酵母双杂交实验流程
酵母双杂交实验流程(精)

模块七蛋白质之间的相互作用1. 实验目的本实验以重组质粒和酵母细胞为材料, 学习检测蛋白质相互作用的基本原理和技术方法。
主要介绍酵母双杂交的基本原理与操作技术; 让学生了解和掌握酵母双杂交系统的应用; 掌握酵母感受态的制备的基本原理和主要的操作步骤。
2. 实验原理1989年 Fields 和 Song 等人根据当时人们对真核生物转录起始过程调控的认识(即细胞内基因转录的起始需要转录激活因子的参与 ,提出并建立了酵母双杂交系统。
该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,近几年得到了广泛的运用和发展。
相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1检测在真核活细胞内进行,在一定程度上代表细胞内的真实情况。
(2作用信号是在融合基因表达后,在细胞内重建转录因子的作用而给出的,省去了纯化蛋白质的繁琐步骤。
(3检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互作用。
(4酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA 文库,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。
(5 通过 mRNA 产生多种稳定的酶使信号放大。
同时,酵母表型、 X-Gal 及HIS3 蛋白表达等检测方法均很敏感。
酵母双杂交系统也具有一定的局限性。
首先, 经典的双杂交系统分析蛋白间的相互作用定位于细胞核内, 因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白的研究。
酵母双杂交系统的另一个局限性是“假阳性” 。
在酵母双杂交系统建立的初期阶段,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表达往往不能十分严谨地被控制,因此容易产生假阳性。
由于某些蛋白本身具有激活转录的功能或在酵母中表达时发挥转录激活作用, 使 DNA 结合结构域融合蛋白在无特异激活结构域的情况下也可被激活转录。
另外某些蛋白表面含有对多种蛋白质的低亲和力区域, 能与其他蛋白形成稳定的复合物,从而引起报告基因的表达,产生“假阳性”结果。
酵母双杂交试验流程

酵母双杂交试验流程4月4日划线配培养基 TE/LIAC PEG/LIAC配置培养基(YPD YPDA)取酵母细胞划线30°生长3天。
需要用品:三角瓶灭菌封口膜酵母提取物蛋白胨注:以下所有涉及菌的操作均需在超净台中完成。
4月6号星期三(1)选择2-3mm的单克隆(枪头吸取)放入3-5ml的YPDA液体培养基,30°摇菌200rpm,8h 7号下午开始,过夜培养,次日若菌液浓度达到标准,可先置于4度冰箱保存。
需要用品:200ul灭菌枪头、50ml三角瓶、YPDA液体培养基、摇床。
4月7号星期四(2)吸取2.5-10ul酵母培养液,加入25ml YPDA液体培养基,摇菌16-20h直到OD值0.15-0.3。
下午4点开始 8号 8点结束Tips:由于第一次活化的菌夜浓度不一,此处建议设置梯度,分别取2.5、5、10 ul酵母培养液,加入25ml YPDA液体培养基(转化5个以下质粒的话,25ml菌量就够后续使用)。
4月8号星期五(3)将菌液转移至灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。
(4)弃掉上清,加入50ml新鲜的YPDA液体重悬菌体(由于离心转速较低,沉淀易悬起来,故倒掉上清液时要小心操作)。
(5)30°震荡培养,直到OD值达到0.4-0.5 (3-5h)。
8号8点开始下午一点结束进行以下操作之前,配置好TE/LiAc溶液,并准备好冰浴。
(6)将上述菌液转移至一个灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。
