土壤含水量、土水势和土壤水特征曲线的测定
土壤水分特征曲线

土壤水动力学学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:姓名:土壤水分特征曲线的研究与运用摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。
该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。
本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。
但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。
关键词:土壤水分特征曲线 Van Genuchten模型运用1.土壤水分特征曲线的研究1.1土壤水分特征曲线的概念土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。
它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。
1.2土壤水分特征曲线的意义土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。
土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。
如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。
1.3土壤水分特征曲线的测定方法1.3.1直接法通过实验方法直接测定土壤水分特征曲线的方法称为直接法。
直接法中有众多的实验室和田间方法,如张力计法、压力膜法、离心机法、砂芯漏斗法、平衡水汽压法等,而前3种应用最为普遍。
①张力计法:是土壤通过陶土杯从张力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出陶土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。
张力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。
土壤水分特征曲线

土壤水动力学学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:姓名:土壤水分特征曲线的研究与运用摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。
该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。
本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。
但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。
关键词:土壤水分特征曲线Van Genuchten模型运用1.土壤水分特征曲线的研究1.1土壤水分特征曲线的概念土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。
它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。
1.2土壤水分特征曲线的意义土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。
土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。
如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。
1.3土壤水分特征曲线的测定方法1.3.1直接法通过实验方法直接测定土壤水分特征曲线的方法称为直接法。
直接法中有众多的实验室和田间方法,如力计法、压力膜法、离心机法、砂芯漏斗法、平汽压法等,而前3种应用最为普遍。
①力计法:是土壤通过土杯从力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。
