基本原理用X射线衍射法测定残余应力
射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力得原理与方法-STRESSX射线衍射方法测量残余应力得原理与方法什么就是残余应力?外力撤除后在材料内部残留得应力就就是残余应力。
但就是,习惯上将残余应力分为微观应力与宏观应力。
两种应力在X射线衍射谱中得表现就是不相同得。
微观应力就是指晶粒内部残留得应力,它得存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起得衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰得宽化,并采用近似函数法或傅立叶变换方法来求得微观应力得大小。
宏观应力就是指存在于多个晶体尺度范围内得应力,相对于微观应力存在得范围而视为宏观上存在得应力。
一般情况下,残余应力得术语就就是指在宏观上存在得这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上得表现就是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间得距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰得位移情况,可以求得残余应力。
X射线衍射法测量残余应力得发展X射线衍射法就是一种无损性得测试方法,因此,对于测试脆性与不透明材料得残余应力就是最常用得方法。
20世纪初,人们就已经开始利用X射线来测定晶体得应力。
后来日本成功设计出得X射线应力测定仪,对于残余应力测试技术得发展作了巨大贡献。
1961年德国得E、Mchearauch提出了X射线应力测定得sin2ψ法,使应力测定得实际应用向前推进了一大步。
X射线衍射法测量残余应力得基本原理X射线衍射测量残余内应力得基本原理就是以测量衍射线位移作为原始数据,所测得得结果实际上就是残余应变,而残余应力就是通过虎克定律由残余应变计算得到得。
其基本原理就是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生得衍射峰也将随之移动,而且移动距离得大小与应力大小相关。
用波长λ得X射线,先后数次以不同得入射角照射到试样上,测出相应得衍射角2θ,求出2θ对sin2ψ得斜率M,便可算出应力σψ。
X射线衍射残余应力

平均应力。如果借助于适当的手段(如电解抛光)对试样进行剥层,并逐层测试应力,便可测 得应力沿层深方向的分布。③测试点(即 X 射线照射面积)可以很小,这样便于测定应力在
表面各处的分布。 X 射线照射面积一般可以在 5 mmX10 mm 到 2 mmX2 mm 之间选择,
即使照射面的直径小到 1 mm 仍可达到足够的测量精度。④对于复相材料(例如铁素体或
晶面法线与表面法线成任意的¢。首先,如图 1 (a) 所示,以试样表面某点 (0 点)法线为轴,
马氏体与奥氏体双相钢) ,在某些情况下可以分别测定各相的应力。
1
基本原理
当一束具有一定波长 A 的 X 射线照射到多晶体上时,会在一定角度 28 上出现衍射峰,
也就是 X 射线的波长 A 、衍射晶面间距 d 和衍射角 28 之间所遵从的布拉格定律:
2dsin 8
=叫
n
1 , 2 ,… ( 1 )
布拉格定律把宏观上可以测量的衍射角 28 与微观的晶面间距 d 建立起确定的关系。当材
料中有应力 σ 存在时,其晶面间距 d 必然随晶面与应力相对取向的不同而有所变化,衍射角
28 也会相应改变。因此,可以通过测量衍射角 28 随晶面取向不同而发生的变化来求得应
力 σ。
对于晶粒不粗大、无织构的多晶金属材料,在 X 射线照射范围内:必有许多晶粒,其指
定的(尬。晶面平行于试样表面,晶面法线与表面法线夹角¢为 0; 也必有许多晶粒,其 (hkl)
Cln Chinese)
SUN Guangai CHEN Bo HUANG Chaoqiang LI Jian
Clnstitute of Nuclear and Chemistry , CAEP , Mianyang , 621900)
x射线衍射测量残余应力实验指导书

X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。
2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。
二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。
三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。