(7)弃掉上清,用30ml无菌水重悬菌体(小心操作)。
(8)再次用天平配平后,室温下700g离心5分钟,弃去上清,加入1.5ml 1.1xTE/LIAC重悬菌体。
(9)将上述溶液转移到灭菌的1.5ml EP管中,高速离心15s。
(10)弃去上清,加入600ul 1.1x TE/LIAC,感受态细胞制备完成,置于冰上待用。
酵母双杂实验操作手册和注意事项

酵母双杂(Yeast two-hybrid)实验操作手册和注意事项一. 酵母双杂的原理1989年,Song和Field建立了第一个基于酵母的细胞内检测蛋白间相互作用的遗传系统。
很多真核生物的位点特异转录激活因子通常具有两个可分割开的结构域,即DNA特异结合域(DNA-binding domain,BD)与转录激活域(Transcriptional activation domain ,AD)。
这两个结构域各具功能,互不影响。
但一个完整的激活特定基因表达的激活因子必须同时含有这两个结构域,否则无法完成激活功能。
不同来源激活因子的BD区与AD结合后则特异地激活被BD结合的基因表达。
基于这个原理,可将两个待测蛋白分别与这两个结构域建成融合蛋白,并共表达于同一个酵母细胞内。
如果两个待测蛋白间能发生相互作用,就会通过待测蛋白的桥梁作用使AD与BD形成一个完整的转录激活因子并激活相应的报告基因表达。
通过对报告基因表型的测定可以很容易地知道待测蛋白分子间是否发生了相互作用。
酵母双杂交系统由三个部分组成:(1)与BD融合的蛋白表达载体,被表达的蛋白称诱饵蛋白(bait)。
(2)与AD融合的蛋白表达载体,被其表达的蛋白称靶蛋白(prey)。
(3)带有一个或多个报告基因的宿主菌株。
常用的报告基因有HIS3,URA3,LacZ和ADE2等。
而菌株则具有相应的缺陷型。
双杂交质粒上分别带有不同的抗性基因和营养标记基因。
这些有利于实验后期杂交质粒的鉴定与分离。
根据目前通用的系统中BD来源的不同主要分为GAL4系统和LexA系统。
后者因其BD来源于原核生物,在真核生物内缺少同源性,因此可以减少假阳性的出现。
二.所用的载体及相关信息1. pGBKT7载体的图谱和相关信息The pGBKT7 vector expresses proteins fused to amino acids 1–147 of the GAL4 DNA binding domain (DNA-BD). In yeast, fusion proteins are expressed at high levels from the constitutive ADH1promoter (PADH1); transcription is terminated by the T7 and ADH1 transcription termination signals(TT7 & ADH1). pGBKT7 also contains the T7 promoter, a c-Myc epitope tag, and a MCS. pGBKT7replicates autonomously in both E. coli and S. cerevisiae from the pUC and 2 m ori, respectively. Thevector carries the Kan r for selection in E. coli and the TRP1 nutritional marker for selection in yeast.Yeast strains containing pGBKT7 exhibit a higher transformation efficiency than strains carrying other DNA-BD domain vectors (1).b. pGADT7载体的图谱和相关信息pGADT7-T encodes a fusion of the SV40 large T-antigen (a.a. 86–708) and the GAL4 AD (a.a. 768–881). The SV40 large T DNA (GenBank LocusSV4CG) was derived from a plasmid referenced in Li & Fields (1993) and was cloned into pGADT7 using the EcoR I and Xho I sites. pGADT7-T has not been sequenced.