2020年四川省中考数学模拟试卷(含答案)

合集下载

四川省2020年中考数学仿真模拟试卷1含解析(内附答题卡)

四川省2020年中考数学仿真模拟试卷1含解析(内附答题卡)

绝密★启用前四川省2020年初中学业水平考试模拟试卷数学科注意事项:1.本试题分为两卷:第Ⅰ卷选择题(30分)和第Ⅰ卷非选择题(120分)2.答题前填写好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂4.试卷满分150分第Ⅰ卷(选择题)(请在答题卡选择题对应位置填涂你的答案选项)一、选择题(每小题3分,共30分)1.(3分)月球表面白天的温度可达123℃,夜晚可降到﹣233℃,那么月球表面昼夜的温差为()A.110℃B.﹣110℃C.356℃D.﹣356℃2.(3分)二次根式中x的取值范围是()A.x≥0B.3C.x≥3D.x≤﹣33.(3分)计算3ab2﹣4ab2的结果是()A.﹣ab2B.ab2C.7ab2D.﹣14.(3分)港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为()A.1269×108B.1.269×108C.1.269×1010D.1.269×1011 5.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sin B的值为()A.B.C.D.6.(3分)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(﹣2,1)7.(3分)图中三视图对应的正三棱柱是( )A .B .C .D .8.(3分)为调査某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是( ) 每天使用零花钱(单位:元)510152025人数 258 x6A .15,15B .20,17.5C .20,20D .20,159.(3分)在菱形ABCD 中,对角线AC 、BD 交于点O ,下列说法错误的是( )A .AB ∥DCB .OC =OBC .AC ⊥BDD .OA =OC10.(3分)如图,⊙O 是△ABC 的外接圆,∠B =60°,OP ⊥AC 交于点P ,OP =4,则⊙O 的半径为( )A .8B .12C .8D .12第Ⅱ卷(非选择题)二、填空题(每小题4分,共16分)11.(4分)计算:=.12.(4分)二次函数y=2x2﹣12x+13的最小值是.13.(4分)如图,将矩形ABCD沿BD翻折,点C落在P点处,连结AP.若∠ABP=26°,那么∠APB=.14.(4分)已知点A为双曲线y=图象上的点,点O为坐标原点,过A作AB⊥x轴于点B,连接OA,若△AOB的面积为6,则k=.三、解答题(共54分)15.(6分)(1)计算:(﹣2)﹣2﹣sin45°.(2)解方程组:.16.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=16,BD=12,求菱形ABCD的高DH.17.(8分)如图,某中学计划在主楼的顶部D和大门的上方A之间挂一些彩旗.经测量,得到大门AB的高度大约是3m,大门距主楼的距离是45m,在大门处测得主楼顶部的仰角是30°,而当时测倾器离地面大约是m.求:(1)学校主楼的高度(结果保留根号);(2)大门上方A与主楼顶部D的距离(结果保留根号)18.(8分)现如今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我是50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整);步数频数频率0≤x<4000 a0.164000≤x<8000 150.38000≤x<12000 B0.2412000≤x<16000 10c16000≤x<20000 30.0620000≤x<25000 2d请根据以上信息,解答下列问题:(1)写出a、b、c、d的值并补全频数分布直方图;(2)本市约有58000名教师,用调查的样本数据估计日行步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师的日行走步数恰好都在20000步(包含20000步)以上的频率.19.(10分)如图,在平面直角坐标系中,点O为坐标原点,长方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过线段BC的中点D.(1)求双曲线的解析式;(2)若点P(x,y)在反比例函数的图象上运动(不与点D重合),过P作PQ⊥y轴于点Q,记△CPQ的面积为S,求S关于x的解析式,并写出x的取值范围.20.(10分)如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,连接BC,过上一点E 作EF∥BC交BA的延长线于点F,CE交AB于点G,∠FEG=∠FGE,CD延长线交EF 于点K.(1)求证:EK是⊙O的切线;(2)求证:;(3)若,,求DK的值.一、填空题(每小题4分,共20分)21.(4分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.22.