材料中内应力分为三大类。
第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。
由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。
第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。
第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。
第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。
在通常情况下, 我们测得是残余应力是指第一类残余应力。
当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。
材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。
原理见图1。
由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。
当然更适用于薄膜材料的残余应力测量。
图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。
残余应力测量方法

残余应力是指材料内部或表面存在的不平衡力,它可以对材料的性能和可靠性产生重要影响。
以下是几种常见的残余应力测量方法:
1.X射线衍射法(X-ray Diffraction, XRD):这是一种常用的非破坏性测量方法,通过测量
材料中晶体结构的畸变来间接计算残余应力。
X射线经过材料后会发生衍射,根据衍射角度的变化可以推断出残余应力的大小和方向。
2.中子衍射法(Neutron Diffraction):类似于X射线衍射法,中子衍射法也是通过测量材
料晶体结构的畸变来确定残余应力。
相比X射线,中子具有更好的穿透能力,因此可以深入材料内部进行测量,适用于非金属材料的残余应力分析。
3.压电法(Piezoelectric Method):利用材料的压电效应来测量残余应力。
该方法通过将
压电传感器固定在被测物体上,然后施加外力引起压电传感器的形变,根据形变量的变化推断出残余应力的大小。
4.高斯法(Hole Drilling Method):这是一种常用的局部测量方法,适用于金属材料。
该
方法通过在被测物体上钻一个小孔,然后测量孔周围的表面应变的变化来计算残余应力。
5.激光干涉法(Laser Interferometry):利用激光的干涉原理来测量表面的微小位移,从
而推断出残余应力的分布情况。
激光干涉法可以提供高精度的残余应力测量结果。
需要注意的是,不同的测量方法适用于不同类型的材料和应力状态,选择合适的方法取决于具体的应用需求和材料特性。
在进行残余应力测量时,应根据实际情况综合考虑各种因素,并采取适当的措施以确保测量结果的准确性和可靠性。
x射线衍射测定表面残余应力的基本原理

x射线衍射测定表面残余应力的基本原理
X射线衍射是一种常用的非破坏性分析方法,可用于测定材料内部的残余应力。
其基本原理是利用X射线在晶体中发生衍射现象来获取有关晶体结构的信息。
当入射X射线照射到晶体表面时,其中的晶粒会发生散射。
这个散射过程中,
X射线会与晶体中的原子相互作用,导致X射线改变方向。
这种改变方向的现象
称为衍射,衍射的角度和晶体的结构以及晶格参数密切相关。
X射线衍射测定表面残余应力的原理是利用晶体中晶面的平面间距与入射X射线的衍射角度之间的关系。
当晶体受到残余应力的影响时,晶面的平面间距会发生改变。
这种改变会导致入射X射线的衍射角度产生相应的偏移。
通过测量衍射角
度的改变,可以反推出材料中的残余应力大小和分布情况。
为了获得准确的残余应力测量结果,需要选择合适的晶体材料和衍射仪器。
常
用的晶体材料包括钼、铜和钨等。
衍射仪器通常采用X射线源、衍射仪器和探测
器组成,可以实现对入射X射线的发射和检测。
测量过程中,需要准确控制入射
角度和衍射角度,并进行有效的数据分析和处理。
X射线衍射测定表面残余应力的基本原理可应用于材料工程、金属加工、航空
航天等领域,有助于了解材料的力学性能和结构变化。
通过这种非破坏性的分析方法,可以提高材料的质量控制和设计优化,从而提升产品的可靠性和性能。
X射线衍射方法测量残余应力的原理与方法

X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。
x射线衍射法测残余应力
x射线衍射法测残余应力x射线衍射法是一种常用的测量材料中残余应力的方法。
