残余应力及如何测量

合集下载

如何检测钢结构的残余应力?

如何检测钢结构的残余应力?

如何检测钢结构的残余应力?瑟肯专业生产防渗碳/防渗氮/防氧化涂料残余应力是造成钢结构疲劳、断裂的重要因素,因此有效评价应力变形状态对于特种设备关键部件的早期失效预测十分有必要。

对钢结构进行残余应力的检测方法根据其物理原理的不同可分为电学检测方法、磁学检测方法、涡流检测方法、射线检测方法和超声检测方法等几类。

接下来小编就简单的为大家介绍一下这几种方法。

1 电学检测常用于钢结构残余应力检测的电学检测有电阻式应变检测法和振弦式应变检测法。

(1)电阻式应变检测法工作原理:金属丝的电阻应变效应即金属丝电阻随机械变形而改变的物理现象,其在不同方向的外力作用下,所产生的变形量不同。

优点:结构简单、成本低、技术成熟、检测精度高、适用于动态应力监测;缺点:应变片需要粘贴,不能长期使用,检测静态应变和残余应力时需要与钻孔法或压痕法配合,属于有损检测方法。

实际应用:电阻式应变检测的应用范围很广,如管道铺设过程应力监测、起重机应力监测,铁轨参与应力检测,海上采油平台桩管动应力监测等。

(2)振弦式应变检测法工作原理:在结构受力之前,在所测结构上粘贴或用其他方式固定钢弦式表面应变计。

在结构受力后,表面应变计内置钢弦的频率会发生变化,通过测量频率的变化,并由标定的应变-频率回归曲线,计算出所测结构物在作用力下的应变。

优点:高精度,高灵敏度、防水性能好、耐腐蚀、长期稳定性好、适合于动态应力监测。

缺点:钢弦式表面应变计的安装不太方便,且只能检测应力的变化量。

应用:可广泛应用于地铁基坑围护结构钢支撑的应力监测、连续钢构桥不对称悬臂施工应力监测、船舶应力监测等。

2 磁学检测方法常用于钢结构残余应力检测的磁学检测方法有磁应变法、磁声发射法和金属磁记忆法。

(1)磁应变法工作原理:利用铁磁性物体的逆磁致伸缩效应,在无应力作用时,可认为是磁的各向同性体,当发生弹性变形时,则产生磁各向异性,即各个方向的磁导率的变化来反映应力的变化。

优点:方便、简单、快速、准确缺点:只能用于检测铁磁性材料应用:油井套管应力检测、钢结构桥梁的焊接残余应力检测等(2)金属磁记忆检测工作原理:钢结构由于疲劳和蠕变而产生的微裂纹会在缺陷处出现应力集中,由于铁磁性材料存在磁机械效应,故其表面上的磁场分布与部件应力载荷有一定的对应关系,可通过检测部件表面的磁场分布状况间接的对构件的缺陷和应力集中部位进行诊断。

残余应力检测

残余应力检测

残余应力检测方法主要包括盲孔法、磁测法和X射线法
盲孔法残余应力检测
盲孔法残余应力检测法就是在工件的被测部位贴上应变花(计),通过在应变花(计)中心打一个Φ2mm左右的小盲孔引起残余应力的释放,同时,由残余应力测试仪将这种释放量测出并通过计算得出该部位的残余应力大小和方向。

盲孔法残余应力检测的步骤如下:1、在工件上选定残余应力测量点,一般是选择工件上残余应力值最大的点或工件在使用过程中承力最大的点;2、将被测点表面打磨到粗糙度Ra0.8左右;3、用炳酮或酒精将打磨面清洗干净;4、用快凝胶将应变花(计)粘贴在被测点;5、快凝胶凝固后,将应变计上的应变片的引线与残余应力检测仪的测量线通过接线端子连接起来;6、将残余应力检测仪修正调零;7、用专用装置在应变花(计)中心打一个Φ2mm、深约2.5mm的盲孔;8、打完孔15分钟后,用检测仪测量打孔后释放的应变量,同时自动计算出残余应力值的大小和应力方向。