(4分)2019年2月上旬某市空气质量指数(AQI)(单位:pg/m3)如表所示:(空气质量指数不大于100表示空气质量优良)如果小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是.日期12345678910 AQI(μg/m3)28364543365080117614723.(4分)如图,矩形ABCD中,AB=8,BC=4,以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为.(结果保留π)24.(4分)如图,在△ABC中,已知AB=AC=4,BC=6,P是BC边上的一动点(P不与点B、C重合),连接AP,∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB之长为.25.(4分)如图,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示,给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=24cm2;③当14<t<22时,y=100﹣6t;④在运动过程中,使得△ABP是等腰三角形的P点一共3个;⑤当△BPQ与△BEA相似时,t=14.5,其中正确结论的序号是.二、解答题(共30分)26.(10分)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.27.(12分)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P(1)如图1,若四边形ABCD是正方形,求证:∠AC1O=∠BD1O(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.求AC+(kDD1)2的值.28.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣7,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D,顶点坐标为M.(1)求抛物线的表达式和顶点M的坐标;(2)如图1,点E(x,y)为抛物线上一点,点E不与点M重合,当﹣7<x<﹣2时,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴与点H,得到矩形EHDF,求矩形EHDF的周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P、A、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)月球表面白天的温度可达123℃,夜晚可降到﹣233℃,那么月球表面昼夜的温差为()A.110℃B.﹣110℃C.356℃D.﹣356℃【分析】用白天的温度减去降低的温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:123﹣(﹣233),=123+233,=356℃.故选:C.2.(3分)二次根式中x的取值范围是()A.x≥0B.3C.x≥3D.x≤﹣3【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:由题意知x﹣3≥0,解得:x≥3,故选:C.3.(3分)计算3ab2﹣4ab2的结果是()A.﹣ab2B.ab2C.7ab2D.﹣1【分析】利用合并同类项的法则解答.【解答】解:原式=(3﹣4)ab2=﹣ab2故选:A.4.(3分)港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为()A.1269×108B.1.269×108C.1.269×1010D.1.269×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1269亿=126 900 000 000=1.269×1011,故选:D.5.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sin B的值为()A.B.C.D.【分析】利用勾股定理求出AB的长度,然后根据sin B=代入数据进行计算即可得解.【解答】解:∵∠C=Rt∠,AC=4,BC=3,∴AB===5,∴sin B==.故选:D.6.(3分)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(1,﹣2)关于x轴的对称点的坐标是(1,2),故选:A.7.(3分)图中三视图对应的正三棱柱是()A.B.C.D.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A 选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.8.(3分)为调査某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是()510152025每天使用零花钱(单位:元)人数258x6 A.15,15B.20,17.5C.20,20D.20,15【分析】利用众数的定义可以确定众数在第三组,由于随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵童老师随机调查了30名同学,∴x=30﹣2﹣5﹣8﹣6=9,∵20出现了9次,它的次数最多,∴众数为20.