残余应力是指在材料内部存在的无外力作用下的应力状态。
x射线衍射法通过观察材料晶体的衍射图样,可以间接获得材料中的残余应力信息。
在材料制备和加工过程中,常常会产生各种类型的应力,如热应力、机械应力等。
这些应力可能会导致材料的性能下降甚至失效。
因此,了解材料中的残余应力分布情况对于材料的设计和使用具有重要意义。
x射线衍射法测量残余应力的原理是基于布拉格衍射定律。
根据布拉格衍射定律,当x射线入射到晶体上时,会与晶体中的原子产生相互作用,形成衍射峰。
这些衍射峰的位置和强度与晶体中的晶格常数、晶体结构以及晶体内部的应力状态有关。
x射线衍射实验通常使用x射线衍射仪进行。
首先,将待测材料制备成适当的样品,通常为薄片或者粉末。
然后,将样品放置在x射线衍射仪的样品台上,调整x射线的入射角度和入射波长,使得x 射线与样品发生衍射。
通过观察和分析衍射图样,可以得到一些重要的信息。
首先,衍射峰的位置可以计算出晶格常数,从而了解材料的晶体结构。
其次,衍射峰的宽度可以反映出材料中的残余应力大小。
在材料中存在应力时,晶体中的晶面会发生畸变,从而导致衍射峰的展宽。
根据衍射峰的形状和宽度,可以计算出材料中的残余应力大小和分布情况。
x射线衍射法测量残余应力具有许多优点。
首先,它是一种非破坏性的测量方法,可以对样品进行多次测量,而不会对样品的性能和结构造成损害。
其次,x射线衍射法可以测量材料中的残余应力分布情况,而不仅仅是某一个点的应力值。
这对于了解材料的应力状态以及应力的来源具有重要意义。
然而,x射线衍射法也存在一些限制。
首先,它只能测量具有晶体结构的材料,无法对非晶态材料进行测量。
其次,x射线衍射法对于样品的制备要求较高,需要将样品制备成适当的形状和尺寸,并且表面应该光滑且无缺陷。
此外,x射线衍射法对于测量环境的稳定性要求较高,温度和湿度的变化都会对测量结果产生影响。
X射线衍射法残余应力测试
目录1.概述 (2)1.1 X射线残余应力测试技术和测量装置的进展 (2)a.测试技术的进展 (3)b.测量装置的进展 (4)1.2测试标准 (5)2、测定原理及方法: (6)2.1二维残余应力 (6)2.1.1原理 (6)2.1.2方法 (9)2.2三维残余应力 (15)2.2.1沿深度分布的应力测定一剥层法 (16)2.2.2 X射线积分法(RIM) (17)2.2.3 多波长法 (20)3、X射线残余应力测定法的优、缺点 (21)4、一些应用 (22)参考文献: (23)X射线衍射法残余应力测试原理、计算公式、测试方法的优缺点、目前主要应用领域。
1.概述X射线法是利用X射线入射到物质时的衍射现象测定残余应力的方法。
包括X射线照相法、X射线衍射仪法和X射线应力仪法。
1.1 X射线残余应力测试技术和测量装置的进展早在1936年,Glocker等就建立了关于x射线应力测定的理论。
但是当时由于使用照相法,需要用标准物质粉末涂敷在被测试样表面以标定试样至底片的距离,当试样经热处理或加工硬化谱线比较漫散时,标准谱线与待测谱线可能重叠,测量精度很低,因此,这种方法未受到重视,直到二十世纪四十年代末还有人认为淬火钢的应力测定是不可能的。
只有在使用衍射仪后,X射线应力测定才重新引起人们的重视,并在生产中日渐获得广泛应用。
美国SAE在巡回试样测定的基础上,于1960年对X射线应力测定技术进行了全面的讨论。
日本于1961年在材料学会下成立了X射线应力测定分会,并在1973年颁布了X射线应力测定标准方法。
a.测试技术的进展在二十世纪五十年代,X射线应力测定多采用0°~ 45°法(又称两次曝光法),这种方法在dψϕ与sin2ψ有较好的线性关系时误差不大,但当试件由于各种原因,dψϕ与sin2ψ偏离离直线关系时,0°~ 45°法就会产生很大误差。
为了解决这个问题,德国E.Macherauch在1961年提出了X射线应力测定的sin2ψ法,使x射线应力测定的实际应用向前迈进了一大步。
X射线衍射测定残余应力
机电工程学院电子课堂本栏目内容仅供教学参考,未得到作者同意不得用于其它目的第一章 X射线衍射分析§1-6宏观残余应力的测定残余应力的概念:残余应力是指当产生应力的各种因素不复存在时,由于形变,相变,温度或体积变化不均匀而存留在构件内部并自身保持平衡的应力。
按照应力平衡的范围分为三类:第一类内应力,在物体宏观体积范围内存在并平衡的应力,此类应力的释放将使物体的宏观尺寸发生变化。
这种应力又称为宏观应力。
材料加工变形(拔丝,轧制),热加工(铸造,焊接,热处理)等均会产生宏观内应力。
第二类内应力,在一些晶粒的范围内存在并平衡的应力。
第三类内应力,在若干原子范围内存在并平衡的应力。
通常把第二和第三两类内应力合称为“微观应力”。