力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。
土壤学名词解释及大题

土壤:是地球陆地表面上,能够生长植物的疏松表层。
其本质特征是具有肥力。
土壤肥力:是指土壤能同时而且不间断地供应和协调植物所需的养分、水分、空气和热量的能力。
它是土壤的基本属性和本质特征。
矿物:是一类天然产生于地壳中的具有一定化学组成、物理性质和内部构造的化合物或单质化学元素。
原生矿物:存在于岩浆岩之中的矿物。
风化作用:地表的岩石在外界因素的作用下,发生崩解破碎和分解的作用。
物理风化:指岩石受物理因素作用而逐渐崩解破碎成大小不同颗粒而不改变其化学成分的过程。
化学风化:岩石中的矿物在化学因素作用的影响下,发生化学成分和性质的变化以及产生新矿物的过程。
水解风化:是由于水的部分解离所成的氢离子(H+),与矿物中的碱金属(钾、钠)或碱土金属(钙、镁)(统称盐基离子)起置换作用,使岩石矿物遭受破坏,分解形成新矿物的作用。
水化风化:岩石中的矿物与水化合成为新的含水矿物的过程。
生物风化:岩石在生物的作用下发生破碎、分解的过程称为生物风化。
富铝化过程:又称脱硅富铝化过程。
热带、亚热带高温多雨并有一定干湿季的条件下,土壤物质由于矿物风化、形成中性或碱性环境,随着盐基离子和硅酸盐的大量淋失,而铁、铝、却发生沉淀,滞留于原来心土层中,造成铁铝在土体内相对富集的过程。
简单地讲就是土体中脱硅富铁铝的过程。
土壤剖面:是指从地面向下挖掘而裸露出来的垂直切面,它是土壤外界条件影响内部性质变化的外在表现。
土壤母质:与土壤形成有关的岩石风化物或各种类型的地质沉积物。
土壤机械组成:指土壤中各粒级所占的重量百分比组合。
土壤有机质:泛指以各种形态和状态存在于土壤中的各种含碳有机化合物。
土壤腐殖质:是有机质经过微生物分解和再合成的一种褐色或暗褐色大分子胶体物质。
土壤胶体:土壤学中,粒径在1~100nm的颗粒都称为胶体;而粒径大于100nm的粘粒,在长、宽、高三个方向上,往往至少有一个方向也在胶体粒子的大小范围内,并具有胶体的性质,故也可视为土壤胶体。
第三章_土壤水分

一定量土壤中所含水分数量的多少。
土壤水分含量的表示方法
1.土壤重量/质量含水量:θm
(mass water content of soil) 土壤所含水分的重量占烘干土重的百分数。
Ww W - WS θm (%) = = *100 Ws WS
2.容积/体积含水量(volumetric water content):θv
毛管上升水 (ascending capillary water) 毛管悬着水 (hanging capillary water)
土壤水
(soil water) (bonding water)
(free water)
(capillary water) 重力水
(gravitational water)
土壤吸湿水的最大值;水吸力3.1MPa 吸湿水
土壤颗粒 吸湿系数
1.2 凋萎系数(wilting coefficient):植物产生 永久凋萎时土壤的含水量。植物可利用的土壤水量 (有效水)的下限。
吸湿水+部分膜状水;水吸力 1.5MPa ;吸湿系数的 1.5~2.0倍
膜状水 (部分) Soil particle 吸湿系数 凋萎系数 吸湿水
毛管断裂含水量
田间持水量
毛管持水量
重力水 多余水
吸湿系数
土壤 水分 形态 土壤 水分 有效 性
化学束 吸湿水 缚水 无效水
凋萎系数
土壤 土 水分 粒 常数
膜状水
悬着毛管水 上升毛管水
有效水下限
旱地灌溉下限
难有效水
易有效水
旱地有效 水上限
饱和含水量
2.2 影响土壤有效水量的因素:
(1)土壤有机质含量越高,有效水量越大; (2)土壤结构、土壤松紧度 (3)土壤质地 (决定因素)
土壤水分特征曲线测定

土壤水分特征曲线测定实验一、实验原理土壤水分特征曲线(又称持水曲线,见图1)是土壤含水量与土壤水吸力的关系曲线,该曲线能够间接反映土壤孔隙大小的分布,分析不同质地土壤的持水性和土壤水分的有效性等,在水文学、土壤学等学科的研究与实践中都具有重要作用。