∵随机调查了30名同学,∴根据表格数据可以知道中位数=(15+20)÷2=17.5,即中位数为17.5.故选:B.9.(3分)在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()ArrayA.AB∥DC B.OC=OB C.AC⊥BD D.OA=OC【分析】根据菱形的性质即可判断.【解答】解:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC,故A,C,D正确,故选:B.10.(3分)如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC交于点P,OP=4,则⊙O的半径为()A.8B.12C.8D.12【分析】连接OA,OC,由同弧所对的圆心角是圆周角的2倍可得∠AOC=120°,由等腰三角形的性质可得∠OAC=∠OCA=30°,由直角三角形的性质可求AO的长.【解答】解:连接OA,OC∵∠B=60°,∠AOC=2∠B∴∠AOC=120°∵OA=OC∴∠OAC=∠OCA=30°,∵OP⊥AC,且∠OAC=30°∴AO=2OP=2×4=8故选:C.二、填空题(每小题4分,共16分)11.(4分)计算:=2.【分析】根据分式加减法则即可求出答案.【解答】解:原式==2故答案为:212.(4分)二次函数y=2x2﹣12x+13的最小值是﹣5.【分析】把一般式化为顶点式,然后根据二次函数的性质求解.【解答】解:y=2x2﹣12x+13=2(x﹣3)2﹣5,当x=3时,函数值y有最小值,最小值为﹣5,故答案为﹣5.13.(4分)如图,将矩形ABCD沿BD翻折,点C落在P点处,连结AP.若∠ABP=26°,那么∠APB=32°.【分析】根据轴对称的性质和矩形的性质可以得出AB=DP,AP∥BD,进而得出∠APB 的度数.【解答】解:∵△BDC与△BDE关于BD对称,∴△BDC≌△BDP,∴BP=BC,DP=DC,∠DBP=∠DBC.∵四边形ABCD是矩形,∴AB=CD=DP,AD=BC=BP,AD∥BC,∴∠ADB=∠CBD,∴∠PBD=∠ADB,∴BF=DF,∴BP﹣BF=AD﹣DF,∴AF=PF,∴∠F AP=∠FP A,∵∠AFP=∠BFD,∴2∠P AF=2∠ADB,∴∠P AF=∠ADB,∴AP∥BD,∴∠APB=∠PBD,∵∠ABP=26°,∴∠CBD=∠DBP=(90°﹣26°)=32°,则∠APB=32°.故答案为:32°.14.(4分)已知点A为双曲线y=图象上的点,点O为坐标原点,过A作AB⊥x轴于点B,连接OA,若△AOB的面积为6,则k=12或﹣12.【分析】根据反比例函数图象上点的坐标特征可以设点A的坐标为(x,);然后根据三角形的面积公式知S△AOB=|x|•||=6,据此可以求得k的值.【解答】解:∵点A为双曲线y=图象上的点,∴设点A的坐标为(x,);又∵△AOB的面积为6,∴S△AOB=|x|•||=6,即|k|=12,解得,k=12或k=﹣12;故答案是:12或﹣12.三、解答题(共54分)15.(6分)(1)计算:(﹣2)﹣2﹣sin45°.(2)解方程组:.【分析】(1)根据负整数指数幂和特殊角的三角函数值定义,把原式转化为实数的运算,计算求值即可,(2)利用加减消元法解之即可.【解答】解:(1)(﹣2)﹣2﹣sin45°=(﹣8)+9﹣2×=﹣8+9﹣2=﹣1,(2,②×2﹣①得:y=﹣5,把y=﹣5代入②得:x﹣15=8,解得:x=23,∴原方程组的解为:.16.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=16,BD=12,求菱形ABCD的高DH.【分析】首先求出AB,再利用AB•DH=AC•BD,即可解决问题.【解答】解:∵四边形ABCD是菱形,DH⊥AB,∴OA=OC=8,OB=OD=6,AC⊥BD,∴在Rt△AOB中,AB=,∴AB•DH=AC•BD,∴10•DH=×16×12,∴DH=9.6.17.(8分)如图,某中学计划在主楼的顶部D和大门的上方A之间挂一些彩旗.经测量,得到大门AB的高度大约是3m,大门距主楼的距离是45m,在大门处测得主楼顶部的仰角是30°,而当时测倾器离地面大约是m.求:(1)学校主楼的高度(结果保留根号);(2)大门上方A与主楼顶部D的距离(结果保留根号)【分析】(1)根据题意作出合适的辅助线,然后利用特殊角的三角函数即可求得学校主楼的高度;(2)根据(1)中的结果和锐角三角函数、勾股定理可以求得大门上方A与主楼顶部D 的距离.【解答】解:(1)作EF∥BC交DC于点F,∵BC=45m,∴EF=45m,∵∠DEF=30°,∠DFE=90°,∴tan30°=,∴,解得,DE=15,∵EB=m,∴DC=15=16m,即学校主楼的高度是16m;(2)作AG∥BC交DC于点G,∵BC=AG=45m,AB=m,DC=16m,∴GC=AB=3m,∴DG=16﹣3=13m,∵∠AGD=90°,∴AD==2m,即大门上方A与主楼顶部D的距离是2m.18.