三.实验主要流程A.需要准备的药品和设备1.两种酵母菌种(AH109,Y187)2.酵母培养所需的药品: Yeast nitrogen base without amino acidsAgar (for plates only)sterile 10×Dropout Solution单缺-T,-L(clontech公司)二缺-T/-L (clontech公司)四缺-T/-L/-Ade/-His(clontech公司)3.酵母转化所需的药品: 10×TE buffer10×LiAc40%PEGcarrier DNA4.酵母显色所需要的药品: x- -GAL5.其他仪器设备: 30℃恒温培养箱30℃摇床.水浴锅分光光度计B.DNA-BD和DN-AD fusion protein 载体的分别构建。
酵母双杂交实验

酵母双杂交实验酵母双杂交相关实验方法一、酵母总DNA提取方法(蜗牛酶法)1。
酵母质粒提取试剂bufferi0.9mol/lsorbitol0.1mol/ledtabufferii50mm/ltris20mm/ledtabufferiii10mm/l tris1mm/ledta2、操作步骤:(1)收集新鲜细菌,加入150μlbufferi、25μL蜗牛酶(30mg/ml)(2)37℃水浴1小时。
(3)10000rpm离心10min,去上清,沉淀中加入250μlbufferii。
(4)加入25μl10%sds,65℃水浴30min,每间隔5min中震荡一次。
(5)加入25μl5mol/l醋酸钾,冰浴60min。
(6)4℃12000rpm离心15min,取上清。
(7)向上清液中加入2-3倍体积的无水乙醇,充分混合,并在-20℃下静置1小时以上。
(8)取出,在4℃12000rpm下离心15分钟,丢弃上清液。
(9)加入150μlbufferiii溶解沉淀,用等体积苯酚/氯仿/异戊醇抽提。
(10)12000rpm离心15min。
(11)将上清液转移到新的离心管中,并添加6μl(10u/μl)核糖核酸酶,在37℃下放置30分钟。
(12)取上清液并添加等量的异丙醇。
(13)在4℃下静置10分钟超过1小时或过夜。
(14)在4℃下以10000 rpm离心5分钟。
(15)弃上清,并把沉淀溶于10μlbufferiii中。
二、小规模酵母转化1、酵母转化试剂:除PEG过滤灭菌外,其他转化试剂需要在与普通培养基灭菌相同的条件下进行高温高压灭菌。
(1)m醋酸锂(lithiumacetate)(2)聚乙二醇(PEG)分子量3350,浓度50%(w/V)(3)PEG/liac溶液的制备(即用)800μl50%peg100μl10×te100μl10×liac1ml总体积(4)1.1×TE/liac溶液(用于使用和制备)11ml10×TE(5)11ml10×liac(6)78mlddh202。
酵母双杂交技术流程

酵母双杂交技术流程
酵母双杂交技术是一种用于鉴定蛋白质相互作用的实验方法,它可以识别某个蛋白质与其他蛋白质之间的相互作用关系。
以下是酵母双杂交技术的流程:
1. 构建酵母菌株:将感兴趣的两个蛋白质编码序列分别克隆至酵母表达载体中,并插入适当的启动子和终止子后,将其转化至酵母细胞中,并筛选出正确的菌株。
2. 转化酵母菌株:将构建好的酵母菌株分别转化至两个含有互补杂交部位的酵母菌株中,使其产生可杂交的菌株。
3. 筛选正面杂交菌株:通过选择菌株在适当培养基中的生长情况或染色体特征,筛选出正面杂交的菌株。
4. 验证杂交结果:通过进一步实验验证杂交结果的准确性,例如,利用质粒转染或重组DNA重组实验等方法。
5. 鉴定蛋白质相互作用:最终确定两个蛋白质之间的相互作用关系,并进一步研究其生物学意义。