目前,负压计法是测量土壤水吸力最简单、最直观的方法,而时域反射仪(TDR)是测量土壤体积含水率的最常用、最便捷的方法之一。
图1 土壤水分特征曲线(一)负压计负压计由陶土头、腔体、集气管和真空(负压)表等部件组成(见图2)。
陶土头是仪器的感应部件,具有许多微小而均匀的孔隙,被水浸润后会在孔隙中形成一层水膜。
当陶土头中的孔隙全部充水后,孔隙中水就具有张力,这种张力能保证水在一定压力下通过陶土头,但阻止空气通过。
将充满水且密封的负压计插入不饱和土样时,水膜就与土壤水连接起来,产生水力上的联系。
土壤系统的水势不相等时,水便由水势高处通过陶土头向水势低处流动,直至两个的系统的水势平衡为止。
总土水势包括基质势、压力势、溶质势和重力势。
由于陶土头为多孔透水材料,溶质也能通过,因此内外溶质势相等,陶土头内外重力势也相等。
非饱和土壤水的压力势为零,仪器中无基质,基质势为零。
因此,土壤水的基质势便可由仪器所示的压力(差)来量度。
非饱和土壤水的基质势抵于仪器里的压力势,土壤就透过陶土头向仪器吸水,直到平衡为止。
因为仪器是密封的,仪器中就产生真空,这样仪器内负压表的读数这就是土壤的吸力。
土壤水吸力与土壤水基质势在数值上是相等的,只是符号相反,在非饱和土壤中,基质势为负值,吸力为正值。
图2 负压计结构图(二)TDR土壤水分对土壤介电特性的影响很大。
自然水的介电常数为80.36,空气介电常数为1,干燥土壤为3~7之间。
这种巨大差异表明,可以通过测量土壤介电性质来推测土壤含水量。
时域反射仪以一对平行棒(也叫探针)作为导体,土壤作为电介质,输出的高频电磁波信号从探针的始端传播到终端,由于终端处于开路状态,脉冲信号被反射回来。
土壤水分特征曲线测定实验

土壤水分特征曲线测定实验实验原理张力计插入土样后,张力计中的纯自由水经过陶土壁与土壤水建立了水力联系。
在非饱和土壤中,仪器中的自由水的势值总是高于土壤水的势值,因此,仪器中的自由水就会透过陶土管进入土壤,但因陶土材料孔隙细小,孔隙中形成的水膜不能使空气通过,而只能让水或溶质液通过(但如果压力过高水膜破裂,空气就会透过,这时的压力称为透气值),因而在仪器内形成一定的真空度,由仪器上的负压表读出。
最后当仪器内外的势值趋于平衡时,仪器中水的总水势Φwd与土壤中土水势Φws应该相等,即:Φwd=Φws土水势的完整表述为:Φ=Φm+Φp+Φs+Φg+ΦT因为陶土管为多孔透水材料,并非半透膜,故溶质也能通过,最后达到内外溶液浓度相等,相等。
坐标0点选在陶土头中心,则陶内外溶质势Φs相等。
仪器内外温度相等,温度势ΦT土头中心的内外重力势Φg相等。
这样仪器中和土壤中的总势平衡可表述为:Φmd+Φpd=Φms+Φps式中,Φps为土壤水的压力势,Φms为土壤水的基质势,Φpd为仪器内自由水的压力势,Φmd为仪器内自由水的基质势。
在非饱和土壤中,土壤水所受的压力为大气压(基准状态),故Φps应为零,又仪器中自由水无基质势存在,故Φmd亦为零,所以:Φms=Φpd=ΔP D+z为负压表显示的负压值(小于0),z为埋藏在土中的陶土管中心与土面以上负式中,ΔPD压表之间的静水压力即水柱高,(向上为正,大于0)。
即可得到土壤水的基质势。
按定义土壤水吸力为基质势的负值,因而即可测得吸力值。
-zS=-Φms=-ΔPD),则S=P-z如果负压表读数记为P(大于0,即P=-ΔPD另外,在计算土样中水分的变化时,还应考虑集气管中水分的变化量。
实验内容与设计1. 土样:粘土、砂壤土2. 容重:1.3g/cm3 、1.4g/cm33. 方式:脱湿:配置饱和土样,在室内自然蒸发,测定整个过程中土壤含水率与吸力关系曲线。
单点:用16个土样,分别配置指定含水率,测定该含水率下的吸力值,连成特征曲线。
农田水分状况和土壤水分运动

2、压力势(ψp) 、压力势(ψ
毛管上升水的高度与孔隙的半径成反比。 但当孔隙过细时,管壁对水份运动的阻 力增加,因而上升高度反而变小。
4、重力水
当土壤水份超过田间持水量时,多余的水份不 能为毛管所保持而在重力作用下沿着大孔隙向 下渗漏,这部分水就称为重力水。 重力水对作物是有效的,但由于它渗漏很快, 不能被保持,所以对旱作而言是无效的。 当重力水达到饱和,即土壤孔隙全部充满水份 时,土壤的含水量就称为饱和持水量。
