XRD--残余应力测试
XRD宏观残余应力测定1

XRD衍射峰位置发生偏移 2dsinθ=Nλ 测量衍射峰偏移的多少 ∆θ 计算残余应力的大小
晶面间距随应力变化示意图
测定方法
• 采用 2ψ 法 采用sin • 计算公式为: 计算公式为:
• 其中
(半高宽法)确定衍射角2θ
• 计算K值
• 计算M值(最小二乘法)
• 计算应力σ=K.M
计算软件的简介
•
计算软件的简介
•
计算软件的简介
•
注意事项
• 表面状态:试样采用化学或电解抛光,不 采用机械抛光
• 晶的优缺点及应用
• 优点:无损、可测表(界)面应力、可区分应 力类型、适用于块状试样 • 缺点:只对无粗晶和无织构的材料才有效、数 据的分散性强、不能测得动态瞬时应力 • 应用:检测强化效果,工件的失效分析,预测 工件的寿命,评价界面的结合能力等
XRD宏观残余应力测定 宏观残余应力测定
报告人:林建平 导师:王献辉教授
主要内容
• • • • • 残余应力定义 XRD测定原理 测定方法 残余应力计算软件的使用 测试方法的优缺点及用途
残余应力
定义:产生应力的各种外载荷(力、 温度等)去除后,在物体内依然存 在的应力 。
测定原理
残余应力 晶格畸变 晶面间距变化
机械加工状态对XRD测量残余应力的影响1-刘竞艳

3.2 残余应力计算结果
• 车削加工在样品表面形成了 -544.0MPa的压应力,表明样品经 过车床加工后表面所受的损伤最大 ,从而对样品残余应力测定的结果 影响最大。 • 在车削加工表面再次经过磨 削加工后样品表面存在-213.5MPa 的残余压应力,表面残余应力大幅 度减低。
不同加工状态表面残余应力的计算结果
• 采用X射线测定材料中残余应力,由于X射 线在金属中穿透深度很小(纯钛中约为6μm ) • 加工后样品表面残余应力全部为样品加工 所形成的。
• 经过抛光并表面腐蚀的样品则消除了表面 加工应力的影响。
3 实验结果
3.1加工状态对2θ扫描的影响
a: 车床加工; b: 磨床加工; c: 1000#砂纸磨光;d: 机械抛光; e: 金相腐蚀
XPS-AES连用仪
差热分析仪
材料分析中心简介
X射线衍射仪
高压釜腐蚀试验系统
低周疲劳试验机
高频疲劳试验机
电子万能材料试验机
开展的服务及检测能力
服务领域:化学化工;物理性能;电子电器;材料等 领域
开展检测服务及能力:
•材料拉伸、疲劳; •结构表征; •化学元素定量分析;
•金属材料腐蚀性能检测;
•微观组织分析; •表面界面分析;
中心人才团队及条件基础: 工业(稀有金属)产品质量控制和技术评价实验室 实验室面积3000平方米,固定资产3000万元,采 中国有色金属工业西北质量监督检验中心 用国内先进 LIMS管理系统,拥有国内、外先进仪器设 陕西省有色金属产品质量监督检验站 备 60多台套,科技人员42名,教授、高工11人,博士、 陕西省有色金属材料分析检测与评价中心 硕士19名。 业务范畴:金属材料及矿冶产品、 中心架构: 陕西省核工业用金属材料检测与评价服务平台 政府执法机关和企事业单位: 化学检测室 陕西省稀有金属材料安全评估与失效分析中心 分析检测与评价 物理检测室 钛及钛合金加工产品生产许可证检验机构实施单位 粉末专业检测组 鉴定检验 铜及铜合金加工产品生产许可证检验机构实施单位 腐蚀专业检测组 仲裁检验 产品质量认证 业务管理室 其他重要产品的委托检验
x射线衍射测量残余应力实验指导书

X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。
2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。
二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。
三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。
材料中内应力分为三大类。
第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。
由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。
第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。
第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。
第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。
在通常情况下, 我们测得是残余应力是指第一类残余应力。
当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。
材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。
原理见图1。
由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。
当然更适用于薄膜材料的残余应力测量。
图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。
残余应力测量方法

