和差问题、和倍问题、差倍问题(实用)
小升初数学典型应用题(和倍问题+差倍问题+和差问题)

小升初数学典型应用题(和倍问题+差倍问题+和差问题)一、和倍问题1.白兔有540只,灰兔的只数是白兔的5倍,灰兔比白兔多多少只?(1)先求灰兔有多少只?(2)再求灰兔比白兔多多少只?2.果园里有21棵桃树。
梨树是桃树的4倍,苹果树是桃树的3倍。
梨树和苹果树各有多少棵?3.仓库共运进货物1260吨,如果从甲仓库调出120吨货物到乙仓库,则两个仓库的货物一样多,求甲乙两仓库原来运进货物各多少吨?4.桌子上有两堆小棒,从第一堆里拿10根放进第二堆,两堆小棒就一样多.哪一堆小棒根数多?多几根?5.植树节那天三四年级同学去植树,四年级5个班植了720棵树,正好是三年级3个班同学植树棵数的的2倍,三四年级同学共植了多少棵树?6.植物园里玫瑰花和菊花一共有392棵,玫瑰花的棵数是菊花的3倍。
两种花各有多少棵?7.养殖场养了320只鸡,鸭的只数比鸡的4倍多78只。
鸭有多少只?8.图书室新买来200本科技书,新买来的故事书是科技书的5倍,两种书共有多少本?9.学校科技小组的人数是体育小组的人数的1.6倍,如果科技小组调12人到体育小组,两个小组的人数正好相等.两个小组各有多少人?10.果店运回苹果和梨子共200千克,苹果的千克数是梨子的1.5倍,运回的梨子和苹果各是多少千克?11.甲、乙两人共有203.5元钱,乙的钱数的小数点向右移动一位,就和甲的钱数一样多,甲、乙各有多少元钱?12.甲书架上有32本书,乙书架上有57本书,甲每天增加4本书,乙每天增加9本书,多少天后乙是甲的两倍?13.一篮苹果比一篮橘子重2.4千克,苹果的质量数是橘子的1.2倍。
一篮苹果和橘子各有多少千克?14.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.求这五个自然数分别为多少?15.平行四边形的周长是56厘米,其中一条边长是10厘米。
和倍问题差倍问题和差问题

和倍问题学法指导已知两个数的和及它们之间的倍数关系,求这两个数各是多少的应用题叫做和倍应用题,简称和倍问题。
首先我们要并清几个问题:两个数相比,以被比的数为标准,这个被比的数称为一倍数,比的数里有几个这样的一倍数,就是几倍数,我们就说一个数是另一个数的几倍。
它们之间的数量关系式是: 一倍数×倍数=几倍数t几倍数÷一倍数=倍数几倍数÷倍数=一倍数在解决和倍问题时,先要确定一个数为标准(通常以较小的数为标准),即一倍数,再根据较大的数与较小的数之间的倍数关系,确定总和相当于一倍数(较小的数)的多少倍,然后求出一倍数(较小的数),再算出其他各数量。
和倍问题的数量关系式是:和÷(倍数+1)=一倍数即较小的数和一较小的数=较大的数,或较小的数×倍数=较大的数甲、乙两车间共有工人664人,甲车间的人数是乙的3倍,甲、乙两车间各有工人多少人?【分析与解答】我们可以用线段图表示题中的已知条件与问题:乙车间:甲车间:从上图看出,甲车间的人数是乙的3倍,那么把乙车间的人数看作1份,甲就有这样的3份,总人数664人占了1+3 =4份,把664人平均分成4份,l份就是乙车间的人数,3份就是甲车间的人数。
664÷(1+3) =166(人)166 x3 =498(人)或664 —166= 498(人)答:甲车间有工人498人,乙车间有166人.试一试1华强和建军共有图书84本,华强的图书本数是建军的3倍。
华强和建军各有图书多少本?果园里有梨树、苹果树、桃树共207棵,其中梨树的棵数是苹果树的3倍,苹果树的棵数是桃树的2倍。