(8分)现如今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我是50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整);步数频数频率0≤x<4000 a0.164000≤x<8000 150.38000≤x<12000 B0.2412000≤x<16000 10c16000≤x<20000 30.0620000≤x<25000 2d请根据以上信息,解答下列问题:(1)写出a、b、c、d的值并补全频数分布直方图;(2)本市约有58000名教师,用调查的样本数据估计日行步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师的日行走步数恰好都在20000步(包含20000步)以上的频率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数58000可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=50×0.16=8,b=50×0.24=12,c=10÷50=0.2,d=2÷50=0.04,补全直方图如下:(2)估计日行步数超过12000步(包含12000步)的教师有58000×(0.2+0.06+0.04)=17400(人);(3)设步数为16000≤x<20000的3名教师分别为A、B、C,步数为20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.19.(10分)如图,在平面直角坐标系中,点O为坐标原点,长方形OABC的边OA、OC 分别在x轴、y轴上,点B的坐标为(2,3),双曲线y=(x>0)的图象经过线段BC的中点D.(1)求双曲线的解析式;(2)若点P(x,y)在反比例函数的图象上运动(不与点D重合),过P作PQ⊥y轴于点Q,记△CPQ的面积为S,求S关于x的解析式,并写出x的取值范围.【分析】(1)首先根据题意求出C点的坐标,然后根据中点坐标公式求出D点坐标,由反比例函数y=(x>0)的图象经过线段BC的中点D,D点坐标代入解析式求出k 即可;(2)分两步进行解答,①当P在直线BC的上方时,即0<x<1,如图1,根据S△CPQ =CQ•PQ列出S关于x的解析式,②当P在直线BC的下方时,即x>1,如图2,依然根据S△CPQ=PQ•CQ列出S关于x的解析式.【解答】解:(1)∵长方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,3),∴C(0,3),∵D是BC的中点,∴D(1,3),∵反比例函数y=(x>0)的图象经过点D,∴k=4,∴双曲线的解析式为y=;(2)当P在直线BC的上方时,即0<x<1,如图1,∵点P(x,y)在该反比例函数的图象上运动,∴y=,∴S△PCQ=CQ•PQ=x•(﹣3)=﹣x(0<x<1),当P在直线BC的下方时,即x>1,如图2,同理求出S△PCQ=PQ•CQ=x•(3﹣)=x﹣2(x>1),综上S=.20.(10分)如图,CD是⊙O的直径,弦AB⊥CD,垂足为H,连接BC,过上一点E 作EF∥BC交BA的延长线于点F,CE交AB于点G,∠FEG=∠FGE,CD延长线交EF 于点K.(1)求证:EK是⊙O的切线;(2)求证:;(3)若,,求DK的值.【分析】(1)欲证明EK是⊙O的切线,只要证明OE⊥EF即可.(2)想办法证明△BGE∽△BEF,即可解决问题.(3)设OB=r,在Rt△OBH中,利用勾股定理求出r,证明∠K=∠BCH,可得,由此构建方程即可解决问题.【解答】(1)证明:连接OE,∴CO=OE,∠OCE=∠OEC∵∠FEG=∠FGE=∠CGH,∴∠FEG=∠CGH,∵CH⊥AB,∴∠CGH+∠GCH=90°,∴∠OEC+∠FEC=90°,∴OE⊥EF,即EK是⊙O的切线.(2)证明,在△ABE和△GBE中,∵CH⊥AB,∴,∴∠CEB=∠CBA,又∵BC∥EF,∴∠CBA=∠F,∴∠CEB=∠F,∵∠FBE=∠FBE,∴△BGE∽△BEF,∴,(3)连接OB,设OB=r∵BC∥EF,∠F=∠CBH,∴,∵,,∴,,在Rt△HOB中,(r﹣CH)2+HB2=r2,∴,在△OEK中,∵CB∥EK∴∠K=∠BCH,∴,∴,∴,∴DK=OK﹣OD=.一、填空题(每小题4分,共20分)21.(4分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.【分析】由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.22.(4分)2019年2月上旬某市空气质量指数(AQI)(单位:pg/m3)如表所示:(空气质量指数不大于100表示空气质量优良)如果小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是.日期12345678910 AQI(μg/m3)283645433650801176147【分析】根据表格中的数据和题意可以求得3天空气质量都是优良的概率.【解答】解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴小王在该市度假3天空气质量都是优良的概率是;故答案为:.23.(4分)如图,矩形ABCD中,AB=8,BC=4,以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为4π.