人教版九年级数学第25章同步练习题及答案全套252用列举法求概率(第一课时).doc

合集下载

人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)

人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)

25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。

人教版九年级数学上册第25章 概率初步1 用列表法求概率

人教版九年级数学上册第25章 概率初步1 用列表法求概率
分;当转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?
解:根据题意,列表数的结果有2 种,数字之积为偶数的


结果有4 种,∴P(数字之积为奇数) = =


P(数字之积为偶数) = =





.

∵ × = × ,∴这个游戏对双方公平.
率公式求出概率.
注意:(1)要弄清楚事件所包含的是哪个或哪些结果.
(2)要弄清楚一次试验中所有等可能结果.
(3)直接列举试验结果时,要有一定的顺序性,保证
结果不重不漏.
教师讲评
知识点2.列表法求概率(重点)
用表格的形式反映事件发生的各种结果出现的次数和
列表法求概率
方式,以及某一事件发生的可能的次数和方式,并求
(1)用列表的方法列出所有等可能出现的结果;
解:(1)列表如下:
纵坐标
1
横坐标
1
-2
(-2,1)
3
(3,1)
-2
3
(1,-2)
(1,3)
(-2,3)
(3,-2)
例4 一个不透明袋子中装有三只大小、质地都相同的小球,球面上分
别标有1,-2,3,搅匀后先从中任意摸出一个小球(不放回),记下
数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,
小颖、小明和小凡都想去看周末的电影,但是只有一张电影票,三
人决定通过做游戏来决定谁去看电影.
游戏规则如下:
连续掷两枚质地均匀的硬币,若两枚硬币均正面 朝 上,则小明获胜
;若两枚硬币均反面朝上,则小颖获胜;若一枚硬币正面朝上一枚
硬币反面朝上,则小凡获胜.你认为这个游戏公平吗?

九年级数学上册第二十五章25.2用列举法求概率课时练新人教版(2021年整理)

九年级数学上册第二十五章25.2用列举法求概率课时练新人教版(2021年整理)

九年级数学上册第二十五章25.2 用列举法求概率课时练(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十五章 25.2 用列举法求概率课时练(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十五章25.2 用列举法求概率课时练(新版)新人教版的全部内容。

第二十五章 25.2 用列举法求概率学校:姓名:班考号:是()A。

B。

C.D。

2。

某校开展“文明小卫士"活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,则恰好选中两名男学生的概率是()A。

B。

C。

D.3. 李红与王英用两颗骰子玩游戏,但是他们不用骰子上的数字,而是在这两颗骰子的一些面涂上了红色,其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家。

已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第二颗骰子上蓝色的面数是()A。

6 B. 5 C.4 D。

34. 有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同.现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是() A。

B. C。

D.5. 定义一种“十位上的数字比个位,百位上的数字都要小”的三位数叫做“V 数”.如“947"就是一个“V”数,若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( )A。

B. C.D。

人教版数学九年级上册:25.2 用列举法求概率 同步练习(附答案)

人教版数学九年级上册:25.2 用列举法求概率  同步练习(附答案)

25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。

人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案

人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案

人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案1. 以下事情中是肯定事情的是( )A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上2. 以下事情是随机事情的是( )A.姚明站在罚球线上投篮一次,投中B.农历初一的早晨能看到圆月C.在只装有五个红球的袋中摸出1球是红球D.在一小时内人步行了80千米3. 以下事情中属于不能够事情的是( )A.某投篮高手投篮一次就进球B.翻开电视机,正在播放世界杯足球竞赛C.掷一次骰子,向上的一面出现的点数不大于6D.在一个规范大气压下,90°的水会沸腾4. 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相反.假定从中恣意摸出一个球,那么以下表达正确的选项是( )A.摸到红球是肯定事情B.摸到白球是不能够事情C.摸到红球与摸到白球的能够性相等D.摸到红球比摸到白球的能够性大5. 以下成语描画的事情为随机事情的是( )A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼6. 以下事情中,是确定事情的是( )A.打雷后会下雨B.明天是晴天C.1小时等于60分钟D.下雨后有彩虹7. 以下事情中,是不能够事情的是( )A.某个数有平方根B.某个数的相反数等于它自身C.三角形中有两个直角D.三角形中有两条边相等8. 袋中有红球4个,白球假定干个,它们只要颜色上的区别.从袋中随机地取出一个球,假设取到白球的能够性较大,那么袋中白球的个数能够是( ) A.3个B.缺乏3个C.4个D.5个或5个以上9. 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其他都相反,从中恣意摸出一个球,那么摸出球的能够性最大.10. 一只不透明的袋子共装有3个小球,它们的标号区分为1,2,3,从中摸出1个小球,标号为〝4”,这个事情是(填〝肯定事情〞〝不能够事情〞或〝随机事情〞).11. 九年级(1)班共有先生44人,其中男生有26人,女生有18人,假定在此班上恣意找一名先生,找到男生的能够性比找到女性的能够性(填〝大〞或〝小〞).12. 以下事情:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事情的是(填序号).13. 抛掷1枚区分标有1、2、3、4、5、6的正六面体骰子,写出这个实验中的一个随机事情是,写出这个实验中的一个肯定事情是,写出这个实验中的一个不能够事情是 .14. ①②③④⑤区分表示〝一定发作〞〝很有能够发作〞〝能够发作〞〝不太能够发作〞〝不能够发作〞,请描画以下事情发作的能够性大小(填序号).(1)翻开电视,正在播放科教片:;(2)100件商品中有5件次品,95件正品,从这100件产品中任取一件,取到正品;;(3)李波同窗能跳10米高:;(4)从装有15只白球的不透明的口袋中摸出一只白球:;(5)七位同窗每人各报一个数,所组成的一个七位数恰恰是王教员家的号码:.15. 如图是几个转盘,假定区分用它们做转盘游戏,你以为每个转盘转出白色和黄色的能够性相反吗?假定不同,哪个能够性大?16. 以下事情中,哪些是肯定事情?哪些是不能够事情?哪些是随机事情?①太阳从西边落下;②某人的体温是100℃;③一元二次方程x2+2x+3=0无实数解;④经过有信号灯的十字路口,遇见红灯.17. 小明与小强用如下图的转盘(六个区域大小一样)做游戏,两人随意转它,转盘中止后,假定指针指向阴影区域,那么小明胜;假定转盘指向白色区域,那么小强胜,你以为此游戏对双方公允吗?为什么?18. 一个不透明的口袋里有5个红球、3个白球、2个绿球,这些球外形和大小完全相反,小明现从中任摸一个球.(1)你以为小明摸到的球很能够是什么颜色?为什么?(2)摸到每一种颜色球的能够性一样吗?(3)假设想让小明摸到白色球和白色球的能够性一样,该怎样办?写出你的方案.参考答案;1---8 CADDB CCD9. 蓝10. 不能够事情11. 大12. ①③13. 抛掷这枚正六面体骰子一次恰恰2点朝上抛掷这枚正六面体骰子一次,朝上的数总大于0小于7抛掷一枚六面体骰子一次出现7点朝上14. (1)③(2) ②(3) ⑤(4) ①(5) ④15. 解:①③能够性相反;②④能够性不同,关于②转出白色的能够性大,关于④转出黄色的能够性大16. 解:事情①③是肯定事情;事情②是不能够事情;事情④是随机事情.17. 解:公允,由于阴影局部和白色局部面积相等,指针中止在阴影和白色区域的时机相等.18. 解:(1)白色由于红球最多;(2)不一样;(3)取2个红球出来,或放2个白球出来。