三种果树各多少棵?【分析与解答】我们把桃树的棵数看作1份,苹果树的棵数就是这样的2份,梨树的棵数就是桃树的2 x3 =6倍,三种果树的总棵数就是桃树的6 +2 +1 =9倍。
可以先求出桃树有207÷9=23(棵),苹果树有23×2 =46(棵),梨树就是46 x3 =138(棵)。
奥数问题(和倍、差倍、和差问题)

除法应用姓名:一、和倍问题。
小的数量=和十(倍数+1)大的数量=小的数量X倍数或大的数量=和一小的数量1、小明家养鸡和兔共有36只,鸡的只数是兔的3倍,小明家的鸡和兔各有多少只?2、学校购进篮球和足球共有56个,其中篮球的个数是足球的3倍学校购进的篮球和足球各有多少个?3、一支钢笔和一支铅笔共21元,已知钢笔的单价是铅笔的6倍钢笔和铅笔每支各需要多少元?4、甲、乙两个仓库共有粮食60吨,甲仓库的粮食是乙仓库的4倍。
甲、乙两个仓库各存粮多少吨?5、在一个除法算式中,被除数、除数和商的和是185,若商是5求被除数和除数各是多少?6、有大、小两个数,它们的和是56,它们的商是7。
则它们的积是多少?7、弟弟有课外书20本,哥哥有25本。
哥哥送给弟弟多少本后,弟弟的书正好是哥哥的2倍?8、有两筐苹果,第一筐有16千克,第二筐有24千克,从第一筐中拿多少千克到第二筐中,第二筐的苹果就会是第一筐的3倍?8、小明有36元钱,小亮有24元钱,小明给小亮多少元后,小亮的钱就是小明的3倍?9、一车间有45名工人,二车间有75名工人,一车间调入二车间多少人后,二车间的人数才是一车间的3倍?10、棋盘上有白棋与黑棋两种棋子,白棋67枚,黑棋有53枚。
从白棋中拿多少枚到黑棋,就能使黑棋是白棋的2倍?例:春风小学共有学生760人,男生比女生的3倍多40人,春风小学的男、女生各有多少人?女生多40人、共760人男生由上面线段图可知:女生:(760—40)一(3+1)=720-4男生:180x3+40=580(人)=180(人)或:760—180=580(人)答:春风小学有男生580人,女生180人。
1、两筐梨共重76千克,其中第一筐比第二筐的2倍少14千克,那么这两筐梨各有多少千克?2、小明的叔叔和小明的年龄之和是38岁,叔叔的年龄是小明的3倍多2岁,叔叔和小明各多少岁?3、果园里有苹果树与桃树一共340棵,桃树的棵数是苹果树的3倍多20棵,果园里这两种树各有多少棵?4、商店里有红花和黄花共123朵,当红花卖出7朵后,红花的朵数就正好是黄花的3倍,那么商店里原有红花与黄花各多少朵?5、学校原有足球和排球共58个,王老师又买来5个足球,这时的足球正好是排球的6倍,求学校现有足球和排球各多少个。
(四)和倍差倍和差问题

和倍、差倍、和差问题一、和倍问题1、观点和倍问题——已知两个数的和以及他们之间的倍数关系,求这两个数各是多少的问题。
2、数目关系两数和÷两数的倍数和=一倍数的量(小数)两数和÷(倍数 +1)=大数一倍数的量×倍数 =几倍数二、差倍问题1、观点差倍问题——已知两个数的差以及两数之间的倍数关系,求这两个数各是多少的问题2、数目关系差÷(倍数-1)=1 份数(小的数)小数×倍数 =大数三、和差问题1、观点和差问题——已知一大一小两个数的和与两个数的差,求两个数各是多少的问题。
2、数目关系(1)(和+差)÷ 2=大数和-大数=小数(2)(和-差)÷ 2=小数和-小数=大数(3)船速+水速 =顺流速度(4)船速-水速 =逆水速度(5)(顺流速度+逆水速度)÷ 2=船速(6)(顺流速度-逆水速度)÷ 2=水速习题:1.小宁有圆珠笔芯 30 支,小青有圆珠笔芯 15 支。