(结果保留π)【分析】如图,连接OE,利用切线的性质得OD=4,OE⊥AB,易得四边形OEAD为正方形,先利用扇形面积公式,利用S正方形OEAD﹣S扇形EOD计算由弧DE、线段AE、AD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以CD为直径的半圆O与AB相切于点E,∴OD=4,OE⊥BC,易得四边形OEAD为正方形,∴由弧DE、线段AE、AD所围成的面积=,∴阴影部分的面积:,故答案为:4π.24.(4分)如图,在△ABC中,已知AB=AC=4,BC=6,P是BC边上的一动点(P不与点B、C重合),连接AP,∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB之长为2或.【分析】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【解答】解:①当AP=PD时,则△ABP≌△PCD,则PC=AB=4,故PB=2.②当AD=PD时,∴∠P AD=∠APD,∵∠B=∠APD=∠C,∴∠P AD=∠C,∴P A=PC,过A作AG⊥BC于G,∴CG=3,∴AG===,过P作PH⊥AC于H,∴CH=2,设PC=x,∴S△APC=AG•PC=AC•PH,∴x=4×PH,∴PH=x,∵PC2=PH2+CH2,∴x2=(x)2+4,解得:x=(负值舍去),∴PC=,∴PB=;③当AF=AP时,点P与点B重合,不合题意.综上所述,PB的长为2或.故答案是:2或.25.(4分)如图,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示,给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=24cm2;③当14<t<22时,y=100﹣6t;④在运动过程中,使得△ABP是等腰三角形的P点一共3个;⑤当△BPQ与△BEA相似时,t=14.5,其中正确结论的序号是①②⑤.【分析】①由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4,当0<t ≤10时,BP始终等于BQ即可得出结论;②由△BPQ的面积等于40求出DC的长,再由S△ABE=×AB•AE即可得出结论;③当14<t<22时,由y=•BC•PC代入即可得出结论;④△ABP为等腰三角形需要分类讨论:当AB=AP时,ED上存在一个符合题意的P点,当BA=BP时,BE上存在一个符合题意的P点,当P A=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符合题意的P点,即可得出结论;⑤由当=或=时,△BPQ与△BEA相似,分别将数值代入即可得出结论.【解答】解:①由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4,∵它们运动的速度都是1cm/s.点P、Q同时开始运动,∴当0<t≤10时,BP始终等于BQ,∴△BPQ是等腰三角形;故①正确;②∵ED=4,BC=10,∴AE=10﹣4=6t=10时,△BPQ的面积等于BC•DC=×10×DC=40∴AB=DC=8∴S△ABE=×AB•AE=×8×6=24;故②正确;③当14<t<22时,y=•BC•PC=×10×(22﹣t)=110﹣5t故③错误;④△ABP为等腰三角形需要分类讨论:当AB=AP时,ED上存在一个符合题意的P点,当BA=BP时,BE上存在一个符合题意的P点,当P A=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符合题意的P点,∴共有4个点满足题意;故④错误;⑤∵△BEA为直角三角形,∴只有点P在DC边上时,有△BPQ与△BEA相似,由已知,PQ=22﹣t,∴当=或=时,△BPQ与△BEA相似,分别将数值代入=或=解得:t=(不合题意舍去)或t=14.5;故⑤正确;综上所述,正确的结论的序号是①②⑤.故答案为:①②⑤.二、解答题(共30分)26.(10分)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.【分析】(1)理解题目意思:健身馆普通票价为40元/张,没有其他费用了,健身的时间是x小时,那么普通的消费就可以列出来;而银卡售价300元/张,每次凭卡另收10元,健身的时间是x小时,那么银卡票消费也可以用一元一次方程列出来;(2)能够根据图象,用二次一方程组的知识求交点坐标,理解一次函数的特征,看图求坐标;(3)根据一次函数的特征来比较数的大小;当x的值为交点时,它们的费用是相同的;当小于交点的x值时,位于下面的函数图象,其y值最小;当大于交点的x值时,位于下面的函数图象,其y值最小.【解答】解:(1)根据题意可得:银卡消费:y=10x+300 普通消费:y=40x(2)令y=10x+300中的x=0,则y=300故点A的坐标为(0,300),联立解得:故点B的坐标为(10,400)令y=1200代入y=10x+300,则x=90,故点C的坐标为(90,1200)综上所述:点A的坐标为(0,300),点B的坐标为(10,400),点C的坐标为(90,1200)(3)根据函数图象,可知:当0<x<10时,选择购买普通票更合算;当x=10时,选择购买银卡、普通票的总费用相同;当10<x<90时,选择购买银卡更合算.