七年级数学几何图形的初步认识知识点

合集下载

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

几何图形初步知识点

几何图形初步知识点

几何图形初步知识点在数学学科中,几何图形是一个重要的概念。

它是描述空间形状和结构的工具,可以帮助我们理解和研究物体的特征和性质。

本文将介绍一些几何图形的初步知识点,帮助读者建立对几何图形的基本认识。

1. 点、线段和射线在几何学中,最基本的图形是点。

点是一个没有大小和形状的位置。

两个点之间可以用线段来连接,线段是由两个端点确定的有限直线段。

线段有长度,并且可以用定理来计算。

类似于线段,射线也有长度,但是只有一个端点,另一端延伸到无穷远。

2. 直线和平面直线是由无限多个点连成的路径,它没有宽度和厚度。

直线可以用两个点确定,并且可以延伸到无限远。

平面是由无限多条直线组成的,它是一个无边无际的表面。

平面可以由三个不共线的点确定。

3. 角角是由两条射线共享一个相同起点而形成的图形。

角可以分为锐角、直角、钝角和平角。

锐角小于90度,直角等于90度,钝角大于90度,平角等于180度。

4. 三角形三角形是由三条线段组成,形成一个封闭的图形。

三角形的特点是三边之和等于180度,而三个内角之和等于180度。

根据边长和角度的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。

5. 四边形四边形是由四条线段组成的封闭图形。

根据边的长度和角的大小,四边形可以分为正方形、矩形、菱形、平行四边形和梯形等。

6. 圆圆是一个封闭的曲线,由一条曲线围成的图形称为圆形。

圆具有许多特性,比如半径、直径和圆心等。

圆的内部的所有点到圆心的距离都相等。

7. 多边形多边形是由多个线段组成的封闭图形。

根据边的数量,多边形可以分为三角形、四边形、五边形等。

多边形的内角和外角之和有一定的关系。

8. 空间几何学除了平面几何学之外,还有空间几何学。

空间几何学研究的是在三维空间中的图形和结构。

例如,立方体、球体等都是三维空间中的几何图形。

以上是关于几何图形初步知识点的简要介绍。

几何图形在日常生活和数学学科中都有广泛的应用。

通过了解和掌握这些基本的知识点,我们可以更好地理解和解决与几何有关的问题。

七年级数学上册第4章 几何图形初步思维导图

七年级数学上册第4章 几何图形初步思维导图

图形的初步认识立体图形的展开与折叠
几何体的展开
正方体的表面展开图
棱柱的表面展开图
圆柱的表面展开图
圆锥的表面展开图
折叠将平面展开图折叠成立体图形
常见的平面图形
直线两点确定一条直线
射线
线段
性质两点之间线段最短
中点
比较长短
度量法
叠合法

概念及表示方法
角的大小比较
度量法
1°=60'
1'=60''
叠合法
角的平分线
余角和补角
余角α与β互余:∠α+∠β=90°
补角α与β互补:∠α+∠β=180°
方向角和方位角
常见的立体图形
棱柱
圆柱上下底面是圆,侧面是曲面
棱柱
棱柱的所有侧棱长都相等
棱柱的上、下底面的形状相同
n棱柱有(n+2)个面、2n个顶点、3n条棱
锥体
圆锥底面是圆,侧面是曲面
棱锥底面是多边形,侧面是三角形
球由一个曲面围成
图形的构成元素
点点动成线
线线动成面
面面动成体
面与面相交得到线,
线与线相交得到点
立体图形的视图
主视图从正面看反映几何体的长和高
左视图从左面看反映几何体的宽和高
俯视图从上面看反映几何体的长和宽
视图到立体图形
七巧板的组成5块等腰直角三角形(2小形三角形、1块中形三角形和2块大形三角形)、
1块正方形和1块平行四边形
七年级数学上册 第四章 几何图形初步。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

七年级上册几何初步知识点

七年级上册几何初步知识点

七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。

在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。

本文旨在介绍七年级上册几何初步知识点,供学生参考。

一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。

线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。

面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。

1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。

四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。

多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。

多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。

二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。

一个角包含两个部分,即顶点和两条边。

角可以分为锐角、直角、钝角等。

2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。

线段是由两个端点和这两个端点之间的线段组成的线。

射线是由一个端点和一个方向组成的线段。

直线图形具有平移不变性、旋转不变性、翻转不变性等特点。

线段与射线也具有相似的性质。

2.3 物体的转动物体的转动分为旋转和翻折。

旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。

翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。

三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。

坐标系原点是两条直线的交点。

3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。

七年级上册数学《图形初步认识》_知识点整理

七年级上册数学《图形初步认识》_知识点整理

图形初步认识一、本节学习指导本节不难,很多概念我们只要了解即可。

二、知识要点1、我们把实物中抽象的各种图形统称为几何图形。

几何图形分为立体图形和平面图形。

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

几何体简称为体。

6、包围着体的是面,面有平的面和曲的面两种。

7、面与面相交的地方形成线(线有直的和曲的),线和线相交的地方是点(点无大小之分)。

8、点动成线,线动成面,面动成体。

9、几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

10、正方体的11种展开图:①“141型”,中间一行4个作侧面,上下两个各作为上下底面,•共有6种基本图形。

②“132型”,中间3个作侧面,共3种基本图形。

③“222型”,两行只能有1个正方形相连。

④、“33型”,两行只能有1个正方形相连。

11、经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

12、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

13、射线和线段都是直线的一部分。

14、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

15、两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)16、连接两点间的线段的长度,叫做这两点的距离。