问小青把多少支给小宁后,小宁的圆珠笔芯支数是小青的 8 倍?2. 红红有邮票 80 张,佳佳有邮票60 张,要使红红的邮票张数是佳佳的 4 倍,那么佳佳一定给红红多少张邮票?3.果园里有苹果树、梨树、桃树共 840 棵,梨树棵数是桃树棵数的 2 倍,苹果树棵数是桃树的 3 倍。
问,三种果树各有多少棵?4.甲数是乙数的 4 倍,甲乙两数的和是 385。
求甲乙两数?5.数学老师将参加数学比赛的学生疏成红、蓝两个小组,结果发现红组学生的人数恰好是蓝组的 3 倍。
小明发现蓝组学生人数比红组学生人数的 2 倍少 50 人。
那么红组和蓝组学生各多少人?6.图书室新购进一批图书,共三种,此中文艺书 25 本,百科全书 9 本,故事书的本数比文艺书的 2 倍还多 10 本。
问这批书共有多少本?7.甲、乙、丙三个库房两两相距 5 千 M,一共寄存有 120 吨煤。
甲库房的煤比乙库房的多11 吨,乙库房的煤比丙库房的 2 倍少 28 吨。
和倍、差倍、和差问题及答案

和倍、差倍、和差问题及答案数学特长生试题(1)1、两个数的和是682,其中一个加数的个位是X,若把X去掉,则与另一个加数相同,这两个数各是多少?解题思路:设其中一个加数为a,另一个加数为b,根据题意可得:a +b = 682a - X +b = b + b化简可得:a = 2b - X将a代入第一个等式中,得到:3b - X = 682因为X是个位数,所以X只能是2或7,代入方程可得:b = 228,a = 454 或 b = 227,a = 455所以答案为:454和228,或者455和227.2、甲、乙两个车间共生产机床664台,甲车间的产量是乙车间的3倍,两个车间各生产机床多少台?解题思路:设乙车间生产的机床数为x,则甲车间生产的机床数为3x。
根据题意可得:3x + x = 664化简可得:x = 166,所以乙车间生产的机床数为166,甲车间生产的机床数为498.3、某印刷厂第一季度共印书册,二月份印的册数是一月份的2倍,三月份印的册数是一月份的3倍,一、二、三月份各印书多少册?解题思路:设一月份印的书数为x,则二月份印的书数为2x,三月份印的书数为3x。
根据题意可得:x + 2x + 3x =化简可得:x = ,所以一月份印的书数为,二月份印的书数为,三月份印的书数为.4、___一、二月份共生产电机400台,二月份生产的台数比一月份生产的台数的5倍还少68台,两个月各生产多少台?解题思路:设一月份生产的电机数为x,则二月份生产的电机数为5x - 68.根据题意可得:x + 5x - 68 = 400化简可得:x = 94,所以一月份生产的电机数为94,二月份生产的电机数为462.5、甲库存粮108吨,乙库存粮140吨,要使甲库存粮是乙库的3倍,必须从乙库运出多少吨放入甲库?解题思路:设从乙库运出的粮食重量为x,则甲库存粮为3乙库存粮。
根据题意可得:3乙 - 108 = 乙 + x - x化简可得:x = 224,所以从乙库运出224吨放入甲库。
小学数学思维专题------和差、和倍、差倍问题

小学数学思维讲练专题和差、和倍、差倍问题一、和差问题:已知两个数量的和与差,求这两个数量分别是多少的问题数量关系:大数=(和+差)÷2 小数=(和-差)÷2线段分析法:小数差和大数例1、四年级(1)班和(2)班共有学生98人,且(2)比(1)班多6人,(1)和(2)班有学生多少人?例2、老师将140颗糖分给了一班和二班,现在如果从一班拿12颗糖给二班,那么两个班分得的糖一样多,求原来你两班各分得多少颗糖?例3、学校三个运动队共有队员80人,已知田径队人数比足球队和篮球队人数的和还多8人,足球队人数又比篮球队人数多4人。