当x=90时,选择购买银卡和金卡更合算.当x>90时,选择购买金卡更合算.27.(12分)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P(1)如图1,若四边形ABCD是正方形,求证:∠AC1O=∠BD1O(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.求AC+(kDD1)2的值.【分析】(1)由正方形性质可得AO=BO=CO=DO,AC⊥BD,由旋转的性质可得OC =OC1=OD=OD1,∠C1OC=∠D1OD,可证△AOC1≌△BOD1,可得结论;(2)由菱形的性质和旋转的性质可得OA=OC1,OB=OD1,∠C1OA=∠D1OB,即可证△AOC1∽△BOD1,可得,∠C1AO=∠D1BO,即可得结论;(3)通过△AOC1∽△BOD1,可求k的值,由勾股定理可求AC+(kDD1)2的值.【解答】证明:(1)∵四边形ABCD是正方形∴AO=BO=CO=DO,AC⊥BD∵将△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC=OC1=OD=OD1,∠C1OC=∠D1OD∴∠BOD1=∠AOC1,且AO=BO,C1O=D1O,∴△AOC1≌△BOD1(SAS)∴∠AC1O=∠BD1O(2)AC1=BD1,AC1⊥BD1,理由如下:∵四边形ABCD是菱形,∴OC=OA=AC=3,OB=OD=BD=4,AC⊥BD,∵将△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC=OC1,OD=OD1,∠C1OC=∠D1OD∴OA=OC1,OB=OD1,∠C1OA=∠D1OB∴,且∠C1OA=∠D1OB∴△AOC1∽△BOD1,∴,∠C1AO=∠D1BO,∴AC1=BD1,∵∠AOB=90°∴∠OAB+∠ABP+∠D1BO=90°∴∠OAB+∠ABP+∠C1AO=90°∴∠APB=90°∴AC1⊥BD1,(3)∵四边形ABCD是平行四边形,∴OC=OA=AC=3,OB=OD=BD=6,∵将△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC=OC1,OD=OD1,∠C1OC=∠D1OD∴OA=OC1,OB=OD1,∠C1OA=∠D1OB∴,且∠C1OA=∠D1OB∴△AOC1∽△BOD1,∴∴k=∵OB=OD1=OD∴△BD1D是直角三角形,∴BD12+D1D2=BD2,∴(2C1A)2+D1D2=144∴AC12+(kD1D)2=3628.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣7,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D,顶点坐标为M.(1)求抛物线的表达式和顶点M的坐标;(2)如图1,点E(x,y)为抛物线上一点,点E不与点M重合,当﹣7<x<﹣2时,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴与点H,得到矩形EHDF,求矩形EHDF的周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P、A、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)因为已知抛物线与x轴两交点,故用交点法即能求抛物线解析式,再用配方法求顶点.(2)用x表示EF、EH的长,用周长公式即能求出矩形EHDF周长与x的函数关系并求最大值.由于不确定点E在F的左侧还是右侧,故EF长度的表示需要分类讨论,每种情况下求得的最大值要考虑是否在对应的自变量取值范围内.(3)三个点均有可能为直角顶点,需要分三种情况讨论.其中以点A或点C为直角顶点时,则直线AP或CP与直线AC垂直,易求直线AC与x轴夹角为45°,解析式的k 值为1,所以直线AP或CP与x轴夹角也为45°,解析式对应的k=﹣1,进而求得直线AP或CP解析式,再求x=﹣3时y的值即求出P;以P为直角顶点时,AC为斜边,取AC中点G和设P点坐标,利用直角三角形斜边上的中线等于斜边一半,列得方程,求解得P的坐标.【解答】解:(1)∵抛物线x轴交于A(﹣7,0),B(1,0)两点∴y=﹣(x+7)(x﹣1)=﹣x2﹣6x+7=﹣(x+3)2+16∴抛物线表达式为:y=﹣x2﹣6x+7,顶点M坐标(﹣3,16).(2)∵点E(x,y)为抛物线上一点,且﹣7<x<﹣2∴EH=y=﹣x2﹣6x+7∵对称轴为直线x=﹣3,EF∥x轴∴F(﹣3,y)∴EF=|﹣3﹣x|①当﹣7<x<﹣3时,E在F左边,EF=﹣3﹣x∴C矩形EHDF=2(EF+EH)=2(﹣3﹣x﹣x2﹣6x+7)=﹣2(x+)2+∴当x=时,最大值C=②当﹣3<x<﹣2时,E在F右边,EF=x+3∴C矩形EHDF=2(EF+EH)=2(x+3﹣x2﹣6x+7)=﹣2(x+)2+∴当x=时,最大值C=综上所述,矩形EHDF周长的最大值是(3)存在满足条件的点P.①若∠P AC=90°,则P A⊥AC∵点A(﹣7,0),C(0,7)∴直线AC解析式为:y=x+7∴直线P A解析式为:y=﹣x﹣7当x=﹣3时,y=3﹣7=﹣4∴P(﹣3,﹣4)②若∠PCA=90°,则PC⊥AC∴直线PC解析式为:y=﹣x+7当x=﹣3时,y=3+7=10∴P(﹣3,10)③若∠APC=90°,取AC中点G,连接PG∴G(),PG=AC=设P(﹣3,m)∴PG2=(﹣3+)2+(m﹣)2=()2解得:m1=,m2=∴P(﹣3,)或(﹣3,=)综上所述,使以点P、A、C为顶点的三角形是直角三角形的点P坐标有(﹣3,﹣4),(﹣3,10),(﹣3,),(﹣3,=)四川省2020年初中学业水平考试模拟试卷数学科一.选择题(共10小题,满分30分,每小题3分)(请用2B铅笔填涂)二.填空题()(请在各试题的答题区内作答)三.解答题。