人教版九年级数学第25章同步练习题及答案 25

人教版九年级数学第25章同步练习题及答案 25

25.2用列举法求概率(第一课时)◆随堂检测1.飞镖随机地掷在下面的靶子上.(如图1)(1)在每一个靶子中,飞镖投到区域A 、B 、C 的概率是多少? (2)在靶子1中,飞镖投在区域A 或B 中的概率是多少? (3)在靶子2中,飞镖没有投在区域C 中的概率是多少?2.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为12,那么口袋中球的总数为( ) A .12个 B .9个 C .6个 D .3个3.将1、2、3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,那么这个点在函数y x =图象上的概率是多少?(1,1)(1,2) (1,3) (2,1)(2,2) (2,3) (3,1) (3,2) (3,3)◆典例分析将正面分别标有数字1、2、3、4、6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随机抽取两张.(1)写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;(2)记抽得的两张卡片的数字为(a ,)b ,求点P (a ,)b 在直线2y x =-上的概率.分析:因为从五张卡片中随机抽取两张,它的可能结果是有限个,并且各种结果发生的可能性相等.因此,它可以应用“列举法”的公式概率.注意,在问题(1)中抽出的两张卡片是没有先后顺序的;在问题(2)中抽出的两张卡片是有先后顺序上的.解:(1)任取两张卡片共有10种取法,它们是:(1、2),(1、3),(1、4),(1、6),(2、3),(2、4),(2、6),(3、4),(3、6),(4、6);和为偶数的共有四种情况.故所求概率为142105P ==. 图1(2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线2y x =-上的只有(3、1),(4、2),(6、4)三种情况,故所求概率1320P =. ◆课下作业●拓展提高1.有三名同学站成一排,其中小明站在两端的概率是________.2.在组成单词“Probability ”(概率)的所有字母中任意取出一个字母,则取到字母“b ”的概率是________.3.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,求布袋中黄球的个数n . 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.(1)牌上的数字为奇数;(2)牌上的数字为大于3且小于6.5.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上.(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少? (提示:抽取一张(不放回),再抽取一张时,一定要注意第二次抽取的结果受到第一次结果的影响.) ●体验中考1.(,贵州省)不透明的口袋中有质地、大小、重量相同的白色球和红色球数个,已知从袋中随机摸出一个红球的概率为31,则从袋中随机摸出一个白球的概率是________. 2.(,龙岩)在3□2□(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是________.3.(,牡丹江市)现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是________.参考答案:◆随堂检测1.解:(1)在靶子1中,飞镖投在区域A 、B 、C 中的概率都是13,在靶子2中,飞镖投在区域A 的概率是12,飞镖投在区域B 、C 中的概率都是14; (2)在靶子1中,飞镖投在区域A 或B 中的概率是23;(3)在靶子2中,飞镖没有投在区域C 中的概率是34. 2.C. 口袋中球的总数为1332÷=(个). 3.解:∵从1、2、3三个数字中随机生成的点有9个,且每个点出现的可能性相等,其中在函数y x =图象上的点有(1,1)、(2,2)和(3,3)共3个,∴点在函数y x =图象上的概率是3193=. ◆课下作业●拓展提高1.23. 2.211. 3.解:由题意得,425n n =+,解得n =8. 4.解:任抽一张牌,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可能性相同.(1)P(点数为奇数)=3/6=1/2;(2)牌上的数字为大于3且小于6的有4,5两种,∴P (点数大于3且小于6)=1/3.5.解:能组成的两位数有12,13,21,23,31,32.恰好是“32”的概率为16. ●体验中考 1.32. 2.. 3.. 从四条线段中任选三条有四种等可能的结果,其中不能组成三角形的是(2,3,5)一种,故能组成三角形的概率是.213434。