- 1 -。
酵母双杂交具体实验流程

酵母双杂交具体实验流程
酵母双杂交(Yeast Two-Hybrid,Y2H)是一种常用的蛋白质相互作用分析方法,它基于酵母细胞内存在的转录激活子结合域(Transcription Activation Domain,TAD)和DNA结合域(DNA Binding Domain,DBD),通过融合特定的蛋白质序列并在酵母细
胞中共同表达,以实现筛选并鉴定蛋白质相互作用的目的。
酵母双杂交具体实验流程如下:
1.构建启动子驱动的酵母表达载体
该载体包含两部分:AD与DB,分别携带TAD和DBD结构域。
这些结构域可以具体化作为外源蛋白的两个互补部分,这样当它们相互结
合时,激活酵母内的报告基因(RLUC或LacZ)表达,并通过信号放
大器Cre的介入增强了信号。
2.构建融合基因的酵母表达载体
将想要研究的两种蛋白质的氨基酸序列分别连接到AD与DB的C端,形成融合蛋白质基因,然后将融合基因与启动子驱动的表达载体转化
入双杂交酵母细胞。
3.获得蛋白质相互作用的筛选和确认
通过对酵母双杂交转化后的细胞进行筛选,并通过对表达的信号进行观察和测量,得到蛋白质相互作用的筛选结果。
4.确定筛选结果的真实性
在确定特定蛋白质相互作用是否真实的过程中,通常会进行一些补充实验。
例如,可以通过分析生化反应,并利用免疫共沉淀等方法验证筛选结果的可靠性。
总的来说,酵母双杂交是一种常用的蛋白质相互作用分析方法,它可以快速、可靠地鉴定蛋白质相互作用,从而帮助研究者更深入地探究蛋白质的功能和作用机制。
酵母双杂杂交回复验证实验

酵母双杂杂交回复验证实验一、引言酵母双杂杂交回复验证实验是一项常用于研究酵母菌遗传性状的实验方法。
通过将两个不同株系的酵母菌互相杂交,观察其后代的表型,可以确定不同基因型对于特定性状的影响,以及基因之间的相互作用关系。
这项实验提供了一种有效的手段来研究酵母菌的遗传特性,并为从酵母菌到其他生物的研究提供了重要参考。
二、实验设计1. 实验目的确认酵母菌的遗传性状以及基因型之间的相互作用关系。
2. 实验步骤1.选取两个不同基因型的酵母菌株进行杂交。
2.将两个酵母菌株分别培养在适宜的培养基上,以获得足够数量的酵母菌细胞。
3.将两个酵母菌株的细胞混合在一起,使其进行杂交。
4.将混合后的酵母菌细胞培养在选择性培养基上,以筛选出杂交后的酵母菌子代。
5.观察酵母菌子代的表型特征,并将其形态记录下来。
3. 实验材料•两个不同基因型的酵母菌株•培养基及培养仪器•选择性培养基4. 实验结果通过观察酵母菌子代的表型特征,可以得到各个基因型对于特定性状的影响情况。
如果两个酵母菌株的基因型在某一性状上有不同表现,那么杂交后的子代在该性状上可能表现出两种不同的表型。
这种表型的分离现象可以帮助确定酵母菌的遗传性状。
5. 实验分析通过对大量的酵母菌子代进行观察和统计,可以得到不同基因型对于特定性状的影响程度,以及基因之间的相互作用关系。
这些数据可以用来构建酵母菌的遗传模型,推测特定基因在遗传性状中的作用机制。
三、实验应用酵母双杂杂交回复验证实验在酵母研究领域具有广泛的应用价值。
以下是一些应用示例:1. 基因功能研究通过观察不同基因型的酵母菌子代的表型,可以推测特定基因在酵母菌生命周期、代谢途径等方面的作用。
这对于全面理解基因功能具有重要意义。
2. 病原机制研究酵母双杂杂交回复验证实验可以帮助研究人员解析酵母菌导致疾病的机制。
通过分析酵母菌的基因型与特定疾病的发生关系,可以发现关键基因及其表达调控途径,为疾病治疗和预防提供新思路。
酵母双杂交系统步骤

酵母双杂交系统的步骤酵母双杂交法的原理:典型的真核生物转录因子,如GAL4、GCN4、等都含有二个不同的结构域:DNA结合结构域和转录激活结构域。
前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。