4、重力势(ψg) 、重力势(ψ
土壤水由于其所处的位置不同,因重力 影响而产生的势能也不同,有此而产生 的水势称为重力势。 重力势可正可负,它是与参照面相对而 言的。参照面以上的土壤水重力势为正 值,参照面以下的为负值。 通常选择剖面内部或底面边界。
土水势代表土壤水分总的能量水平。土 水势的绝对值越小,土壤水分的能量水 平就越高。 土壤水总是从土水势高(即绝对值)低 处移动。 如果只考虑土壤水分运动,而不考虑植 物对水的吸收,溶质势可以忽略。其余 三个分势和称为水力势: ψh = ψm+ ψp+ ψg
(1)水深(Dw) 指在一定厚度(h)和一定面积土壤中所 含水量相当于同面积水层的厚度。 Dw= θv.h 单位可以用cm或mm,
(2)绝对水体积(容量)
指一定面积一定厚度土壤所含水量的体 积,量纲为L3。 V方/公顷,
V方/亩
二、土壤水的能态
土壤水分特征曲线

土壤水分特征曲线
土壤水的基质势(或土壤水吸力)随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。
该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。
土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。
如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。
土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。
曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。
曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。
故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤含水量、土水势和土壤水特征曲线的测定3.1测定意义严格地讲,土壤含水量应称为土壤含水率,因其所指的是相对于土壤一定质量或容积中的水量分数或百分比,而不是土壤所含的绝无仅绝对水量。
土壤含水量的多少,直接影响土壤的固、液、气三相比,以及土壤的适耕性和作物的生长发育。
在农业生产中,需要经常了解田间土壤含水量,以便适时灌溉或排水,保证作物生长对水分需要,并利用耕作予以调控,达到高产丰收的目的。
近几十年来的研究表明,要了解土壤水运动及土壤对植物的供水能力,只有土壤水数量的观念是不够的。
举一个直观的例子:如果粘土的土壤含水量为20%,砂土的土壤含水量为15%,两土样相接触,土壤水应怎样移动?如单从土壤水数量的观念,似乎土壤水应从粘土土样流向砂土土样,但事实恰恰相反。
这说明,光有土壤水数量的观念,尚不能很好研究土壤水运动及对植物的供水,必须建立土壤水的能量的观念,即土水势的概念。
测定土壤水特征曲线(基质势与土壤含水量之间的关系曲线)需要特别的仪器设备,随着土壤科学的发展,越来越多的基层土壤工作者需要土壤水特征曲线这一基础资料,了解土壤水特征曲线的测定,对今后土壤水特征曲线(不管是自己测定还是由别的单位测定)的应用是有益的。
3.2方法选择的依据土壤含水量目前常用的方法有:烘干法、中子法、射线法和TDR法(又称时域反射仪法)。
后三种方法需要特别的仪器,有的还需要一定的防护条件。
土水势包括许多分势,与土壤水运动最密切相关的是基质势和重力势。
重力势一般不用测定,只与被测定点的相对位置有关。
测定基质势最常用的方法是张力计法(又称负压计法),可以在田间现场测定。
土壤水特征曲线是田间土壤水管理和研究最基本的资料。
通过土壤水特征曲线可获得很多土壤基质和土壤水的数据,如土壤孔隙分布及对作物的供水能力等等。
测定土壤水特征曲线最基本的方法是压力膜(板)法,它可以完整地测定一条土壤水特征曲线。
3.3土壤含水量的测定(烘干法)烘干法又称质量法,具体操作是:用土钻采取土样,用感量0.1g的天秤称得土样的质量,记录土样的湿质量m t,在105℃烘箱内将土样烘6h~8h至恒重,然后测定烘干土样,记录土样的干质量m s,根据θm=m w/m s×100%计算土样含水量,式中:m w=m t-m s;θm表示土样的质量含水率,习惯上又称为质量含水量。