人教版九年级数学上册 第二十五章 概率初步 25.2 用列举法求概率(第一课时)课后练习

人教版九年级数学上册第二十五章概率初步25.2 用列举法求概率(第一课时)课后练习一、选择题1.在一个不透明的袋子里,有2个白球和3个红球.它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回.再随机地摸出一个球,则两次都摸到红球的概率为()A.15B.920C.925D.8252.现有4张卡片,正面分别写着“中”“考”“必”“胜”,它们除字之外完全相同,洗匀后反面向上摆放在桌面上,从中随机抽取两张,则恰巧抽到“必”“胜”二字的概率是()A.512B.49C.16D.133.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(,x y),那么他们各掷一次所确定的点P落在已知抛物线24y x x=-+上的概率为()A.118B.112C.19D.164.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A.2B.3C.4D.125.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )A.14B.16C.12D.346.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.13B.14C.23D.347.在学校举行的运动会上,小亮和小刚报名参加百米赛跑,预赛分A B C D、、、四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和小刚恰好抽到同一组的概率是( )A.16B.14C.13D.128.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A,B,C三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是()A .13B .23C .19D .299.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49 B .112 C .13 D .1610.下列说法正确的是( )A .“购买1张彩票就中奖”是不可能事件B .“概率为0.0001的事件”是不可能事件C .“任意画一个六边形,它的内角和等于540︒”是必然事件D .从1,2,3,4中任取2个不同的数,分别记为a 和b ,那么2219a b +>的概率是13二、填空题11.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则三辆汽车经过这个十字路口时,至少有两辆车向左转的概率为_______.12.某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是_______. 13.在平面直角坐标系中,作△OAB ,其中三个顶点分别为O (0,0),B (1,1)A (x ,y )(2x 2?2y 2x y ,,,-≤≤-≤≤均为整数),则所作△OAB 为直角三角形的概率是 .14.去游泳馆游泳,要换拖鞋,如果鞋柜里只剩下尺码相同的4双红色的鞋和3双蓝色的鞋混合放在一起,闭上眼睛随意拿出2只,它们正好是一双的概率为_________.15.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m ,则使关于x 的分式方程2322x m m x x++=--有正实数解的概率为________. 三、解答题16.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.(1)写出点M 坐标的所有可能的结果;(2)求点M 在直线y =x 上的概率; (3)求点M 的横坐标与纵坐标之和是偶数的概率.17.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是正数的概率为 _;(2)掘匀后先从中任意摸出1个球(不放回),记下数字作为平面直角坐标系内点M 的横坐标:再从余下的3个球中任意摸出1个球,记下数字作为点M 的纵坐标,用列表或画树状图的方法求:两次摸球后得到的点M 恰好在函数()0k y k x=<图像上的概率. 18.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号①、②、③表示,化学题目用字母a 、b 、c 表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)小李同学抽到物理实验题目①这是一个 事件(填“必然”、“不可能”或“随机”).(2)小张同学对物理的①、②和化学的c 号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率.19.小晶和小红玩掷骰子游戏,每人将一个各面分别标有1、2、3、4、5、6的正方体骰子掷一次,把两个人掷得的点数相加,并约定‘点数之和等于6,小晶赢,点数之和等于7,小红赢,点数之和是其他数,两人不分胜负’,问,他们两人谁获胜的概率大,请你用“画树形图”的方法加以说明。

2021年秋人教版初中九年级数学上册同步练习:第25章 概率初步(附答案)