酵母双杂交法的步骤:1. 阳性克隆的筛选2. 用质粒自然分选法筛除只含有AD-文库杂合子的克隆3. 酵母杂合试验确定真阳性克隆4. 阳性克隆的进一步筛选和确证5. 对双杂交系统阳性结果的进一步研究6. 阳性克隆的筛选7. 用质粒自然分选法(Natural Segregation)筛除只含有AD-文库杂合子的克隆8. 酵母杂合试验(Yeast Mating)确定真阳性克隆9. 阳性克隆的进一步筛选和确证扩展资料:酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。
主要是由于:1、采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。
2、信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。
3、杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。
4、通过mRNA产生多种稳定的酶使信号放大。
同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。
在研究蛋白质的结构功能特点、作用方式过程中,有时还要通过突变、加抑制剂等手段破坏蛋白质间的相互作用。
针对实际工作中的这种需要,Vidal等人发展了所谓的逆双杂交系统(reverse two-hybrid system)。
这项技术的关键是报道基因URA3的引入。
URA3基因在这里起到了反选择的作用,它编码的酶是尿嘧啶合成的关键酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块七蛋白质之间的相互作用1. 实验目的本实验以重组质粒和酵母细胞为材料,学习检测蛋白质相互作用的基本原理和技术方法。
主要介绍酵母双杂交的基本原理与操作技术;让学生了解和掌握酵母双杂交系统的应用;掌握酵母感受态的制备的基本原理和主要的操作步骤。
2. 实验原理1989年Fields和Song等人根据当时人们对真核生物转录起始过程调控的认识(即细胞内基因转录的起始需要转录激活因子的参与),提出并建立了酵母双杂交系统。
该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,近几年得到了广泛的运用和发展。
相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1)检测在真核活细胞内进行,在一定程度上代表细胞内的真实情况。
(2)作用信号是在融合基因表达后,在细胞内重建转录因子的作用而给出的,省去了纯化蛋白质的繁琐步骤。
(3)检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互作用。
(4)酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA 文库,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。
(5)通过mRNA 产生多种稳定的酶使信号放大。
同时,酵母表型、X-Gal 及HIS3 蛋白表达等检测方法均很敏感。
酵母双杂交系统也具有一定的局限性。
首先,经典的双杂交系统分析蛋白间的相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白的研究。
酵母双杂交系统的另一个局限性是“假阳性”。
在酵母双杂交系统建立的初期阶段,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表达往往不能十分严谨地被控制,因此容易产生假阳性。
由于某些蛋白本身具有激活转录的功能或在酵母中表达时发挥转录激活作用,使DNA 结合结构域融合蛋白在无特异激活结构域的情况下也可被激活转录。
另外某些蛋白表面含有对多种蛋白质的低亲和力区域,能与其他蛋白形成稳定的复合物,从而引起报告基因的表达,产生“假阳性”结果。
产生“假阴性”结果的原因可能有许多蛋白质间的相互作用依赖于翻译后加工如糖基化、磷酸化和二硫键形成,还有些蛋白的正确折叠和功能有赖于某些非酵母蛋白的辅助等。