磁测法残余应力检测
磁测法残余应力检测法主要是通过磁测法来测定铁磁材料在内应力的作用下磁导率发生的变化确定残余应力的大小和方向。

众所周知,铁磁材料具有磁畴结构,其磁化方向为易磁化轴向方向,同时具有磁致伸缩性效应,且磁致伸缩系数是各向异性的,在磁场作用下,应力产生磁各向异性。

磁导率作为张量与应力张量相似。

本仪器通过精密传感器和高精度的测量电路,将磁导率变化转变为电信号,输出电流(或电压)值来反映应力值的变化,并通过装有特定残余应力计算机软件的计算机计算,得出残余应力的大小、方向和应力的变化趋势。

x射线衍射测量残余应力实验指导书

x射线衍射测量残余应力实验指导书

X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。

2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。

二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。

三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。

从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。

材料中内应力分为三大类。

第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。

由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。

第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。

第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。

第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。

在通常情况下, 我们测得是残余应力是指第一类残余应力。

当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。

当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。

材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。

原理见图1。

由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。

当然更适用于薄膜材料的残余应力测量。

图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。

残余应力测定方法(精)

残余应力测定方法(精)

第二章残余应力测定方法残余应力的测定方法大致可分为机械测量法和物理测量法两类。

物理测量法包括X射线法、磁性法、和超声波法等。

它们分别利用晶体的X射线衍射现象.材料在应力作用下的磁性变化和超声效应来求得残余应力的量值。

它们是无损的测量方法。

其中X射线法使用较多,比较成熟,被认为是物理测量法中较为精确的一种测量方法。

磁弹性法和超声波法均是新方法,尚不成熟,但普遍地认为是有发展前途的两种测试方法。

物理法的测试设备复杂.昂贵.精度不高。

特别是应用于现场实测时,都有一定的局限性和困难。

机械方法包括切割法、套环法和钻孔法(下面主要介绍)等,它是把被测点的应力给予释放,并采用电阻应变计测量技术测出释放应变而计算出原有残余应力。

残余应力的释放方法是通过机械切割分离或钻一盲孔等方法,因此它是一种破坏性或半破坏性的测量方法,但它具有简单、准确等特点。

从两类方法的测试功能来说,机械方法以测试宏观残余应力为目的,而物理方法则测试宏观应力与微观应力的综合值。

因此两种方法测试的结果一般来说是有区别的。

一、分离法测量残余应力切割法和套环法都是将被测点与其邻近部分分开以释放残余应力,因此统称分离法。

它是测量残余应力的一种最简单的方法,多用于测量表面残余应力或沿厚度方向应力变化较小的构件上的残余应力。

(一)、切割法:在欲测部位划线:划出20mm×20mm的方格将测点围在正中。

在方格内一定方向上贴应变计和应变花,再将应变计与应变仪相连,通电调平。

然后用铣床或手锯慢速切割方格线,使被测点与周围部分分离开。

