公式如何分解因式,以及解题格式,学生尝试去做,教师在对不同意见作比较,评价、培养学生的解题能力.练一练(及时训练,巩固新知)1. 下列能直接用完全平方公式分解的是( )A .x 2+2xy -y 2B .-x 2+2xy +y 2C .x 2+xy +y 2D .41x 2-xy +y 22. 分解因式:-a 2+2ab -b 2=分解因式:-a 2-2ab -b 2=3. 分解因式(板演)(1)a 2-4a +4 (2)a 2-12ab +36b 2 (3)25x 2+10xy +y 2探索活动二:公式中的a 、b 可表示什么?学生讨论易知a 、b 可以为任意的数、字母或多项式.如:a 2-4a +4↓把a 换成(m +n)(m +n)2-4(m +n)+4 怎么分解呢?请看例2例2把下列各式分解因式(1)16a 4+8a 2+1 (2)(m +n)2-4(m +n)+4分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式.解:(1)16a 4+8a 2+1 (2) (m +n)2-4(m +n)+4=(4a 2)2+2×4a 2+1 =(m +n)2-2×2(m +n)+22=(4a 2+1)2 =[(m +n)-2]2=(m +n -2)2变式训练 若把16a 4+8a 2+1变形为16a 4-8a 2+1会怎么样呢?学生讨论作答 16a 4-8a 2+1=(4a 2)2-2×4a 2+1=(4a 2-1)2 (这里4a 2-1可继续分解)=[(2a +1)(2a -1)]2=(2a +1)2(2a -1)2例3 (1)简便计算20042-4008×2005+20052(2)已知a 2-2a+b 2+4b+5=0,求(a+b)2005的值.解:(1) 20042-4008×2005+20052=20042-2×2004×2005+20052=(2004-2005)2=1(2) a 2-2a+b 2+4b+5=0变形为(a-1)2+(b+2)2=0 ∴a-1=0,b+2=0 ∴a=1,b=-2(a+b)2005=[1+(-2)]2005=-1说明用完全平方公式解决两道有用的实际问题使学生享受到运用所学知识的乐趣和心理满足,激励他们的求知欲望.练一练:1、把下列各式分解因式(1)16a4+24a2b2+9b4(2)(x+y)2-10(x+y)+252、创新:a2+6a+9误写为a2+6a+9-1即a2+6a+8如何分解?学生讨论方法一:a2+6a+8=a2+6a+8+1-1=a2+6a+9-1=(a+3)2-1=(a+3+1)(a+3-1)=(a+4)(a+2)法二:就是我们下节课要补充的新的解法说明:有的电视剧冗长却吸引人,当然与故事情节跌宕起伏分不开,但是每集结束前设置悬念吸引观众,是功不可没的,此处设置悬念,从而激发了学生继续学习的热情,探索新知识的心理,提高课堂教学效益.(四)小结1、学生自己总结本节课的收获,体会.2、将乘法公式反过来就得到多项式因式分解的公式,运用这些公式把一个多项式分解因式的方法叫运用公式法.3、如何选用平方差公式,或完全平方公式.4、拓展:由于a2±2ab+b2可写成(a±b)2的形式,把类似a2±2ab+b2 的式子叫完全平方式.说明:教师提供空间和机会让学生自己发言,即复习了本节内容,又促使学生重视知识结构,抓住了问题特征.(五)作业必做:1、课本P95习题9.6第2题2、课本P95习题9.6第3题选做:3、若x2+mx+4是完全平方式,则m=.4、简便计算:9.92-9.9×0.2+0.015、若a、b、c为△ABC的三边,且满足a2+b2+c2=ab+ac+bc,试判断△ABC 的形状.。

因式分解(公式法第二课时)(课件)人教版数学八年级上册

因式分解(公式法第二课时)(课件)人教版数学八年级上册

互动新授
注意:
(1)完全平方公式中的a和b可以是单项式,也可以是多项式; (2)利用完全平方公式可以把形如完全平方式的多项式分解因式; (3)因式分解中的完全平方公式与整式乘法中的完全平方公式的区别是 等号两边的内容相反.
典例精析
例5 分解因式:
(1)16x2+24x+9;
(2)-x2+4xy-4yFra bibliotek.总结归纳
因式分解的一般步骤: (1)当多项式的各项有公因式时,应先提取公因式;当多项式的各项没 有公因式时(或提取公因式后),若符合平方差公式或完全平方公式, 就利用公式法分解因式; (2)当不能直接提取公因式或用公式法分解因式时,可根据多项式的特 点,把其变形为能提取公因式或能用公式法的形式,再分解因式; (3)当乘积中的每一个因式都不能再分解时,因式分解就结束了.
整式乘法
(6)m2-25=(m+5)(m-5)
因式分解
小试牛刀
2.把下列多项式因式分解.
(1)x2-14xy+49y2
(2)9a4+12a2b2+4b4
解:(1)x2-14xy+36y2 =x2-2·x·7y+(7y)2 =(x-7y)2;
(2)9a4+12a2b2+4b4 =(3a2)2+2·3a2·2b2+(2b2)2 =(3a2+2b2)2
互动新授
思考
多项式a2+2ab+b2与a2-2ab+b2有什么特点?你能将它
们分解因式吗? 这两个多项式是两个数的平方和加上或减去这两个数
的积的2倍,这恰是两个数的和或差的平方,我们把
a2+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档