残余应力是指材料内部或表面存在的不平衡力,它可以对材料的性能和可靠性产生重要影响。
以下是几种常见的残余应力测量方法:
1.X射线衍射法(X-ray Diffraction, XRD):这是一种常用的非破坏性测量方法,通过测量
材料中晶体结构的畸变来间接计算残余应力。
X射线经过材料后会发生衍射,根据衍射角度的变化可以推断出残余应力的大小和方向。
2.中子衍射法(Neutron Diffraction):类似于X射线衍射法,中子衍射法也是通过测量材
料晶体结构的畸变来确定残余应力。
相比X射线,中子具有更好的穿透能力,因此可以深入材料内部进行测量,适用于非金属材料的残余应力分析。
3.压电法(Piezoelectric Method):利用材料的压电效应来测量残余应力。
该方法通过将
压电传感器固定在被测物体上,然后施加外力引起压电传感器的形变,根据形变量的变化推断出残余应力的大小。
4.高斯法(Hole Drilling Method):这是一种常用的局部测量方法,适用于金属材料。
该
方法通过在被测物体上钻一个小孔,然后测量孔周围的表面应变的变化来计算残余应力。
5.激光干涉法(Laser Interferometry):利用激光的干涉原理来测量表面的微小位移,从
而推断出残余应力的分布情况。
激光干涉法可以提供高精度的残余应力测量结果。
需要注意的是,不同的测量方法适用于不同类型的材料和应力状态,选择合适的方法取决于具体的应用需求和材料特性。
在进行残余应力测量时,应根据实际情况综合考虑各种因素,并采取适当的措施以确保测量结果的准确性和可靠性。
X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。
X射线衍射法残余应力测试

目录1.概述 (2)1.1 X射线残余应力测试技术和测量装置的进展 (2)a.测试技术的进展 (3)b.测量装置的进展 (4)1.2测试标准 (5)2、测定原理及方法: (6)2.1二维残余应力 (6)2.1.1原理 (6)2.1.2方法 (9)2.2三维残余应力 (15)2.2.1沿深度分布的应力测定一剥层法 (16)2.2.2 X射线积分法(RIM) (17)2.2.3 多波长法 (20)3、X射线残余应力测定法的优、缺点 (21)4、一些应用 (22)参考文献: (23)X射线衍射法残余应力测试原理、计算公式、测试方法的优缺点、目前主要应用领域。
1.概述X射线法是利用X射线入射到物质时的衍射现象测定残余应力的方法。
包括X射线照相法、X射线衍射仪法和X射线应力仪法。
1.1 X射线残余应力测试技术和测量装置的进展早在1936年,Glocker等就建立了关于x射线应力测定的理论。
但是当时由于使用照相法,需要用标准物质粉末涂敷在被测试样表面以标定试样至底片的距离,当试样经热处理或加工硬化谱线比较漫散时,标准谱线与待测谱线可能重叠,测量精度很低,因此,这种方法未受到重视,直到二十世纪四十年代末还有人认为淬火钢的应力测定是不可能的。
只有在使用衍射仪后,X射线应力测定才重新引起人们的重视,并在生产中日渐获得广泛应用。
美国SAE在巡回试样测定的基础上,于1960年对X射线应力测定技术进行了全面的讨论。
日本于1961年在材料学会下成立了X射线应力测定分会,并在1973年颁布了X射线应力测定标准方法。
a.测试技术的进展在二十世纪五十年代,X射线应力测定多采用0°~ 45°法(又称两次曝光法),这种方法在dψϕ与sin2ψ有较好的线性关系时误差不大,但当试件由于各种原因,dψϕ与sin2ψ偏离离直线关系时,0°~ 45°法就会产生很大误差。
为了解决这个问题,德国E.Macherauch在1961年提出了X射线应力测定的sin2ψ法,使x射线应力测定的实际应用向前迈进了一大步。
XRD--残余应力测试

• Compressive or tensile
– We use the planes of the crystal lattice as an atomic scale “strain gauge”
• We can measure the change in d-spacing, d
• Strain = = d/d
Changes in d-spacing with Stress
Consider a bar which is in tension
• The d-spacings of the planes normal to the applied stress increase, as the stress is tensile
– This is a uniform displacement of the lattice planes – These cause a VERY SMALL shift in the position, the
Bragg angle 2, of the reflection & we can measure this (Only Just!!)
BSSM Workshop PART II
The sin2ψ Method Using Laboratory X-Rays
Judith Shackleton School of Materials, University of
Manchester
无损检测技术中的残余应力测量与分析方法剖析