切割后,再测应变计得到的释放应变。

它与构件原有应变量值相同、符号相反,因此计算应力时,应将所得值乘以负号。

释放后的残余应力计算方法如下:1、如果已知构件的残余应力为单向应力状态,只要在主应力方向贴一个应变片(如图3.1)即可。

分割后得释放应变ε,由虎克定律可知其残余应力为:σ=-Eε(1)2、如果构件上残余应力方向已知,则在测点处沿主应力方向粘贴两个应变片1和2(如图3.2所示)。

钻孔法测量残余应力

钻孔法测量残余应力

钻孔法测量残余应力测量原理钻孔法测量残余应力是基于材料力学中的应力释放原理。

当在材料表面钻孔时,孔周围的材料会发生弹性变形,这种变形会受到材料内部的残余应力的影响。

通过测量钻孔后的表面位移,可以确定孔周围的残余应力状态。

实验步骤钻孔法测量残余应力的实验步骤如下:1、选择合适的材料试件,进行表面处理,确保表面平整无杂质。

2、使用高精度的钻机在材料试件的表面钻孔,钻孔直径一般在0.5-1.0mm之间,孔深约为10-20mm。

3、在钻孔前、钻孔后和取下钻屑后分别使用光学显微镜观察孔周围的表面形貌,并记录下来。

4、根据观察到的表面形貌变化,计算出钻孔前后的位移量。

5、根据位移量和材料的弹性常数,计算出孔周围的残余应力。

精度分析钻孔法测量残余应力的精度主要受到以下因素的影响:1、钻孔直径和深度的精度:钻孔直径和深度的变化会影响位移量的测量精度,进而影响残余应力的计算精度。

2、表面处理质量:表面处理不干净会导致钻头受损,从而影响钻孔质量。

3、观察和测量误差:观察和测量表面形貌变化的过程中可能存在误差,导致位移量的计算不准确。

4、材料本身的力学性能:材料的弹性常数等力学性能参数的准确性也会影响残余应力的计算精度。

为了提高精度,需要采取以下措施:1、使用高精度的钻机和测量设备,确保钻孔直径和深度的准确性。

2、加强表面处理,确保表面干净无杂质。

3、使用高精度的光学显微镜进行观察和测量,减少人为误差。

4、对材料试件进行详细的质量和性能检测,确保其符合实验要求。

数据处理根据实验步骤中记录的位移量和材料的弹性常数,可以计算出孔周围的残余应力。

一般而言,钻孔法测量残余应力的数据处理可以采用以下步骤:1、计算钻孔前后的位移量差值,得到孔周围的位移变化量。

2、根据位移变化量和材料的弹性常数,利用应力释放原理计算孔周围的残余应力。

3、将计算得到的残余应力与实验前的预测值进行比较,评估测量结果的准确性。

4、如果测量结果不满足要求,可能需要重新进行实验,并检查实验步骤和数据处理方法是否正确。

残余应力测试方法

残余应力测试方法

残余应力测试方法残余应力是指材料或结构在受力作用后,未完全消除的应力。

残余应力的存在可能会对材料的性能和结构的稳定性产生影响,因此对残余应力进行测试和评估是非常重要的。

一、残余应力的形成原因1. 加工过程中的应力:在材料加工过程中,由于变形、切削或焊接等操作,会引入应力,这些应力可能会在材料中残留下来。

2. 热应力:材料在加热和冷却过程中,由于热胀冷缩不均匀,会产生热应力,这些应力也可能会残留下来。

3. 外部载荷:材料受到外部力的作用,如压力、拉力或弯曲力等,会导致材料产生应力,这些应力也可能会残留下来。

二、残余应力的测试方法1. X射线衍射法:通过测量材料中晶格的畸变程度来间接推测残余应力的大小和方向。

2. 中子衍射法:利用中子的衍射特性来分析材料中晶体的结构和应力状态。

3. 应变测量法:通过测量材料中的应变来推断残余应力的大小和分布。

4. 晶格畸变法:通过分析材料中晶格的畸变情况来评估残余应力。

5. 超声波法:利用超声波在材料中传播的速度和衰减情况来测量材料中的应力。

6. 磁性法:利用材料磁性的变化来分析残余应力的分布和大小。

7. 光学法:通过光学显微镜或偏光显微镜观察材料中的应力畸变情况。

8. 拉伸法:将材料进行拉伸测试,通过测量材料的应变和应力来计算残余应力。

三、残余应力测试的应用领域1. 金属材料:在金属材料的制备和加工过程中,残余应力会对材料的强度、韧性和疲劳寿命等性能产生影响,因此对金属材料中的残余应力进行测试是非常重要的。

2. 焊接结构:焊接过程中产生的残余应力可能会导致焊接接头的变形或裂纹,因此对焊接结构中的残余应力进行测试可以评估焊接接头的质量和可靠性。

3. 玻璃材料:玻璃材料在制备和加工过程中可能会产生残余应力,这些应力可能会导致玻璃材料的破裂或变形,因此对玻璃材料中的残余应力进行测试可以评估其稳定性和可靠性。