第二十五章概率初步25.1随机事件与概率25.1.1随机事件01 基础题知识点1必然事件、不可能事件、随机事件的判断1.下列事件为必然事件的是(D)A.小王参加某次数学考试,成绩是500分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV­1正在播放新闻节目D.不透明袋子中装有2个红球和1个白球,从中摸出2个球,其中必有红球2.下列事件中,属于不可能事件的是(C)A.抛掷一枚质地均匀的骰子,出现4点向上B.五边形的内角和为540°C.实数的绝对值小于0D.明天会下雨3.(2019·安阳殷都区一模)下列事件是随机事件的是(C)A.2022年2月,在北京和张家口举行第24届冬季奥运会B.正八边形的每个外角的度数等于45°C.明年清明节会下雨D.在只装了黄球的盒子中,摸出红球4.“367人中至少有2人同月同日生”这一事件是(B)A.随机事件B.必然事件C.不可能事件D.确定性事件5.“一个不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4”,这个事件是不可能事件.(填“必然事件”“不可能事件”或“随机事件”)6.下列事件中,哪些是必然事件?哪些是随机事件?哪些是不可能事件?①随意翻下日历,看到的是星期天;②农历七月十五日的月亮像弯弯的小船;③常温常压下,水在100 ℃时就开始沸腾;④小明买体彩,中了500万奖金;⑤两直线相交,对顶角相等.解:③⑤是必然事件;①④是随机事件;②是不可能事件.知识点2随机事件发生的可能性大小7.如图,一任意转动的转盘被均匀分成六份,当随意转动一次,停止后指针落在非阴影部分的可能性比指针落在阴影部分的可能性(B)A.大B.小C.相等D.不能确定8.在一副洗好的扑克牌中随意抽取一张,抽到“大王”的可能性与抽到“红桃5”的可能性相比(C)A.抽到“大王”的可能性大B.抽到“红桃5”的可能性大C.两种一样大D.无法确定9.在英语考试中,一道选择题有四个选项,小红任意选了一个,选错的可能性>选对的可能性.(填“>”“<”或“=”)02 中档题10.(2020·武汉)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是(B)A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于611.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A.3个B.不足3个C.4个D.5个或5个以上12.(2020·泰州)如图,电路图上有4个开关A,B,C,D和1个小灯泡,同时闭合开关A,B或同时闭合开关C,D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是(B)A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关13.在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在A区域的可能性最大.(填“A”“B”或“C”)14.掷一枚质地均匀的正六面体骰子,请你写出一个必然发生的事件,一个不可能发生的事件,一个随机事件.解:(答案不唯一)必然发生的事件:整数点朝上;不可能发生的事件:7点朝上;随机事件:6点朝上.15.下面第一排表示各方盒中球的情况,第二排表示摸到黄球的可能性的大小,请连线.不太可能摸到黄球不可能摸到黄球一定能摸到黄球可能摸到黄球很可能摸到黄球通过上面的情况,你可以得到摸到黄球的可能性大小是由什么决定的?解:摸到黄球的可能性大小是由黄球占总球数的比例决定的.03 综合题16.请用适当的语言来描述以下词语所反映事件的发生情况:①十拿九稳②长生不老③水滴石穿④海枯石烂⑤东边日出西边雨⑥树倒猢狲散⑦大海捞针解:①随机事件(可能性较大);②不可能事件;③必然事件;④不可能事件;⑤随机事件(可能性较小);⑥必然事件;⑦随机事件(可能性极小).25.1.2 概率01 基础题知识点1 概率的意义1.河南姑娘朱婷是一位非常优秀且被观众喜爱的排球运动员.在某场排球比赛前的热身赛中,朱婷发球成功率大约是95.5%,下列说法错误的是(A) A .朱婷发球2次,一定全部成功 B .朱婷发球2次,不一定全部成功 C .朱婷发球1次,不成功的可能性较小 D .朱婷发球1次,成功的可能性较大2.掷一枚质地均匀的硬币10次,下列说法正确的是(B) A .每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上D .不可能有10次正面向上知识点2 简单事件的概率的计算 3.(2019·宜昌)在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容.如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是(B)A .12B .14C .18D .1164.(2019·洛阳汝阳县期末)某存折的密码是一个六位数(每位都可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是(D) A .15 B .16C .19D .1105.(2020·河南模拟)抛掷一枚质地均匀的正方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为偶数的概率是(C) A .16 B .13C .12D .566.(2020·河南三模)五张大小和质地均相同的卡片分别写有数字13 ,2 ,-1,0,π,从中任意抽取一张,抽到无理数的概率是25.知识点3 必然事件、不可能事件、随机事件的概率7.下列事件中,哪些是随机事件,哪些是概率为1的事件?哪些是概率为0的事件? ①太阳绕着地球转;②小明骑车经过某个十字路口时遇到红灯; ③今天数学考试小伟能得满分; ④鸡蛋里挑骨头;⑤将油滴入水中,油会浮在水面上; ⑥明天会下大雨;⑦地球上海洋面积大于陆地面积;⑧购买一张彩票,中奖. 解:随机事件有②③⑥⑧. 概率为1的事件有⑤⑦. 概率为0的事件有①④.知识点4 与几何图形有关的概率的计算8.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,停止后指针落在黄色区域的概率是(B)A.16 B .14C .13D .7129.(2020·苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是38.易错点 对概率的意义理解不清 10.(2020·阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,再次掷出这枚硬币,正面朝下的概率是(D)A .1B .25C .35D .1202 中档题 11.(2019·开封二模)在-4,-2,1,2,3五个数中,随机取一个数作为函数y =kx 中k 的值,则该函数的图象恰好经过第二、四象限的概率为(B) A .15 B .25C .35D .4512.如图,在4×4的正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是313.13.(2019·葫芦岛)在一个不透明的袋子中只装有n 个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是13,那么n 的值为4.14.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB =BC ;②∠BAD =90°;③AC =BD ;④AC ⊥BD ;⑤∠DAB =∠ABC ,能判定▱ABCD 是矩形的概率是35.15.(教材P131例1变式)抛掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有数字1,2,3,4,5,6,观察向上一面的点数,求下列事件的概率: (1)点数为偶数;(2)点数大于2且小于5.解:抛掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等. (1)点数为偶数有3种可能,即点数为2,4,6, ∴P (点数为偶数)=36 =12.(2)点数大于2且小于5有2种可能,即点数为3,4, ∴P (点数大于2且小于5)=26 =13.03 综合题16.