现在的酵母双杂交系统大都采用多种报告基因,如AH109酵母株含有三类报告基因—ADE2、HIS3、MEL1/lacZ,这三类报告基因受控于三种完全不同、异源性的GAL4-反应元件和三类启动子元件-GAL1、GAL2以及MEL1(如图6-1-1)。
通过这种方法就消除了两类最主要的假阳性,一类是融合蛋白可以直接与GAL4结合位点结合或者是在结合位点附近结合所带来的假阳性;另一类是融合蛋白和某种转录因子结合后再结合到特定的TA TA盒上所带来的假阳性。
ADE2一种报告基因就已经能够提供较强的营养选择压力,这时选择性地使用HIS3报告基因,一来可以降低假阳性率;二来可以控制筛选的严格性(如果需要筛选与诱饵蛋白具有较强结合的蛋白,就可以同时使用ADE2、HIS3两种报告基因;如果只需要筛选与诱饵蛋白具有中等强度或较弱结合的蛋白,就可以使用ADE2或HIS3两者中的一种)。
MEL1和lacZ分别编码α-半乳糖苷酶和β-半乳糖苷酶,可以作用于相应的底物X-α-Gal和X-β-Gal使酵母变蓝。
其中,α-半乳糖苷酶是外分泌酶,在酵母表面就能直接检测到;β-半乳糖苷酶是内分泌酶,需要将酵母破碎后才能检测到。
用蓝斑显示酵母细胞内两个蛋白的相互作用的方法不仅具有较高的敏感性,而且蓝斑的深浅还可以反映两个蛋白相互作用的强弱。
随着酵母双杂交系统的广泛应用,这一系统得到了不断的完善及改进,除了经典的双杂交系统以外,同时也衍生出单杂交系统、三杂交系统、反向酵母双杂交系统、hSos/Ras募集系统(hSos/Ras recruitment systems)、泛素分裂系统(Split-ubiquitin systems)、双诱饵系统(Dual-bait systems)等一系列相关系统,根据这些系统的不同特点,可以分别应用于蛋白质与DNA、RNA的相互作用、蛋白质复合体之间的相互作用、膜蛋白质之间的相互作用、筛选阻断蛋白间相互作用的药物等一系列领域,对经典的酵母双杂交系统起到了很好的补充,并有力地推动了酵母双杂交系统的发展与应用。
酵母双杂交系统的原理是利用转录激活因子在结构上是组件式的,即这些因子往往由两个或两个以上相互独立的结构域构成,其中有DNA结合结构域(DNA binding domain, DB)和转录激活结构域(activation domain, AD),它们是转录激活因子发挥功能所必需的。
单独的DB虽然能和启动子结合,但是不能激活转录。
而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。
根据转录因子的这一特性,将BD 与已知的诱饵蛋白质X 融合,构建出BD-X质粒载体;将AD 基因与cDNA 文库,基因片段或基因突变体(以Y表)融合,构建AD-Y质粒载体。
两个穿梭质粒载体共转化至酵母体内表达。
蛋白质X 和Y的相互作用导致了BD与AD在空间上的接近,从而激活UAS 下游启动子调节的酵母菌株特定报告基因(如LacZ,HIS3,LEU2)等的表达(图6-1-2),使转化体由于HIS3或LEU2表达,而可在特定的缺陷培养基上生长,同时因LacZ表达而在X-α-Gal 存在下显蓝色。
酵母双杂交原理示意图3. 实验仪器微量取液器(2 μL;20 μL;200 μL;1,000 μL)、低温离心机、台式离心机、琼脂糖凝胶电泳系统、蛋白凝胶电泳系统、凝胶成像系统、半干转移系统、恒温摇床、恒温孵箱、通风橱、制冰机、振荡器、恒温金属浴、无菌接种环、10 cm培养皿、15 cm培养皿。
4. 实验试剂(1)裂解缓冲液(Cracking buffer):尿素8 mol/LSDS 5 %Tris-HCl(pH 6.8)40 mmol/LEDTA 0.1 mmol/L溴酚蓝0.4 mg/ml(2)各种基础培养基和营养缺陷培养基:minimal SD base,minimal SD agar base,YPD medium,YPD agar medium,-Leu DO supplement,-Trp DO supplement,-Leu/-Trp DO supplement,-Leu/-Trp/-His DO supplement,-Leu/-Trp/-His/-Ade DO supplement,腺苷酸(adenine),PEG8000,Carring DNA,二甲基亚砜(dimethyl sulfoxide, DMSO),TE/LiAC buffur,PEG/LiAC,X-α-gal或X-β-gal。