4. 复合材料:在复合材料的制备和加工过程中,残余应力可能会导致复合材料的层间剥离或破坏,因此对复合材料中的残余应力进行测试可以评估其性能和可靠性。

裂纹柔度法 测残余应力

裂纹柔度法 测残余应力

裂纹柔度法测残余应力
裂纹柔度法是一种测量材料中的残余应力的方法。

它基于材料在应力作用下发生线性弹性变形的原理。

在实验中,通过在材料上加工一个裂纹,并施加一定的载荷来引起该裂纹的微小开口,然后测量该开口随载荷的变化。

根据弹性力学理论,载荷与裂纹的开口之间存在一定的线性关系。

通过对该关系进行分析,可以计算出材料中的残余应力。

具体的测量步骤如下:
1. 准备样品:选择一块符合要求的材料样品,并在其上加工一个裂纹。

裂纹的形状和尺寸需要根据具体的应用要求进行确定。

2. 施加载荷:使用适当的夹具将样品放置在测试机上,并施加一定大小的载荷。

载荷的大小应该使得裂纹的开口能够被测量,但要避免超过材料的弹性限度引起塑性变形。

3. 测量裂纹开口:使用光学测量仪器(如显微镜或光栅测量仪)来测量裂纹开口的大小。

通常会采用多次测量,以获得准确的开口数据。

4. 计算残余应力:根据裂纹开口与载荷之间的线性关系,使用弹性力学理论中的裂纹柔度公式计算出材料中的残余应力。

需要注意的是,在计算过程中要考虑材料的几何形状和弹性特性。

裂纹柔度法可以应用于不同类型的材料,包括金属、复合材料、陶瓷等。

它的优点是可以非破坏性地测量材料的残余应力,并且对样品的表面形貌没有特殊要求。

然而,该方法也有一定的局限性,例如对材料的线性弹性行为有一定的要求,不适用于有明显非线性行为的材料。

此外,由于裂纹开口的测量需要高精度的仪器,因此具备一定的技术难度。

盲孔法测残余应力

盲孔法测残余应力

盲孔法测量残余应力
一、盲孔法测残余应力的原理:
盲孔法测残余应力是基于弹性力学理论随着应变电测技术发展起来的一种内应力的测试方法。

其原理就是在被测工件的表面贴上应变花,通过在应变花的中心对工件打孔,使得工件的内应力的平衡状态打破产生一定量的应变(该过程称为应力释放,当所打小孔深度达到小孔孔径的1.2倍时应力基本完全释放)。

应变引起小孔周围的金属塑性流动来带动应变花中的电阻丝的形状发生改变,从而改变电阻丝电阻的大小使得分在电阻丝上的电压发生改变。

应力应变测试仪将接受到的电信号根据弹性力学原理计算出工件产生的应变及残余应力。

二、盲孔法测残余应力的特点:
1、优点:
a)灵敏度高,测量速度快;
b)应变片形状小质量轻,不改变测试对象的原有应力状态;
c)设备方便易带,适用于生产现场工件残余应力的测试。

2、缺点:
a)盲孔法测量中的应力释放属于部分释放,所以盲孔法测量残余应力的精度不
是很高,不太适合低水平残余应力测试;
b)盲孔法测量的仅仅是表面残余应力,无法测量材料内部的残余应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为什么会有残余应力
金属材料在产生应力的条件消失后,为什么有部分的应力会残留在物体内?为什么这些应力不会随外作用力一起消失?
金属材料在外力作用下发生塑性变形后会有残余应力出现!而只发生弹性变形时却不会产生残余应力.
原因:金属在外力作用下的变形是不均匀的,有的部位变形量大,而有的部位小,它们相互之间又是互相牵连在一起的整体,这样在变形量不同的各部位之间就出现了一定的弹性应力-----当外力去除后这部分力仍然存在,就是所谓的残余应力.根据它们存在的范围可分为:宏观应力\微观应力和晶格畸变应力.注意它们是在一定范围存在的弹性应力. 残余应力不只是金属有,非金属也存在,比如混凝土构件。

残余应力的根源在于卸载后受力物体变形的不完全可逆性。

金属残留在物体内的应力是由分子间力的取向不同导致的。

外力撤销后,外力所造成的残余变形导致了残余应力。

通常用热处理、时效处理来消除残余应力。

因为材料受外力作用后,金属的组织产生晶格变形,并不会随外力消失而恢复。

所以会产生残余应力。

组织产生晶格变形了,自身储存了一些能量但级别又克服不了别的晶格的能量。

所以就回有残余应力。

我们真正关心的是零件加工后的质量。

由于毛坯制造过程中会造成较大的残余应力,而这些零件毛坯中处于“平衡”状态的残余应力在加工之前不引起毛坯明显变形。

当零件加工之后,原来毛坯中残余应力的“平衡状态”被打破,应力释放出来,会造成零件很快变形而失去应有的加工精度。

减小毛坯中因制造而残留在毛坯内部残余应力对零件加工质量的影响,通常要进行消除应力的热处理,对要求精度高的零件要在粗加工后进行人工时效处理,加快残余应力的重新分布面引起的变形过程,然后再精加工。