如果知道取样点的容重,则可求出土壤含水量的另一种表示形式——容积含水量θv:θv=θmρb在粘粒或有机质多的土壤中,烘箱中的水分散失量随烘箱温度的升高而增大,因此烘箱温度必须保持在100℃~110℃范围内。
烘干法的优点是简单、直观,缺点是采样会干扰田间土壤水的连续性,取样后在田间留下的取样孔(尽管可填实),会切断作物的某些根并影响土壤水的运动。
烘干法的另一个缺点是代表性差。
田间取样的变异系数为10%或更大,造成这么大的变异,主要是由于土壤水在田间分布的不均匀所造成的,影响土壤水在田间分布不均匀的因素有土壤质地、结构、以及不同作物根系的吸水作用和植冠对降雨的截留等。
尽管如此,烘干法还是被看成测定土壤水含量的标准方法,避免取样误差和少受采样的变异影响的最好方法是按土壤基质特征如土壤质地和土壤结构分层取样,而不是按固定间隔采样(华孟、王坚,1993)3.4土水势的测定(张力计法)象自然界其它物质一样,土壤水也具有不同形式的不同量级的能量。
以典热处理学将自然界的能分为动能和势能,动能是由物体运动的速度和质量所决定的,其值等于1/2mV2。
由于土壤水也遵循这一普遍规律,若把土壤和其中的水当作一个系统来考虑,当土-水系统保持在恒温、恒压以及溶液浓度和力场不变的情况下,系统和环境之间没有能量交换,该系统称为平衡系统。
由于水在流动过程中要作功,所以对每个平衡系统不是消耗了能量,就是获得了能量,一个平衡的土-水系统所具有能够作功的能量即为该系统的土壤水势能。
当两个具有不同能量水平的土-水平衡系统接触时,水就从具有较高势能水平的系统流到具有较低能量水平的系统,直到两个系统的土水势值相等,于是水的流动也就停止了。
显然,在分析土壤水的保持和运动时,重要的不是在于某一系统本身的能量水平,而在于两个平衡系统之间的土水势之差,因此,可任意规定一个土-水平衡系统为基准系统,其土水势为零,国际土壤学会选定的基准系统是:假设一纯水池,在标准大气压下,其温度与土壤水温度相同,并处在任意不变的高度。
由于假设水池所处高度是任意的,因此土壤中任意一点的土水势与标准状态相比并不是绝对的。
虽然如此,但在同一标准状态下,土壤中任意两点的土水势之差值是可以确定的。
3.4.1测定原理土水势包括有若干分势,除盐碱土外,影响土壤水运动的分势主要是重力势和基质势。
重力势是地球重力对土壤水作用的结果,其大小由土壤水在重力场中相对于基准面的位置决定,基准面的位置可任意选定。
基质势是由于土壤基质孔隙对水的毛管力和基质颗粒对水的吸附力共同作用而产生的。
取基准面纯水自由水面的土水势为0,则基质势为小于0的负值。
土水势的单位经常用的有单位重量土壤水的势能和单位容积土壤水的势能。
单位重量土壤水的势能的量纲为长度单位,即cm、m等。
单位容积土壤水的势能的量纲为压强单位,即Pa(帕),习惯上常用的还有bar(巴)或大气压为单位的。
基势通常用张力计测定(如图)。
张力计有各种形式,但其基本构造相同,都是陶瓷杯(又称瓷头)、联结管、储气管和压力计等4部分组成。
测定时,事先在张力计内部充满无气水(将水煮沸排除溶解于水中的气体,然后将煮沸的水与大气隔绝降至气温,即为无气水),使瓷头饱和,并与大气隔绝。
将张力计埋设在土壤中,瓷头要与土壤紧密接触。
当土壤处于非饱和水状态,土壤通过瓷头从张力计中“吸取”少量水分,当与张力计瓷头接触土壤的土水势与张力计瓷头处的水势相等时,由张力计向土壤中的水运动停止,这时记录压力计读数并计算出土壤的基质势。
3.4.2仪器及设备张力计,可在市场上购得各种形式的张力计;张力计土钻,根据张力计埋设的深度定作或加工,注意,土钻钻头直径要与张力计瓷头直径相同。
埋设及测定根据测定的深度,用张力计钻在测定地点钻孔,将埋设深度处的土壤和成泥浆,注入钻孔中,将张力计埋入钻孔中,保证瓷头与土壤紧密接触。
在张力计注入无气水并密封后24h,便可读数测定。
为了少受气温的影响,最好在上午固定时间测定,测定时注意将张力计管内气泡排到储气管中,方法是用手指轻轻不断弹张力计联结管。
测定数次后,张力计须重新注水。