无损检测技术中的残余应力测量与分析方法剖析残余应力是指在物体内部存在的,由于外部加载和热应变引起的应力状态。
残余应力的存在对材料的性能和稳定性有着重要影响,因此在工程领域中需要对其进行准确测量和分析。
无损检测技术在残余应力测量与分析中起到了重要的作用,本文将对无损检测技术中的残余应力测量与分析方法进行剖析。
一、X射线衍射法X射线衍射(XRD)技术是一种常用的测量材料残余应力的方法。
该方法通过分析材料中晶体的衍射图谱来确定其残余应力。
当材料发生应力时,晶格的排列会发生变化,从而引起X射线的衍射角度的变化。
通过测量和分析这种变化,可以得到材料的残余应力信息。
XRD技术具有测量范围广、准确性高、可重复性好等优点。
对于单晶材料,XRD技术能够直接测量晶体中的残余应力,精度较高。
而对于多晶材料,则需要通过倾角扫描或者称为θ-2θ扫描,来获得材料中的残余应力信息。
不过,XRD技术对于非晶态材料的测量精度较低。
二、中子衍射法中子衍射(ND)技术是一种利用中子进行测量的方法,可用于测量材料的残余应力。
中子的波长大约为0.1-1.0纳米,相较于X射线而言,中子的波长更适合用于测量晶体结构。
中子与材料作用时,受到材料中的晶格排列和残余应力的影响,从而产生衍射。
中子衍射技术具有穿透性强、对非晶态材料测量精度高等优点。
相较于XRD技术,中子衍射技术在测量多晶材料的残余应力时精度更高,适用范围更广。
不过,中子衍射技术的设备成本较高,且实验条件要求较为苛刻。
三、位错法位错法是一种基于物理模型的测量残余应力的方法。
位错是材料晶体结构中的缺陷,它们是材料中形成应力的主要机制之一。
位错法通过测量材料中位错的密度和分布来推导残余应力。
位错法具有非常高的空间分辨率和准确性,适用于各种材料的残余应力测量。
位错法可以通过电子显微镜和X射线繁切分析仪等设备进行实施。
但是,位错法需要对材料进行特殊制备和取样,且实验条件更为复杂。
四、光弹法光弹法是一种基于光学和力学原理的测量方法,通过测量光线透过或反射于材料表面时产生的应力光学效应来推断残余应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Principal Stresses
• We should measure more than one direction to get a complete picture of the stress in the component • If we measure 3 directions or more we can calculate the PRINCIPAL STRESSESS, these are the directions on which no shear stress acts • We do this by rotating the sample through an angle , in its own plane, exact details & diagrams later
Defocused geometry
How the Sin2 Method Works
• We tilt the sample through an angle psi, to measure magnitude the normal & shear stresses
– We use a range of values of (called offsets) for example, from 0 to 45 in steps of 5 – NEVER use the “Double Exposure Method” which uses just one offsets. Not enough data points!
Disadvantages
• Most Important
– Surface method only, X-ray beam penetration depth 10 to 20 microns, at best – For depth profiling must electro-polish, gives 11.5mm – Other Disadvantages
Basic Theory Normal Stresses
• From elastic theory of isotropic materials, the 3 normal strains are given by,
11 = 1 [11 - (22 + 33)] E 22 = 1 [22 - (33 + 11)] E 33 = 1 [33 - (11 + 22)] E • The strain in any direction is a function of the stress in the others!!. Ideally, we should measure more than one direction
• Low cost (compared with neutrons & synchrotrons, but not hole drilling) • Non-destructive, unlike hole drilling • Easy to do & fairly fool proof (if you are careful!!)
• Affected by grain size, texture (preferred orientation) & surface roughness • Doesn’t work on amorphous materials (obviously!!)
Basic Theory
• Consider a unit cube (quite a big one!) embedded in a component
• Metals • Ceramics (not easy!) • Multi-phase materials
– Not usually applied to polymers, as no suitable reflections, can add a metallic powder, reported in the literature
Measuring Elastic & Inelastic Strain
• Primarily we are measuring macro stresses
– This is a uniform displacement of the lattice planes – These cause a VERY SMALL shift in the position, the Bragg angle 2, of the reflection & we can measure this (Only Just!!)
BSSM Workshop PART II The sin2ψ Method Using Laboratory X-Rays Judith Shackleton School of Materials, University of Manchester
The sin2ψ Method What are We Measuring?
• We measure the ELASTIC Strain. – We can determine – Magnitude of the stress, – Its direction – Its nature
• Compressive or tensile
– We use the planes of the crystal lattice as an atomic scale “strain gauge”
• We rotate the the sample through an angle, to determine the directions of the principle stresses
No Stress Free d-Spacing Needed The Approximation
Also called focussed geometry
How the Sin2 Method Works
d
Diffraction vector, titled with respect to sample surface
Tilt the sample through an angle and measure the d-spacБайду номын сангаасng again. These planes are not parallel to the free surface. Their dspacing is changed by the stress in the sample.
The sin2ψ Method How Does it Work?
We measure STRAIN () not STRESS ()
• We CALCULTE STRESS from the STRAIN & the ELASTIC CONSTANTS • We use the planes d{hkl} , of the crystal lattice as a strain gauge • We can measure the change in d-spacing, d
• Most Important
Why use the sin2 Method The Advantages
– A stress free d-spacing is NOT required for the bi-axial case which is almost always used – Other advantages
• Inelastic stresses cause peak broadening, which can be measured. This is an extensive subject, not covered here.
Which Materials Can We Measure?
– Works on any poly-crystalline solid which gives a high angle Bragg reflection
• The depth of penetration of the X-ray beam in the sample is small, typically < 20 • We can say that there is no stress component perpendicular to the sample surface, that is 33 = 0 • We can use the d-spacing measured at = 0 as the stress free d-spacing
– This is the d-spacing of the planes parallel to the sample surface
• A reasonable approximation!! The error is <2%, certainly less than trying to make a stress free standard!!!
How the Sin2 Method Works Sample in “Bragg Condition”
Diffraction vector, normal to sample surface
dn
We measure the dspacing with the angle of incidence () & the angle of reflection of the Xray beam (with respect to the sample surface) equal. These planes are parallel to the free surface & unstressed, but not unstrained