不仅对细长轴,而且包括所有要经过冷校直的零件(如型钢、导轨),应当注意残余应力对零件加工精度的影响。

影响高精度零件质量的残余应力主要是在加工过程中产生的。

在切削过程中的残余应力由机械应力和热应力两种外因引起。

机械应力塑性变形是切削力使零件表层金属产生塑性变形,切削完成后又受到里层未变形金属牵制而残留拉应力(里层金属产生残余压应力)。

第三变形区内后刀面与已加工表面的挤压与摩擦又使表面金属产生残余压应力(里层金属产生残余拉应力)。

如果第一变形区内应力造成的残余应
力大于第三变形区内产生的残余应力,则机械应力所造成的残余应力表现为残余拉应力。

反之,由于机械应力引起的残余应力为残余压应力。

在机械应力引起零件的残余应力的同时,切削热也引起残余应力。

切削中表面层金属受热膨胀产生的塑性变形受里层低温金属阻碍而产生应力,在切削后的冷却过程中,表层金属体积收缩受里层金属阻碍而产生残余拉应力。

当切削温度高于材料相变温度产生相变时,热变形引起的残余应力会更大。

综合切削过程中的机械应力与热应力的作用结果,决定了已加工表面残余应力的大小。

磨削加工中磨削热造成零件相变而体积膨胀、冷却液作用及磨粒挤压金属都能够引起零件表层的残余应力。

磨削残余应力不仅引起零件变形,严重的磨削残余应力还可能导致零件的磨削裂纹。

减小残余应力及其所引起变形的措施,原则上是在加工中增加去应力工序。

使精加工之前消除零件的残余应力,尤其一些仪器用的精加工零件,去应力人工时效往往是必不可少的工序。

塑性变形中外力所作的功除大部分转化成热之外,还有一小部分以畸变能的形式储存在形变材料内部。

这部分能量叫做储存能。

储存能的具体表现方式为:宏观残余应力、微观残余应力及点阵畸变。

按照残余应力平衡范围的不同,通常可将其分为三种:
(1)第一类内应力,又称宏观残余应力,它是由工件不同部分的宏观变形不均匀性引起的,故其应力平衡范围包括整个工件。

例如,将金属棒施以弯曲载荷,则上边受拉而伸长,下边受到压缩;变形超过弹性极限产生了塑性变形时,则外力去除后被伸长的一边就存在压应力,短边为张应力。

这类残余应力所对应的畸变能不大,仅占总储存能的0.1%左右。

(2)第二类内应力,又称微观残余应力,它是由晶粒或亚晶粒之间的变形不均匀性产生的。

其作用范围与晶粒尺寸相当,即在晶粒或亚晶粒之间保持平衡。

这种内应力有时可达到很大的数值,甚至可能造成显微裂纹并导致工件破坏。

(3)第三类内应力,又称点阵畸变。

其作用范围是几十至几百纳米,它是由于工件在塑性变形中形成的大量点阵缺陷(如空位、间隙原子、位错等)引起的。

变形金属中储存能的绝大部分(80%~90%)用于形成点阵畸变。

这部分能量提高了变形晶体的能量,使之处于热力学不稳定状态,故它有一种使变形金属重新恢复到自由焓最低的稳定结构状态的自发趋势,并导致塑性变形金属在加热时的回复及再结晶过程。

残余应力的测量方法
由于工件经过振动时效处理以后其残余应力降低,所以测定工件振动时效前后残余应力的变化量也是判断振动时效效果的方法之一。

1. 盲孔法:
它的原理是在平衡状态下的原始应力场上钻孔,以去除一部分具有应力的金属,而使圆孔附近部分金属内的应力得到松弛,钻孔破坏了原来的应力平衡状态而使应力重新分布,并呈现新的应力平衡,从而使圆孔附近的金属发生位移或应变,通过高灵敏度的应变仪,测量钻孔后的应变量,就可以计算原应力场的应力值。

测量仪器;应变仪;盲孔钻;应变花。

X射线应力测定方法是利用X射线衍射测定试样中晶格应变求出工件表面应力的方法。

但是由于χ光应力测定仪的测量精度较差.比较适合用于测定具有较大残余应力的工件,如普通纲件、焊接件、淬火件等。

З.磁性法:
磁性法测量残余应力是利用铁磁材料的压磁效应即在应力作用下.铁磁材料的各方向上的导磁率发生不同的变化,从而产生磁各向异性.通过对导磁率变化的测定来确定残余应力的方法。

此法目前尚处于试验或试用阶段,我所正在进行探讨采用此方法的可能性。

有关的数据处理方法在科学试验中,有着大量的测测试数据,但是有时这些数据并不能使我们一目了然,而通过对这些数据进行科学的整理和分析,就可以帮助我们总结出许多现象和问提。

目前,这一问提已经引起越来越多的科技工作者的注意和重视,我们试验中每批试件尺寸精度保持性的数据都是几百个,甚至上千多个,因此初步尝试用一些简单的数理统计方法分析.整理了大批试验数据,取得
了一定的成效。

4.测量误差分析:
对大量的数据运用数理统计方法进行分析 .整理时,经常要用到算术平均值(X )
及离差(s )
其表达式为:
2.X射线法:
一般用表示测量值的平均水平。

用8来衡量测量值的波动情况,S越大,表名测量值的波动越大,S小,则说明测量比较集中。

在计算.分析振动时效工件导轨精度变化量时,根据测量时重复读数的偏差大小,可以算出测量的离差值S,当变形量小于S时,就应该认为没有变形或变形不显著。

相关文档
最新文档