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于13 .问至少取出了多少个黑球?解:(1)P (摸出一个球是黄球)=55+13+22 =18 .(2)设取出x 个黑球.由题意,得 5+x 5+13+22 ≥13.解得x ≥253 .答:至少取出了9个黑球.25.2 用列举法求概率 第1课时 用列表法求概率01 基础题 知识点1 用直接列举法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为(A) A .14 B .13 C .12 D .342.小亮、小莹和大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是(B) A .12 B .13 C .23 D .163.为支援灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,她第一次就拨通电话的概率是(C)A .12B .14C .16D .18知识点2 用列表法求概率 4.(2020·周口西华县二模)如图,两个被四等分的转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为(D)A .12B .14C .18D .1165.(2020·河南模拟)疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个小区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是(A)A .13B .49C .19D .236.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是14.7.(2019·河南)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,则摸出的两个球颜色相同的概率是49.8.(2020·安阳县模拟)在一个不透明的口袋中,放入标有数字1,2,2,3,4的五个小球(除数字外完全相同),从中随机摸出一个小球后放回,再随机摸出一个小球,则两次摸出的小球标号之和为5的概率为625 .9.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则:剪刀胜布,布胜石头,石头胜剪刀. (1)请用列表法表示出所有可能出现的游戏结果; (2)求张华胜出的概率.剪刀 石头 布解:(1)列表如下:张华 李明 石头 剪刀 布 石头 (石头,石头) (剪刀,石头) (布,石头) 剪刀 (石头,剪刀) (剪刀,剪刀) (布,剪刀) 布(石头,布)(剪刀,布)(布,布)共有9种等可能结果.(2)由表可知,张华胜出的结果有3种, ∴P (张华胜出)=39 =13.02 中档题 10.(2020·宁夏)现有4条线段,长度依次是2,4,6,7,从中任选三条,能组成三角形的概率是(B) A .14 B .12C .35D .3411.(2019·安阳县一模)若一个不透明的袋子中装有形状与大小均完全相同的4张卡片,4张卡片上分别标有数字-2,-1,2,3,现从中任意抽出其中两张卡片分别记为x ,y ,并以此确定点P (x ,y ),则点P 落在直线y =-x +1上的概率是(B)A .12B .13C .14D .1612.若从-1,1,2这三个数中,任取两个数分别作为点M 的横、纵坐标,则点M 在第二象限的概率是13 .13.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是14.14.(2020·漯河临颍县期末)如图,有5张不透明的卡片,除正面上的图案不同外,其他均相同,将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是轴对称图形的概率为35;(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法求两次所抽取的卡片恰好都是中心对称图形的概率.第一次 第二次 A B C D E A (B ,A) (C ,A) (D ,A) (E ,A) B (A ,B) (C ,B) (D ,B) (E ,B) C (A ,C) (B ,C) (D ,C) (E ,C) D (A ,D) (B ,D) (C ,D) (E ,D) E(A ,E)(B ,E)(C ,E)(D ,E)∴两次所抽取的卡片恰好都是中心对称图形的概率为220 =110 .03 综合题15.如图为甲、乙两个可以自由转动的质地均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m ,乙转盘中指针所指区域内的数字为n (若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m +n |>1的概率;(2)直接写出点(m ,n )落在函数y =-x +1图象上的概率. 解:(1)列表如下:n m -1 0 1 2 -1 (-1,-1) (0,-1) (1,-1) (2,-1) -12 (-1,-12 )(0,-12 )(1,-12 )(2,-12 )1(-1,1)(0,1)(1,1)(2,1)由表格可知,所有等可能的结果有12种,其中满足|m +n |>1的情况有5种,所以|m +n |>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.16.郑州地铁1号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(C)A.13 B .14C .15D .16第2课时 用树状图法求概率01 基础题 知识点 用树状图法求概率 1.(2020·开封二模)某校组织社团活动,小明和小刚从“数学社团”“航模社团”“文艺社团”三个社团中,随机选择一个社团参加活动,两人恰好选择同一个社团的概率是(A) A .13 B .23 C .19 D .292.(2020·河南期中)有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”“空”二字的概率为(D)A .13B .14C .15D .163.(2020·玉林)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转.若这两种可能性大小相同,则至少有一辆向左转的概率是34.4.(教材P138例3变式)甲口袋装有2个相同的小球,分别写有字母a 和b ;乙口袋中装有3个相同的小球,分别写有字母c ,d 和e.从两个口袋中各随机取出一个小球,恰好是一个元音和一个辅音字母的概率是12 .(字母a 和e是元音,字母b ,c 和d 是辅音) 5.(2020·南阳镇平县一模)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为23.6.(2020·长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A 1,A 2,图案为“保卫和平”的卡片记为B)解:根据题意画树状图如下:共有9种等可能的情况数,其中两次抽出的卡片上的图案都是“保卫和平”的有1种, ∴两次抽出的卡片上的图案都是“保卫和平”的概率是19.易错点 不能正确区分“放回”与“不放回”而出错 7.(2019·大连)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(D)A .23B .12C .13D .148.(2020·信阳模拟)在4张相同的小纸条上分别写上数字-2,0,1,2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为(C)A .14B .13C .12D .2302 中档题9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为(A)图1 图2A.23 B .12C .13D .110.(2019·洛阳二模)四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张,把抽到的点数记为a ,再在剩余的扑克中抽取一张,点数记为b ,则点(a ,b )在直线y =x +1上方的概率是(C) A.12 B .13 C .14 D .1611.