下图是三类内应力的示意图,分别用sl,sll,slll表示。
构件中的宏观残余应力与其疲劳强度,抗应力腐蚀能力以及尺寸稳定性等有关,并直接影响其使用寿命。
如焊接构件中的残余应力会使其变形,因而应当予以消除。
而承受往复载荷的曲轴等零件在表面存在适当压应力又会提高其疲劳强度。
因此测定残余内应力对控制加工工艺,检查表面强化或消除应力工序的工艺效果有重要的实际意义。
测定宏观应力的方法很多,有电阻应变片法,小孔松弛法,超声波法,和X射线衍射法等等。
除了超声波法以外,其它方法的共同特点都是测定应力作用下产生的应变,再按弹性定律计算应力。
X射线衍射法具有无损,快速,可以测量小区域应力等特点,不足之处在于仅能测量二维应力,测量精度不十分高,在测定构件动态过程中的应力有一些困难。
1-4-1 X射线宏观应力测定的基本原理测量思路:金属材料一般都是多晶体,在单位体积中含有数量极大的,取向任意的晶粒,因此,从空间任意方向都能观察到任一选定的{hkl}晶面。
在无应力存在时,各晶(如下图所示)。
粒的同一{hkl}晶面族的面间距都为d当存在有平行于表面的张引力(如σφ)作用于该多晶体时,各个晶粒的晶面间距将发生程度不同的变化,与表面平行的{hkl)(ψ=0o)晶面间距会因泊松比而缩小,而与应力方向垂直的同一{hkl)(ψ=90o)晶面间距将被拉长。
残余应力检测标准
残余应力检测标准一、检测方法标准残余应力检测方法通常采用X射线衍射法和超声波法。
其中,X 射线衍射法是最常用的一种,其原理是利用X射线衍射图谱对材料内部的残余应力进行测定。
超声波法则是利用超声波在材料中的传播速度和方向变化来测定材料内部的残余应力。
在检测过程中,需要根据实际情况选择合适的检测方法,并遵循相应的操作规范和技术要求。
二、检测仪器标准残余应力检测仪器应符合国家有关标准和行业标准的要求,具备高精度、高稳定性和高可靠性的特点。
仪器的各项技术指标应经过法定计量部门的标定和校准,并取得相应的合格证书。
此外,仪器还应具备安全保护装置和防护设施,以确保检测过程的安全性和可靠性。
三、检测程序标准残余应力检测程序包括以下步骤:1. 试样制备:按照相关规定和标准制备试样,并确保试样的表面平整、光洁度和尺寸精度符合要求。
2. 仪器校准:对检测仪器进行校准,以确保其各项技术指标符合要求。
3. 试样安装:将试样安装在检测设备上,并确保安装位置和方向的正确性。
4. 数据采集:按照规定的操作程序和技术要求进行数据采集,包括X 射线衍射图谱或超声波传播速度和方向等。
5. 数据处理:对采集到的数据进行处理和分析,包括数据转换、拟合和计算等,以得出试样内部的残余应力分布和大小。
6. 报告编制:根据处理后的数据编制检测报告,包括试样残余应力分布图、数据统计表和结论等。
四、检测报告标准残余应力检测报告应包括以下内容:1. 试样信息:包括试样的名称、材质、尺寸和制备方法等。
2. 检测方法:说明所采用的残余应力检测方法及其原理和操作流程。
3. 仪器信息:包括检测仪器的型号、生产厂家和标定证书等。
4. 检测结果:包括试样内部的残余应力分布和大小等数据,以及相应的图表和统计表。
5. 结论评价:对试样的残余应力状况进行评价,指出可能存在的问题和改进建议。
6. 其他相关信息:如检测人员的资格证书、检测时间和地点等。
五、检测人员要求从事残余应力检测的人员应具备相关专业知识和技能,熟悉检测仪器的使用和维护方法,能够正确操作检测设备和处理数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 无损法 即用应力敏感性的方法,如超声、磁性、中子衍射、 X射线衍射等。
3) X射线衍射法 属于无损法,具有快速、准确可靠、测量区 域小等优点,且能区分和测定三种不同的类别的内应力
9
Center of Analysis and Measurement (CAM)
弹性应变 = d /d0
显然,晶面间距随方位的变化率与作用应力之间存在一定的 函数关系
因此,建立待测残余应力 与空间某方位上的应变 之间的
关系,是解决应力测量的问题的关键
物体自由表面的法线方向应力为零,当物体内应力沿垂直于 表面方向的变化梯度极小,而 X射线穿透深度又很小,测量 区域近似满足平面应力状态
3
Center of Analysis and Measurement (CAM)
分析测试中心
第一节 物体内应力的产生与分类
一、内应力的分类
1) 第Ⅰ类内应力(Ⅰ) 指在物体宏观体积内存在并平衡的内
应力。当其被释放后,物体的宏观体积或形状将会变化
2) 第Ⅱ类内应力( Ⅱ) 指在数个晶粒范围内存在并平衡的内
图6-3 第Ⅱ类内应力的产生
8
Center of Analysis and Measurement (CAM)