四川省成都市2020年中考数学模拟卷(四)(含解析)

四川省成都市2020年中考数学模拟卷(四)(含解析)

2020年四川省成都市中考数学模拟卷A 卷(共100分) 第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.(2019·河北中考模拟)﹣2的倒数为( ) A .12B .-12C .﹣2D .2【答案】B 【解析】解:﹣2的倒数是﹣12. 故选:B . 【点睛】本题考查了倒数的定义,熟练掌握倒数的定义是解题的关键. 2.(2019·安徽中考模拟)下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+-【答案】C 【解析】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.3.(2019·广东中考模拟)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A .5.3×103B .5.3×104C .5.3×107D .5.3×108【答案】C 【解析】解:5300万=53000000=75.310⨯. 故选C. 【点睛】在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ). 4.(2019·江西中考模拟)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .【答案】B 【解析】从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B . 考点:简单组合体的三视图.5.(2019·浙江中考模拟)如图,直线a ∥b ,将含有45°的三角板ABC 的直角顶点C 放在直线b 上,若∠1=27°,则∠2的度数是( )A .10°B .15°C .18°D .20°【答案】C 【解析】解:过B 作BE ∥直线a , ∵直线a ∥b ,∴∠2=∠ABE ,∠1=∠CBE =27°,∵∠ABC=45°,∴∠2=∠ABE=45°﹣27°=18°,故选C.【点睛】本题考查了平行线性质的应用,解此题的关键是正确作出辅助线.6.(2019·广西中考模拟)下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.7.(2019·安徽中考模拟)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.10891311y x x yx y+=+⎧⎨+=⎩C.91181013x yx y y x()()=⎧⎨+-+=⎩D.91110813x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.8.(2019·浙江中考模拟)对某校600名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,学生体重在60kg以上的人数为()A.120 B.150 C.180 D.330【答案】B【解析】解:学生体重在60kg以上的人数为600×(0.20+0.05)=150(人),故选:B.【点睛】本题主要考查频数(率)分布直方图,解题的关键是掌握频率=频数÷总数及样本估计总体思想的运用.9.(2019·四川中考模拟)有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°【答案】C【解析】解:由题意得,2π=2 180nπ⨯,解得:n=180.即这条弧所对的圆心角的度数是180°.故选C . 【点睛】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.(2019·四川中考模拟)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>【答案】A 【解析】∵函数的解析式是2(1)y x a =-++,如图,∴对称轴是1x =-,∴点A 关于对称轴的点A ′是1(0)y ,,那么点A ′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小, ∴于是123y y y >>, 故选A.第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上) 11.(2019·江苏中考模拟)函数1x y -=中,自变量x 的取值范围是_____. 【答案】1x ≥且2x ≠ 【解析】 【详解】由题意得x-1≥0且x-2≠0,解得1x ≥且2x ≠, 故答案为1x ≥且2x ≠.12.