(3)酵母质粒提取试剂盒,LB培养基,羧苄青霉素和卡那霉素。
(4)蛋白标准。
(5)Z-buffer(pH7.0):Na2HPO4⋅7H2O 16.1 g/LNaH2PO4⋅H2O 5.5 g/LKCI 0.75 g/LMgSO4⋅7H2O 0.246 g/L(6)Z-buffer/X-β-Gal液体:Z-buffer 100 mlβ-巯基乙醇0.27 mlX-β-Gal储存液 1.67 ml5. 实验方法酵母的复苏与表型验证:(1)复苏前1~2 天,配制YPDA 琼脂并于高压消毒后倒板。
(2)用无菌接菌环在酵母冻存管中挑取一小团酵母细胞,接种到YPDA 琼脂板上。
(3)30 ℃倒置孵育3~5天。
(4)待酵母长到直径2~3 mm后,将其接种到不同营养缺陷型培养基上进行表型验证。
质粒转化酵母细胞(常规转化):(1)挑取一直径约2~3 mm的酵母克隆接种到0.5 ml YPDA培养基中。
(2)剧烈震荡使细胞凝块均匀分散。
(3)将细胞转移到含有新鲜YPDA培养基的锥形瓶中。
(4)30℃,250 rpm,振荡孵育16~18 hr,直到稳定期(OD 600>1.5)。
(5)将过夜培养物转移到含有新鲜YPDA培养基的椎形瓶中,进一步扩增酵母细胞。
(6)30 ℃,230~270 rpm,振荡孵育使OD600达到0.5 ± 0.1(一般需要3 hr)(7)将细胞转移到数个50 mL离心管中,转速1 000 g,室温离心5 min。
(8)弃去上清,加入25~50 mL 消毒H 2O ,振荡重悬、清洗并收集细胞。
(9)转速1 000 g ,室温离心5 min ,弃上清(10)加入1 mL 新鲜配置的无菌的1Х TE / LiAC 重悬细胞。
(11)准备1.5 mL 无菌EP 管,在每个管中加入需要转染的质粒以及担体(carrier )DNA 。
(12)加入经1Х TE/LiAC 重悬的感受态细胞,轻柔混匀。
(13)每个管中加入适量体积的1⨯PEG/LiAC ,高速震荡混匀。
(14)30 ℃,200 rpm ,振荡孵育0.5 hr 。
(15)加入适量体积的DMSO ,温和颠倒混匀,不要振荡。
(16)42 ℃水浴热休克15 min ,对于大量转化,应经常摇动以混匀。
(17)置于冰上5~10 min ,室温12,000 ⨯ g 离心细胞5 sec 。
(18)移去上清,根据铺的板数加入适量体积的1⨯TE 重悬细胞。
(19)铺板,倒置平板于30 ℃孵育直到克隆出现。
检测目的蛋白在酵母细胞中的表达:(1)挑取一直径约2 mm 、含有目的蛋白基因片段的BD/X 新鲜酵母克隆于5 mL 相应营养缺陷液体培养基中,30 ℃、230 rpm 振荡孵育16 hr 。
(2)将过夜培养物在50 mL YPDA 培养基中扩大培养,30 ℃,220~250 rpm ,使OD 600值达到0.4~0.6。
(3)1,000 ⨯ g 离心5 min ,弃上清。
(4)加入30 mL H 2O ,重悬细胞。
1,000 ⨯ g ,离心5 min ,弃上清,加入液氮速冻沉淀。
(5)待液氮挥发完全以后,按照100 μL/7.5 OD 600的比例加入cracking buffer 重悬细胞并移入到一个小量转化 大量转化 质粒DNA 0.1 μg 20~200 μg carrier DNA0.1 mg2 mg质粒DNA Carrier DNA 感受态细胞*7 每管中加入感受态细胞的体积根据酵母细胞的数量以及铺板的大小而定,通常小量转化每管加入100 μL 的感受态细胞;大量转化每管加入1 mL 的感受态细胞。
如果长出来以后克隆太密则可适量减少每管中加入的感受态细胞的体积;反之则可适当增加感受态细胞的体积。
转化酵母菌结果1.5 mL 的EP 管。
(6)按80 μL/7.5 OD 600的比例向EP 管中加入酸性玻璃微珠(glass beads )。