分析测试中心
第一节 物体内应力的产生与分类
五、内应力的检测
残余应力是一种弹性应力,它与构件的疲劳性能、耐应 力腐蚀能力和尺寸稳定性等密切相关,残余应力检测对于工 艺控制、失效分析等具有重要意义,主要方法有
第一节 物体内应力的产生与分类
四、内应力的产生
1) 宏观应力
图6-2是产生宏观应力的实例,框架和中间梁在焊接前无 应力;梁的两端焊接在 框架上后,中间梁受拉 应力,两侧框架受压应 力,上下梁受弯曲应力
可见,残余应力是材料 内部宏观区域内平衡均 匀分布的应力
图6-2 宏观应力的产生
a) 焊接前 b) 焊接后
分析测试中心
第二节 X射线宏观应力测定的基本原理
一、基本原理
用X射线衍射法测定残余应力,首先测定应变,再借助 材料的弹性特征参量确定应力
对于理想的多晶体,在无应力状态下,不同方位的同族晶面
间距相等;当承受一定宏观应力 时,同族晶面间距随晶面
方位及应力大小发生有 规律的变化,如图6-4所 示,随晶面法线相对于
分析测试中心
第一节 物体内应力的产生与分类
残余应力是一种内应力
内应力指产生应力的各种因素不复存在时,由于形变、体积 变化不均匀而残留在构件内部并自身保持平衡的应力
产生应力的各种因素不复存在指,外加载荷去除、加工完成、 温度已均匀、相变过程中止等
目前公认的内应力分类方法是由德国的E. 马克劳赫于1979 年提出的, 将内应力按其平衡的范围分为三类,即第Ⅰ类 内应力、第Ⅱ类内应力和第Ⅲ类内应力
Center of Analysis and Measurement (CAM)
分析测试中心
第一篇 材料X射线衍射分析
第一章 X射线物理学基础 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定 第七章 多晶体织构的测定
二、内应力的分布
如图6-1所示,第Ⅰ类内应力是存在于各个晶粒的内应力 在很多晶粒范围内的平均值,是较大体积宏观变形不协调的
结果
第Ⅱ类内应力是晶粒尺度范围内 应力的平均值,为各个晶粒或晶 粒区域之间变形不协调的结果
第Ⅲ类内应力是晶粒内局部内应 力相对第Ⅱ类内应力值的波动, 它与晶体缺陷形成的应变场有关
1
Center of Analysis and Measurement (CAM)
第六章 残余应力的测定
分析测试中心
本章主要内容 第一节 物体内应力的产生和分类 第二节 X射线残余应力测定的基本原理 第三节 宏观应力测定方法 第四节 X射线宏观应力测定中的一些问题
2
Center of Analysis and Measurement (CAM)
应力。这种平衡被破坏时也会出现尺寸变化
3) 第Ⅲ类内应力( Ⅲ) 指在若干个原子范围内存在并平衡的
内应力。如各种晶体缺陷(空位、间隙原子、位错等),这种 平衡被破坏时不会产生尺寸的变化
4
Center of Analysis and Measurement (CAM)
分析测试中心
第一节 物体内应力的产生与分类
试样表面法线的夹角
增大,晶面间距d 增大
图6-4 应力与不同方位同族晶面间距的关系
10
Center of Analysis and Measurement (CAM)
分析测试中心
第二节 X射线宏观应力测定的基本原理
一、基本原理
沿方位方位,某晶面间距d 相对于无应力(d0)时的变
化 (d - d0)/d0= d /d0 ,反映了由应力引起的晶面法线方向的
3) 第Ⅲ类内应力又称晶格畸变应力或超微观应力等,名称尚 未同一,其衍射效应使衍射强度降低
4) 第Ⅱ类内应力是十分重要的中间环节,通过它才能将第Ⅰ 类内应力和第Ⅲ类内应力联系起来,构成一个完整的内应力 系统
6
Center of Analysis and Measurement (CAM)
分析测试中心
7
Center of Analysis and Measurement (CAM)
分析测试中心
第一节 物体内应力的产生与分类
四、内应力的产生
2) 微观应力
由图6-3可示意说明了第Ⅱ类内应力的产生。在单向拉伸 载荷作用下,由于A晶粒处于易滑移取向,当载荷超过临界 切应力时将发生塑性变形;而B晶粒仅发生弹性变形。载荷去 除后, B 晶粒变形要恢复,而A晶粒仅部分恢复,使B晶粒受 拉应力,晶粒A 受压应力,而形成晶粒间相互平衡的应力
图6-1 内应力分布示意图 5
Center of Analysis and Measurement (CAM)
分析测试中心
第一节 物体内应力的产生与分类
三、内应力的衍射效应
1) 第Ⅰ类内应力又称宏观应力或残余应力,其衍射效应使衍 射线位移
2) 第Ⅱ类内应力又称微观应力。其衍射效应主要引起衍射线 线形变化