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(D)A .127B .13C .19D .2912.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品有四样:A .菜包,B .面包,C .鸡蛋,D .油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个. (1)按约定,“某顾客在该天早餐得到两个鸡蛋”是不可能事件(填“随机”“必然”或“不可能”); (2)请用画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率. 解:画树状图如下:由树状图知共有12种等可能的情况,其中早餐刚好得到菜包和油条的情况有2种, 所以P (某顾客该天早餐刚好得到菜包和油条)=212 =16.13.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,则小颖答对第一道题的概率是13 ;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”? 解:(2)画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种, ∴小颖将“求助”留在第二道题使用时,P (小颖顺利通关)=19.(3)若小颖将“求助”在第一道题使用,画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”在第一道题使用时,P (小颖顺利通关)=18 .∵18 >19, ∴建议小颖在答第一道题时使用“求助”.14.(2019·河南一模)为推广传统文化,某学校布置了年味十足的寒假作业,比如包饺子、写春联、逛庙会等等,并要求学生拍照.现将八(5)班的学生作品进行展示,分为A ,B ,C ,D 四个等级,并将结果绘制成如下两幅尚不完整的统计图:请根据图中的信息解答下列问题: (1)补全两个统计图;(2)请求出C 等级所在扇形的圆心角的度数;(3)现准备从A 等级的4个人中随机抽取2人去参加学校比赛,其中小明和小丽都被抽到的概率是多少? (4)请你对推广传统文化提出一条合理化建议.解:(1)∵C 等级对应的百分比为1-(10%+40%+20%)=30%, 被调查的总人数为4÷10%=40(人), ∴C 等级的人数为40×30%=12(人). 补全统计图如图.(2)C 等级所在扇形的圆心角的度数为360°×30%=108°.(3)记这4个人分别为甲、乙、丙、丁,其中小明和小丽分别为甲、乙, 画树状图:∵共有12种等可能的结果,小明和小丽两名选手恰好被抽到的有2种情况, ∴小明和小丽都被抽到的概率是212 =16.(4)建议以不同形式体现自己对传统文化的认知(答案不唯一).小专题15 概率的综合应用类型1 概率与数式的综合1.在盒子里放有分别写有整式2,π,x ,x +1的四张卡片,从中随机抽取两张,把卡片上的整式分别作为分子和分母,则能组成分式的概率是(A)A .12B .13C .14D .16类型2 概率与方程、不等式的综合2.(2019·武汉)从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为(C)A .14B .13C .12D .233.从-2,-1,1,2这四个数中任取一个作为a 的值,再从余下的三个数中任取一个数作为b 的值,则不等式组⎩⎪⎨⎪⎧x >a ,x <b有整数解的概率是13.类型3 概率与函数的综合4.从-2,-1,1中任取两个不同的数作为一次函数y =kx +b 的系数k ,b ,则一次函数y =kx +b 的图象交x 轴于正半轴的概率是(A)A .23B .13C .16D .495.同时抛掷A ,B 两个质地均匀的小正方体(每个面上分别标有数字1,2,3,4,5,6),设两个正方体朝上的数字分别是x ,y ,并以此确定点P (x ,y ),那么点P 落在抛物线y =-x 2+3x 上的概率是(A) A .118 B .116C .112D .196.在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为16.类型4 概率与几何的综合7.四张质地、大小、背面完全相同的卡片上,正面分别画有下列图案,现把它们正面朝下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案既是轴对称图形,又是中心对称图形的概率是(B)A .14B .12C .34D .18.关于四边形ABCD 有以下四个条件:①两组对边分别平行;②两条对角线互相平分;③两条对角线互相垂直;④一组邻边相等.从中任取两个条件,能得到四边形ABCD 是菱形的概率是(A) A .23 B .13 C .12 D .569.(2020·河南期末)如图,正方形ABCD 内接于⊙O ,正方形的边长为2 cm.若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是2π.类型5 概率与其他学科知识的综合 10.【渗透跨学科知识】(2020·东营)如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡L 1,L 2同时发光的概率为(D)A .16B .12C .23D .13类型6 概率的实际应用 11.(2020·南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.张先生:我要先处理一些事物,只坐第三个出发的那辆车. 李先生:我要早点出发,只坐第一个出发的那辆车.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果; (2)两人中,谁乘坐到甲车的可能性大?请说明理由. 解:(1)这三辆车按先后顺序出发的所有可能结果:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种. (2)两人坐到甲车的可能性一样.理由如下:由(1)可知张先生坐到甲车有两种可能:乙、丙、甲,丙、乙、甲, 则张先生坐到甲车的概率是26 =13.由(1)可知李先生坐到甲车有两种可能:甲、乙、丙,甲、丙、乙, 则李先生坐到甲车的概率是26 =13.所以两人坐到甲车的可能性一样. 12.(2020·平顶山舞钢市期中)“一方有难,八方支援”是中华民族的传统美德,在抗击新冠病毒战役中,某省为支援武汉,派出了由1 460人组成的医疗队.其中小丽、小王和另外三个同事共五人直接派往一线的同一家医院,根据该医院人事安排,需要先抽出一人去急诊科,再派两人到该医院的发热门诊,请你利用所学知识完成下列问题. (1)小丽被派往该院急诊科的概率是15;(2)若正好抽出她们的一位同事去急诊科,请你利用画树状图或列表的方法,求出小丽和小王同时被派往发热门诊的概率.解:小丽、小王和另外两个同事分别用A ,B ,C 1,C 2表示,根据题意画树状图如下:由树状图可知,一共出现了12种等可能的结果,小丽和小王同时出现的有2种情况,则小丽和小王同时被派往发热门诊的概率是212=1 6.类型7概率与统计的综合13.(2019·开封一模)当今社会,手机越来越普遍,有很多人每天过分依赖手机,每天使用手机时间过长而形成了“手机瘾”,为了解某高校大学生每天使用手机时间的情况,某社团随机调查了部分学生用手机的时间,并将调查结果分为五类:A.基本不用;B.平均每天使用1~2小时;C.平均每天使用2~4小时;D.平均每天使用4~6小时;E.平均每天使用超过6小时.将所得数据绘制成如下两幅不完整的统计图:请根据相关信息解答下列问题.(1)将上面的条形统计图补充完整;(2)若每天使用手机的时间超过6小时,则患有严重的“手机瘾”,该校共有学生14 900人,试估计该校有多少人患有严重的“手机瘾”?(3)在被调查的基本不使用手机的四名同学中,有两男两女,现要从中随机抽取两名同学去参加座谈会,请你用列表法或画树状图法求出所选同学恰好是一名男同学和一名女同学的概率.解:(1)调查的学生数为4÷8%=50(名),则B类别人数为50-4-20-9-5=12(名).补全条形统计图如图.(2)该校学生患有严重的“手机瘾”的约有14 900×10%=1 490(名).(3)画树状图得:∵共有12种等可能的结果,所选同学恰好是一名男同学和一位女同学的有8种情况,∴所选同学恰好是一名男同学和一位女同学的概率为812=23.。