三个队各有多少人?例4、有甲、乙、丙三包大米,已知甲、乙两包共重32千克,乙、丙共重30千克,甲、丙共重22千克,求三包大米各重多少千克?练一练:1、已知长方形周长32厘米,长比宽多4厘米,求这个长方形的面积。
2、甲乙两车共装水果97筐,从甲车取下14筐到乙车后,甲车还是比乙车多3筐,甲、乙两车原来各装多少筐水果?3、两箱零件共102个。
从甲箱拿出24个放入乙箱后,甲箱还比乙箱多4个。
原来两箱各有多少个零件?4、两个班共有学生92人,如果从一班调2人到二班,则两班人数同样多。
两个班原来各有多少名同学?5、甲、乙两筐水果共重40千克。
从甲筐取6千克放到乙筐后,甲筐里的水果比乙筐还多2千克。
求两筐原有水果多少千克?6、红花、绿花和黄花共有78朵。
红花和绿花的总朵数比黄花多6朵,红花比绿花多6朵。
三种花各有多少朵?二、和倍问题:已知两个数量的和,以及大数是小数的几倍,求这两个数量分别是多少的问题数量关系:总和÷(几倍+1)=较小数总和-较小数=较大数线段分析法:较小数和较大数两个数相比,以被比的数为标准,这个被比的数称为“1倍数”(较小数),比的数里有几个这样的“1倍数”,就是“几倍数”(较大数),我们就说一个数是另一个数的几倍。
解决和倍问题要先确定总和相当于一倍数(较小的数)的多少倍,然后求出一倍数(较小的数),再算出其他各数。
五年级奥数和差、和差倍问题

一、和差问题
例1:张明在期末考试时,语文、数
学两门功课的平均分是95分,数学 比语文多得8分,张明这两门功课 的成绩各是多少分?
(95×2+8)÷2 =198÷2 =99(分)99-8=91(分) 答:语文91分,数学99分。
例2:在一个减法算式里,被减
数、减数和差这三个数的和是 388,减数比差大16,求减数。
388÷2= 194 (194+16)÷2=105——减数 答:减数是105。
例3:用100元购买钢笔和圆珠笔,
各买5支还多余5元;如果买7支钢 笔、3支圆珠笔就缺5元。问:钢笔、 圆珠笔每支价格各是多少元?
(100-5)÷5=19(元)单价和 (100+5 - 19×3)÷(7-3) =12(元) ——钢笔单价 19—12=5(元)——圆珠笔单价 答:钢笔每支12元,圆珠笔每支5元。
(x+12)×3=7x+12 3x+36=7x+12 X=6 白笔:6×7=42 答:彩笔的6盒,白笔有42盒。
例3:有大、中、小三筐菠萝,小 筐装的是中筐的一半,中筐比大 筐少装16千克,大筐装的是小筐 的4倍。小筐装菠萝多少千克?
解:设小筐装菠萝x千克。 4x—2x=16 2x=16 X=8 答:小筐装菠萝8千克。
4 x+x= 45+5+5 5x=55 X=11 11—5=6(岁) 答:今年女儿6岁 。
练习3:今年父亲与儿子的年龄和是 66岁,父亲的年龄比儿子的年龄的3 倍少10岁,那么多少年前父亲的年 龄是儿子的5倍?解:设今年儿子x岁。
x+3x—10= 66 4x=76 X=19 66—19=47(岁的4倍少3岁,甲在3年后的年龄 等于乙9年后的年龄,问乙今年几 岁? 解:设乙今年x岁。
差倍、和倍、和差问题

差倍问题
1、小明到市场去买水果,他买的苹果个数是梨的3倍,苹果比梨多18个。
小明买了苹果和梨各多少个?
2、学校合唱组的女同学人数是男同学的4倍,女同学人数比男同学多42人。
合唱组有女同学和男同学各多少人?
3、一件皮衣价钱是一件羽绒衣价钱的5倍,已知一件皮衣比一件羽绒衣贵960元。
皮衣和羽绒衣各多少元?
4、甲筐苹果是乙筐苹果的3倍,如果从甲筐取出60千克放入乙筐,那么两筐苹果重量就相等,两筐原来各有多少千克?
和差问题
1、期中考试中,小明和小红语文成绩的总和是188分,小明比小红多4分。
两人各考了多少分?