图所示张力计适用于田间使用,(b),(c),(d)3种用水银柱作压力计的张力计适于实验使用,其水银的注入和连接请参考张力计说明书。
(e)所示张力计需用特殊的负压测定仪器,这里不现赘述。
张力计测定范围在0cm~-800cm,这主要由于在田间温度下(如30℃上下),张力计内水分在低压下(-800cm以下)会发生大量汽化(达沸点),张力计工作状态被破坏。
因此张力计一般只能测到-800cm。
(Jury,1991)计算张力计的测定读数实际上指示的是负压表或水银柱计压力计的负压值,因此必须将这一个值换算成瓷头处(以瓷头中点为计算点)的值。
现以图(b)为例,说明土壤基质势的计算:ψm=-13.6h Hg+(h-h1)式中:ψm——土壤基质势,cmh Hg——水银上升高度,cmh, h1——水柱高度,cm3.4.3测定允许差用张力计测定土壤基质势的精度一般由张力计所用压力读报最小读数决定。
负压表的测定精度较粗,水银柱压力计的读数可精确到1mm汞柱,但由于肉眼的读数误差,常常达不到这个精度。
3.5土壤水特征曲线的测定[压力膜(板)法]土壤水特征曲线是土壤水管理和研究最基本的资料,是非饱情况下,土壤水分含量与土壤基质势之间的关系曲线。
完整的土壤水特征曲线应由脱湿曲线和吸湿曲线组成,即土壤由饱逐步脱水,测定不同含水量情况下的基质势,由此获得脱湿曲线;另外,土壤可以由气干逐步加湿,测定不同含水量情况下的基质势,由此获得吸湿曲线。
这两条曲线是不重合的,我们把这种现象称为土壤水特征曲线的滞后作用。
通常情况下,由于吸湿曲线较难测定,且在生产与研究中常用脱湿曲线,所以只讨论脱湿曲线的测定。
土壤水特征曲线反映了非饱和状态下土壤水的数量和能量之间的关系,如果不考虑滞后作用,通过土壤水特征曲线可建立土壤含水量和土壤基质势之间的换算关系。
这样做,有时会带来一定的误差,但在大多数情况下,一场降雨或灌溉后,总是有很长时间的干旱过程,在这种情况下,由脱湿曲线建立的两参数之间的换算关系有一定可靠性。
如果将土壤孔隙概化为一束粗细不同的毛细管。
在土壤饱和时,所有的孔隙都充满水,而在非饱和情况下,只有一部分孔隙充满水。
通过土壤水特征曲线可建立土壤基质势与保持水分的最大土壤孔隙的孔径的函数关系,由此可推算土壤孔径的分布。
必须指出,由于我们将土壤孔隙概化为一束粗细不同的毛细管,与实际土壤孔隙不完全相同,因此称为实效孔径分布。
土壤水特征曲线的斜率反映了土壤的供水能力,即基质势减少一定量时土壤能施放多少水量,这在研究土壤与作物关系时有很大作用。
测定原理如图所示,将土样置于多孔压力板上,多孔压力板根据其孔径大小分为不同规格,压力板孔径大的承受较小的气压,孔径小的能承受较大的气压。
将压力板和土样加水共同饱和,将压力板置于压力容器内,加压,这时有水从土样中排出,并保持气压不变,等不再有水从土样中排出,打开容器,测定土样水分含量。
如所加气压值为P(Mpa),土壤基质势为ψm,则ψm =-P由此获得土壤基质势为ψm和其对应的土壤含水量θV,调整气压,继续实验,由此获得若干对(ψm,θV),将这些测定值点绘到直角坐标系中,根据这些散点可求得土壤水特征曲线。
3.5.1仪器及设备压力膜(板)水分提取器,如图所示;压力板由压力膜(板)水分提取器厂家提供,压力板直径约30㎝左右,根据压力板承受压力的大小,分为0.1Mpa,0.3Mpa,0.5Mpa,1.0Mpa,1.5MPa(1bar,3bar,5bar,10bar,15bar,bar为非标准量纲,厂家印在压力板上);土环,几十个,高1㎝,直径5㎝左右(土环直径不严格限制)。
土环一般用铜制成,也有铝制的或橡胶制的;压力泵或高压气源;铝盒,用于土壤含水量测定;瓷盘;多孔板饱和时用;粗的定性滤纸;皮筋。
3.5.2测定步骤制备土样。
按土壤实际容重将以剔除杂物(碎石、根须等)的土壤填入土环中,注意土环下部垫一层粗滤纸,用皮筋固定,也可在田间现场取样,方法类似土壤容重取样,只是土环底部要垫一层滤纸,用皮筋固定。
如果要测定一条完整的土壤水特征曲线,样品数量应在60个以上。
将制备好的土样置于多孔压力板上,一个多孔压力板大约可放置20多个土样,将带有土样的多孔压力板置于瓷盘内,加水饱和土样和多孔压力板。