人教版数学九年级上第二十五章25《概率初步》全章同步练习与单元测试附答案

人教版数学九年级上第25章《概率初步》全章同步练习与单元测试25.1 随机事件与概率25.1.1 随机事件25.1.2 概率25.2 用列举法求概率第1课时用列表法求概率第2课时用树状图求概率25.3 用频率估计概率125.3 用频率估计概率2综合练习单元测试人教版数学九年级上同步练习第二十五概率初步25.1 随机事件与概率25.1.1 随机事件一、选择题1.(3分)(2007•遂宁)下列事件中,哪一个是确定事件?()A.明日有雷阵雨B.小胆的自行车轮胎被钉扎环C.小红买体彩中奖D.抛掷一枚正方体骰子,出现7点朝上2.(3分)(2009•朝阳)下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放新闻联播A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件5.(3分)(2012•泰州)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()6.(3分)(2012•龙岩)一个不透明的布袋里有30个球,每次摸一个,摸一次就一定摸到二、填空题7.(3分)从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是.8.(3分)一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性.9.(3分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中的可能性较小.10.(3分)3张飞机票2张火车票分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,则取到票的可能性较大.11.(3分)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是.12.(3分)在线段AB上任三点x1、x2、x3,则x2位于x1与x3之间的可能性(填写“大于”、“小于”或“等于”)x2位于两端的可能性.13.(3分)(2012•崇左)“明天的太阳从西方升起”这个事件属于事件(用“必然”、“不可能”、“不确定”填空).三、解答题14.应用题:在一个不透明的口袋中,装着10个大小和外形完全相同的小球,其中有5个红球,3个蓝球,2个黑球,把它们搅匀以后,请问:下列哪些事件是必然事件,哪些是不可能事件,哪些是不确定事件.(1)从口袋中任意取出一个球,它刚好是黑球.(不确定事件)(2)从口袋中一次取出3个球,它们恰好全是蓝球.(不确定事件)(3)从口袋中一次取出9个球,恰好红,蓝,黑三种颜色全齐.(必然事件)(4)从口袋中一次取出6个球,它们恰好是1个红球,2个蓝球,3个黑球.(不可能事件)15.(2013•昆山市一模)(1)已知:甲篮球队投3分球命中的概率为,投2分球命中的概率为,某场篮球比赛在离比赛结束还有1min,时,甲队落后乙队5分,估计在最后的1min,内全部投3分球还有6次机会,如果全部投2分球还有3次机会,请问选择上述哪一种投篮方式,甲队获胜的可能性大?说明理由.(2)现在“校园手机”越来越受到社会的关注,为此某校九年级(1)班随机抽查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图(如图所示,图②表示家长的三种态度的扇形图)1)求这次调查的家长人数,并补全图①;2)求图②表示家长“赞成”的圆心角的度数;3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?参考答案一、选择题 1.D 2.C 3.C 4.B 5.D 6.D二、填空题7.随机事件 8.相等 9.判断题 10.飞机 11.减少有效分中有受贿裁判评分的可能性 12.小于 13.不可能人教版数学九年级上同步练习 25.1.2 概率1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______.4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .956.某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元)如果花2______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个D .15个11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21 B .31 C .51 D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13.某地区近5年出生婴儿性别的调查表如下:完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______;(2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______; (5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).人教版数学九年级上同步练习 25.2 用列举法求概率第1课时 用列表法求概率1.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是( ) A 、18 B 、13 C 、38 D 、352.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )A 、14B 、13C 、12D 、233.一辆汽车在一笔直的公路上行驶,途中要经过两个十字路口.那么在两个十字路口都能直接通过(都是绿灯)的概率是_____________.4.袋子内装有除颜色外其余都相同的3个小球,其中一个红球,两个黄球.现连续从中摸两次(不放回),则两次都摸到黄球的概率是____________.5. A 、B 两个口袋中均有3个分别标有数字1、2、3的相同的球,甲、乙两人进行玩球游戏.游戏规则是:甲从A 袋中随机摸一个球,乙从B 袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?6.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?(3)妞妞和爸爸出相同手势的概率是多少?7.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.8.桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中随机抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中随机抽出一张,记下卡片上的数字,然后将这两数相加;(1)请用列表或画树形图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?9.小明为了检验两枚六个面分别刻有点数1、2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 000次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.用列举法求概率 1.C 2.D 3.19 4.135.不公平 下面列举所有可能出现的结果: 由此可知,和为奇数有4种,和为偶数有5种 ∴甲赢的概率为4/9,乙赢的概率为5/9 ∴不公平 6.(1)13,(2) 13,(3) 137.(1) 列表:由表中可知,得到的两位数共有9种 (2) 98.(1)列表如下:由列表可得:P (数字之和为5)=41 (2)因为P (甲胜)=41,P (乙胜)=43 ∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:4312=÷(分) 9.列表如下:由表中可知,和为7的概率为6,2000033336⨯≈.而20远远小于3333因而这两个骰子不可能都合格.人教版数学九年级上同步练习 第2课时 用树状图求概率1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118 C .1411 D .1432.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1B .101 C .1001 D .10001 3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支.12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31 B .41 C .51 D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ). A .51 B .52 C .53 D .54 14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是 31求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______. 16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:(1)奇数点朝上的概率为;31(2)大于6的点数与小于3的点数朝上的概率相同.人教版数学九年级上同步练习 25.3 用频率估计概率1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张. 3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.5.如果手头没有硬币,用来模拟实验的替代物可用( ). A .汽水瓶盖 B .骰子 C .锥体 D .两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.参考答案1.概率,频率. 2.8,12,4,26. 3.2.4.200. 5.A . 6.B .7.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9. 8.可估计三色球总数为100%2525=个,则黄球约为40个,红球约为100-40-25=35个. 9.9. 10.⋅154;4111.可能性是;101可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中任取两个,这两个均为红球的概率即为所求.12.(1)10010052000=⨯(支),估计箱子里有100支不合格产品; (2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.13.(1)先求有标记数与总条数的比,67928得池塘鱼数242567928100=÷=条,估计可能不太准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.14.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙球的频率为;20n 重复多次实验,用实验频率估计理论概率;用2030n÷求出袋中球的总数,再用总数减去30个橙球数,就得出放进去的白球数.15.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,则可估计对手的市场占有率为,10001n-对手用户数量为m nm -1000名. 16.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均数为,1m则估计袋中棋子有10m 粒. 方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平均数为,1n估计袋中原有白棋子(10n -10)粒.人教版数学九年级上同步练习 25.3 用频率估计概率1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______.5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361 B .181 C .61 D .21 6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( ) A .8000条 B .4000条 C .2000条 D .1000条7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下(1)请估计:当很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法. 8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m 的圆,在不远处向圈内掷石子,且记录如下:13.地面上铺满了正方形的地砖(40cm ×40cm).现在向其上抛掷半径为5cm 的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员; (3)敌国的士气不振. 因此,他向本国发回消息:“敌国已基本失去战斗力”. 你认为这名间谍的消息正确吗?参考答案1.近似值,0. 2.1,30,6. 3.300. 4.⋅515.C . 6.B .7.(1)0.6;(2)0.6,0.4;(3)白球12,黑球8; (4)尝试自己设计出一种方案与同学交流. 8.能.设男教师人数为x ,则,200805050=+x 解得x =75,估计该校约有75位男教师.。