2、两筐水果共重124千克,第一筐比第二筐多8千克,两筐水果各重多少千克?
3、小明和小红身高总和是264厘米,又已知小明比小红矮8厘米。
两人身高分别是多少厘米?
4、三年级两个班的学生共124人,如果从二班调入2人到一班,两班人数就同样多。
三年级两个班原来各有多少个学生?
和倍问题
1、学校有科技书和故事书共480本科技书的本数是故事书的3倍,两种书各多少本?
2、一个养鸡场有675只鸡,其中母鸡是公鸡的4倍,这个养鸡场有公鸡、母鸡各多少只?
3、学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,
二、三年级各得图书多少本?
4、爸爸要把140张邮票分给弟弟和妹妹,已知弟弟分得的邮票张数比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三、四讲:和差问题、和倍问题、差倍问题
教学目标:通过本次课的的学习,正确运用和差问题、和倍问题、差倍问题的有关公式,理清题意,解决实际问题。
教学重点:分清类型,正确运用不同类型的数量关系。
教学难点:理清题意,准确判断题目是“和差问题、和倍问题、差倍问题”中的哪一类,然后正确运用相关的数量关系
需要课时:4课时
教学过程:
一、和差问题:
已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。
基本数量关系是:
(和+差)÷2=大数
(和-差)÷2=小数
解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?
分析:根据公式,我们要找出两个数的和与差,就能解决问题。
由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。
甲的煤多,甲是大数,乙是小数。
故解法如下:
甲:(52+4)÷2=28(吨)
乙:28-4=24(吨)
例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?
分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。
甲:(15+5)÷2=10(只)
乙: 15-10=5(只)
练习:
1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?
2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?
3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。
长和宽各是多少厘米?
二、和倍问题
已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。
解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。
基本数量关系:
小数=和÷(n+1)
大数=小数×倍数或和-小数=大数
例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?
分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
乙:160÷(3+1)=40(本)
甲:160-40=120(本)
例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?
分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。
梨树的棵数:171÷3=57,求桃树的棵数时要减去6棵。
桃树:171-57-6=108 梨树:(165)÷(2+1)=57(棵)
桃树:171-57-6=108(棵)
练习:
1、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书
多少本?
2、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各
种了多少棵?
3、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,
那么必须人乙仓库运出多少吨放入甲仓库?
4、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?
三、差倍问题
已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为
差倍问题。
解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。
基本数量关系:
小数=差÷(n-1)
大数=小数×n 或大数=差+小数
例1:一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。
问桌椅各多少元?
分析:桌子的价格与椅子的价格的差是60,将椅子看成小数占1份,桌子占3份,份数差为3-1,根据数量关系:
椅子的价格:60÷(3-1)=30(元)
桌子的价格:30+60=90(元)
例2:两筐重量相同的苹果,甲筐卖出7千克,乙筐卖出19千克后,甲筐剩余的苹果是乙筐的3倍,原来两筐各有苹果多少千克?
分析:两筐苹果的重量相同,故两筐卖出的数量差即是原来苹果的数量差。
两筐苹果的差为19-7=12(千克),将乙筐看成1份,甲筐为3份,份数差为2. 乙筐现有苹果:(19-7)÷(3-1)=6(千克)
乙筐原来有:6+19=25(千克)
甲筐原来有25千克。
练习:
1、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。
两桶酒原来各多少千克?
2、六、一班有花盆的数量是六、二班的3倍,如果六、一班再购买20个花盆后,两班花盆数相等,两班原有花盆多少个?
作业:
1、甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好相等。
求两桶油原来各有多少千克?
2、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放入乙箱中,则两箱中洗衣粉的袋数相等。
求原来两箱洗衣粉各有多少袋?
3、刘晓每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,
问这个操场的面积是多少平方米?
4、小强今年15岁,小亮今年9岁。
几年前小强的年龄是小亮的3倍?
5、有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第
一根剩下的3倍,两根绳子原来有多长?
6、老猫和小猫去钓雨,老猫钓的鱼是小猫的3倍,如果老猫给小猫3
条后,小猫比老猫还少2条。
两只猫各钓了多少条鱼?。