17、一般地,用一个大写字母表示一个点,用两个大写字母(也就是两个点)或者一个小写字母来表示直线。

18、有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

19、把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

2024年新人教版七年级数学上册《第6章6.1.2 点、线、面、体》教学课件

2024年新人教版七年级数学上册《第6章6.1.2 点、线、面、体》教学课件

2. 请把下图中的平面图形与其绕轴旋转一周后得到 的立体图形连接起来.
3. ( 东营期末改编) 小翼跟妈妈到银行办理业务,她发 现银行大堂的旋转门内部是由三块宽为 2 m、高为 3 m 的玻璃隔板组成的,此情此景,她提出了以下问题:
(1) 将此旋转门旋转一周,能形成的几何体是_圆__柱___. (2) 这能说明的事实是___C___(选择正确的一项填入).
不同吗?
结论:线和线相交形成点. 点只代表位置,没有大小,所以点都是相同的.
想一想
立体图形的组成的元素包括什么?
面 相交
体线 相交

典例精析
例1 如图所示的立体图形是由____3____个平面和 _____1_____个曲面组成的,面与面相交形成 _____4_____条直线和___2____条曲线.
合作探究 探究1 (1) 你知道这些几何体是由什么围成的吗? (2) 下图中的图形分别有哪些面?这些面有什么不同吗?
结论:1. 包围着的体是面. 2. 面分为平的面和曲的面.
合作探究 探究2 面和面相交的地方形成了什么?它们有什么
不同吗?
结论: 面和面相交的地方形成线,线有直线和曲线之分.
合作探究 探究3 线和线相交处又形成了什么?它们有什么
的事实.
新课导入 观察下图的长方体,思考:它有几个面?面和面相 交形成了几条棱?棱和棱相交形成了几个顶点?
6 个面、12 条棱、8 个顶点
相交
相交
围成
8 个顶点
12 条棱
6 个面
长方体
知识点1: 图形的构成元素
同学们,观察教室,哪些物体可以抽 象成你熟悉的立体图形?
长方体
三棱柱
圆柱
定义总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 几何图形的初步认识
2.1从生活中认识几何图形
知识点:
一、认识几何图形
几何图形
二、几何图形的构成
1、面与面相交成___,线与线相交成___。

2、点动成___,___动成面,面动成___。

3、___、___、___是构成几何图形的基本要素,体是由___围成的。

4、面有___面和___面,线有___线和___线。

引申探讨:n 棱柱有几个顶点、几条棱、几个面
2.2 点和线
1、点的表示: A B 用一个大写的字母,例如:点A、点B
2、线段的表示:
方法一:用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA.
方法二:用一个小写字母.例如线段a.
3、射线的表示:
用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB
4、直线的表示:
方法一:用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA.
方法二:用一个小写字母.例如直线a.
5、线段、射线、直线的比较:
6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)
7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)
引申探讨:1、一条直线上有n个点,会有几条线段?
2、握手问题、票价问题、车票问题。

2.3线段的长短
1、线段长短的比较方法:(两种)
(1)度量法:是从数量的角度来比较
(2)叠合法:是从图形的角度来比较
另外了解估测法:依据已有的经验来判断
2、线段的画法:
3、线段的性质:两点之间的所有连线中,线段最短。

(简记为:两点之间,线段最短。


引申探讨:蚂蚁爬行问题
2.4 线段的和与差
知识点:
一、线段的和与差的概念及作图方法
二、线段的和与差的计算
三、线段的中点
几何图形初步
一、本节学习指导
本节知识点比较简单,都是基础,当看书应该就能理解。

二、知识要点
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面,它们是立体图形。

比如:正
方体、长方体、圆柱等
平面图形:有些几何图形的各个部分都在同一平面,它们是平面图形。

比如:三角
形、长方形、圆等
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,
五边形,六边形。

数轴与相反数
一、本节学习指导
本节学习数轴与相反数,这两个知识点非常重要,同时也是比较容易理解不深的知识,细节比较多,希望同学们认真学习。

二、知识要点
1、数轴【重点】
(1)、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:
①在直线上任取一个点表示数0,这个点叫做原点;
②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方
向;
③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个
点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…
(2)、数轴的三要素:原点、正方向、单位长度。

(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有
理数。

(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

2、相反数
(1)、只有符号不同的两个数叫做互为相反数。

①注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
②相反数的商为-1;
③相反数的绝对值相等。

(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别
在原点的两侧,表示a和-a,我们说这两点关于原点对称。

(3)、a和-a互为相反数。

0的相反数是0,正数的相反数是负数,负数的相反数是
正数。

相反数是它本身的数只有0.
(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。

(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互
为相反数。

(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-”的个数为奇数,化简结果为负数。

比如:-2×4×-3×-1×-5,首先由4个负号,所以最
终结果是正数,再算数字相乘得到120
绝对值
一、本节学习指导
学习本节我们要掌握好绝对值的定义,其次要掌握正数、负数、0的绝对值特征。

本节并不难,相信同学们都能掌握好的。

二、知识要点
(1)、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。

数a的绝对值记作|a|.
(2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。

0是绝对值最小的数。

(5)、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0.
(6)、互为相反数的两个数的绝对值相等。

绝对值相等的两个数可能是互为相反数或者相等。

(7)、有理数比大小:
①正数比0大,0大于负数,正数大于负数;
②两个负数比较,绝对值大的反而小;
③数轴上的两个数,右边的数总比左边的数大;
(8)、比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。

三、经验之谈
绝对值表示的是数轴上的点到数轴原点0的距离,既然是距离,就不可能有负的情况,因此绝对值后的结果一定是大于等于0的数。

这里注意:当a<0 时,|a|=-a,部分同学可能会认为绝对值后是-a,咋看是负数呢,注意前提条件a<0,所以-a>0,仍然是正数。

相关文档
最新文档