数学人教版九年级上册25.2 用列举法求概率同步练习(有答案)

数学人教版九年级上册25一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时失掉的两个球的颜色中有〝一红一黄〞的概率是()A. 16B. 29C. 13D. 232.同时抛掷三枚质地平均的硬币,至少有两枚硬币正面向上的概率是()A. 38B. 58C. 23D. 123.如图是一次数学活动课制造的一个转盘,盘面被等分红四个扇形区域,并区分标有数字−1,0,1,2.假定转动转盘两次,每次转盘中止后记载指针所指区域的数字(当指针恰恰指在分界限上时,不记,重转),那么记载的两个数字都是正数的概率为( )A. 18B. 16C. 14D. 124.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. 16B. 13C. 12D. 235.三名初三先生坐在仅有的三个座位上,起身后重新就坐,恰恰有两名同窗没有坐回原座位的概率为()A. )19B. )16C. )14D. )126.从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名先生担任升旗手,那么抽取的两名先生刚好一个班的概率为()A. 15B. 25C. 35D. 457.从长为3,5,7,10的四条线段中恣意选取三条作为边,能构成三角形的概率是()A. 14B. 12C. 34D. 18. 小王家新锁的密码是6位数,他记得前两位数是23,后两位数是32,中间两位数忘了,那么他一次按对的概率是( )A. 120B. 150C. 190D. 1100 9. 某校高一年级往年方案招四个班的重生,并采取随机摇号的方法分班,小明和小红既是该校的高一重生,又是好冤家,那么小明和小红分在同一个班的时机是( )A. 14B. 13C. 12D. 34 10. 假定一个袋子中装有外形与大小均完全相反有4张卡片,4张卡片上区分标有数字−2,−1,2,3,现从中恣意抽出其中两张卡片区分记为x ,y ,并以此确定点P(x,y),那么点P 落在直线y =−x +1上的概率是( )A. 12B. 13C. 14D. 16 二、填空题 11. 有5张看上去无差异的卡片,正面区分写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰恰是两个延续整数的概率是______ .12. 箱子里放有2个黑球和2个红球,它们除颜色外其他都相反,现从箱子里随机摸出两个球,恰恰为1个黑球和1个红球的概率是______ .13. 假设恣意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的能够性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是______ .14. 从−1,−2,12,23四个数中,任取一个数记为k ,再从余下的三个数中,任取一个数记为b.那么一次函数y =kx +b 的图象不经过第四象限的概率是______ .15. 从−1,0,2,3这四个数中,任取两个数作为a ,b ,区分代入一元二次方程ax 2+bx +2=0中,那么一切能够的一元二次方程中有实数解的一元二次方程的概率为______ .三、计算题16.一袋中装有外形大小都相反的四个小球,每个小球上各标有一个数字,区分是1,4,7,8.现规则从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规则失掉一切能够的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.17.近年来,手机微信红包迅速盛行起来.去年春节,小米的爷爷也尝试用微信发红包,他区分将10元、30元、60元的三个红包发到只要爷爷、爸爸、妈妈和小米的微信群里,他们每人只能抢一个红包,且抢就任何一个红包的时机均等(爷爷只发不抢,红包里钱的多少与抢红包的先后顺序有关).(1)求小米抢到60元红包的概率;(2)假设小米的奶奶也参与〝抢红包〞的微信群,他们四团体中将有一团体抢不到红包,那么这种状况下,求小米和妈妈两团体抢到红包的钱数之和不少于70元的概率.18.假定n是一个两位正整数,且n的个位数字大于十位数字,那么称n为〝两位递增数〞(如13,35,56等).在某次数学兴趣活动中,每位参与者需从由数字1,2,3,4,5,6构成的一切的〝两位递增数〞中随机抽取1个数,且只能抽取一次.(1)写出一切个位数字是5的〝两位递增数〞;(2)请用列表法或树状图,求抽取的〝两位递增数〞的个位数字与十位数字之积能被10整除的概率.【答案】1. C2. D3. C4. D5. D6. B7. B8. D9. A10. B11. 2512. 2313. 1714. 1615. 1416. 解:(1)画树状图:共有16种等能够的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率=616=38.17. 解:(1)小米抢到60元红包的概率=13;(2)画树状图为:共有24种等能够的结果数,其中小米和妈妈两团体抢到红包的钱数之和不少于70元的结果数为8,所以小米和妈妈两团体抢到红包的钱数之和不少于70元的概率=824=13.18. 解:(1)依据题意一切个位数字是5的〝两位递增数〞是15、25、35、45这4个;(2)画树状图为:共有15种等能够的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=315=15.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25. 2 用列举法求概率(第一课时)
◆随堂检测
1.飞镖随机地掷在下面的靶子上. (如图 1)
( 1)在每一个靶子中,飞镖投到区域A、B、C 的概率是多少?( 2)在靶子 1 中,飞镖投在区域 A 或 B 中的概率是多少?( 3)在靶子 2 中,飞镖没有投在区域 C 中的概率是多少?
2.在一个不透明的口袋中,装有若干个除颜色不同其图 1
余都相同
的球,如果口袋中装有 3 个红球且摸到红球的概率为1
,那么口袋中球的总数为()2
A. 12 个B.9个C.6个D . 3 个
3.将 1、 2、3 三个数字随机生成的点的坐标,列成下表. 如果每个点出现的可能性相等,那么从中任意取
一点,那么这个点在函数y x 图象上的概率是多少?
( 1, 1)( 1, 2)( 1, 3)
( 2, 1)( 2, 2)( 2, 3)
( 3, 1)( 3, 2)( 3, 3)
◆典例分析
将正面分别标有数字1、 2、 3、 4、 6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随
机抽取两张 .
( 1)写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;
( 2)记抽得的两张卡片的数字为( a , b) ,求点P(a , b) 在直线 y x 2 上的概率 .
分析:因为从五张卡片中随机抽取两张, 它的可能结果是有限个,并且各种结果发生的可能性相等. 因此,它可以应用“列举法”的公式概率.注意, 在问题( 1)中抽出的两张卡片是没有先后顺序的;在问题(2)中抽出的两张卡片是有先后顺序上的.
解:(1)任取两张卡片共有10 种取法,它们是:(1、 2),( 1、 3),( 1、 4),( 1、6),( 2、3),( 2、 4),
( 2、 6),(3、 4),(3、 6),(4、 6);和为偶数的共有四种情况.故所求概率为
4 2 P1 .
10 5
( 2)抽得的两个数字分别作为点P 横、纵坐标共有20 种机会均等的结果,在直线y x 2 上的只有(3、
1),( 4、 2),( 6、 4)三种情况,故所求概率P1 3
.
20
◆课下作业新课标第一网
●拓展提高
1. 有三名同学站成一排,其中小明站在两端的概率是________.
2.在组成单词“Probability”(概率)的所有字母中任意取出一个字母,则取到字母“b”的概率是________.3.在一个不透明的布袋中装有 2 个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出
一个球,摸到黄球的概率是4
,求布袋中黄球的个数n .5
4.小李手里有红桃 1,2,3,4,5,6, 从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.
(1) 牌上的数字为奇数;
(2) 牌上的数字为大于 3 且小于 6.
5. 将分别标有数字1, 2, 3 的三张卡片洗匀后,背面朝上放在桌面上.(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少?
(提示:抽取一张(不放回),再抽取一张时,一定要注意第二次抽取的结果受到第一次结果的影响. )●体验中考
1.( 2009 年 , 贵州省)不透明的口袋中有质地、大小、重量相同的白色球和红色球数个,已知从袋中随机
摸出一个红球的概率为1 ,则从袋中随机摸出一个白球的概率是
________. 3
2.( 2009 年 , 龙岩)在3□2□(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为 3 的概率是 ________.
3. (2009 年 , 牡丹江市) 现有四条线段,长度依次是2, 3, 4, 5,从中任选三条,能组成三角形的概率是
________. w w w .x k b 1.c o m
参考答案:
◆随堂检测
1. 解 : (1)在靶子 1 中,飞镖投在区域A、 B、C 中的概率都是1
,在靶子2中,飞镖投在区域A的概率是3
1
,飞镖投在区域 B、C 中的概率都是1

2 4
( 2)在靶子
1 中,飞镖投在区域 A 或 B 中的概率是
2 ;
3
( 3)在靶子 2 中,飞镖没有投在区域 C 中的概率是 3 .
4
2.C.
1 3( 个 ).
口袋中球的总数为 3
2
3. 解 : ∵从 1、 2、 3 三个数字中随机生成的点有 9 个 , 且每个点出现的可能性相等,其中在函数
y x 图象
上的点有( 1, 1)、(2, 2)和( 3, 3)共 3 个,∴点在函数 y
x 图象上的概率是
3
1 .
9 3
◆课下作业
●拓展提高 X k b 1 . c o m
1. 2
.
3
2.
2
.
11
3. 解 : 由题意得 ,
n
4
,解得 n 8.
n 2 5
4. 解:任抽一张牌,其出现数字可能为
1,2,3,4,5,6,共 6 种,这些数字出现的可能性相同. ( 1)P(点数为
奇数 )=3/6=1/2 ;
( 2)牌上的数字为大于 3 且小于 6 的有 4, 5 两种 ,
∴ P (点数大于 3 且小于 6)=1/3.
5. 解 : 能组成的两位数有 12,13, 21,23, 31,32. 恰好是“ 32”的概率为 1
.
6
●体验中考
1.
2
.
3
2.
1

2
3.
3
.从四条线段中任选三条有四种等可能的结果,其中不能组成三角形的是
(2 , 3, 5) 一种 , 故能组
4
成三角形的概率是 3 .
4。

相关文档
最新文档