(2019·山东中考模拟)如图,∠1,∠2,∠3是多边形的三个外角,边CD ,AE 的延长线交于点F ,如果∠1+∠2+∠3=225°,那么∠DFE 的度数是______.【答案】45° 【解析】解:∵多边形的外角和为360°,∴∠1+∠2+∠3+∠DEF+∠EDF=360°,又∵∠1+∠2+∠3=225°, ∴∠DEF+∠EDF=135°,∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.故答案是为45°. 【点睛】本题考查了多边形的外角和和三角形的内角和定理.13.(2019·江苏中考模拟)若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____. 【答案】3 【解析】根据题意得x 1+x 2=2,x 1x 2=﹣1, 所以x 1+x 2﹣x 1x 2=2﹣(﹣1)=3. 故答案为3.14.(2019·北京中考模拟)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,过点D 作DE ⊥AB 于点E ,若CD =2,BD =4,则AE 的长是_____.【答案】【解析】解:∵AD 平分∠BAC 交BC 于点D ,DC ⊥AC ,DE ⊥AB , ∴CD=ED . 又AD=AD ,∴Rt △ADE ≌Rt △ADC (HL ) ∴AE=AC .在Rt △BDE 中,设AE=x ,则AC=x ,,在Rt △ABC 中,利用勾股定理得()2=62+x 2,解得.所以AE 长为故答案为 【点睛】本题主要考查了勾股定理、角平分线的性质、全等三角形的判定和性质,解题的关键是借助勾股定理构造方程求解.三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)(2019·江苏中考模拟)计算:2011)4sin 603-︒⎛⎫+- ⎪⎝⎭【答案】 【解析】解:原式=9+1-42⨯. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.(2)(2019·江苏中考模拟)解方程:22161242x x x x +-=--+ 【答案】5x =- 【解析】()22162x x +-=-23100x x +-=解得15x =-,22x = 经检验:2x =不符合题意. 原方程的解为: 5.x =- 【点睛】考查分式方程的解法,掌握分式方程的解题的步骤是解题的关键.注意检验.16.(2019·山东中考模拟)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 【答案】213(m 3m)+.13-.【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可. 试题解析:原式=()()()()()22m 3m 9m 3m 2113m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++.∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-.17.(2019·湖北中考模拟)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】(1)20;(2)作图见试题解析;(3)12.【解析】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .18.(2019·山东中考模拟)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【答案】(1)55;(2)不符合要求.【解析】解:(1)∵Rt△ABC中,tanA=,∴AB===55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.考点:解直角三角形的应用19.(2019·山东中考模拟)如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.【答案】(1)4yx;(2)5【解析】解:(1)∵CD∥y轴,CD=43,∴点D的坐标为:(m+2,43),∵A,D在反比例函数y=kx(x>0)的图象上,∴4m=43(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=4x;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.∴PA+PB=PF+PB=BF2222AB AF4225+=+=.【点睛】此题考查了待定系数法求反比例函数的解析式以及轴对称的性质.注意准确表示出点D的坐标和利用轴对称正确找到点P的位置是关键.20.(2019·河北中考模拟)已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B 作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=12 DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.【答案】(1)见解析;(2)见解析;(3)215.【解析】()1BDQ为Oe的直径,90BAD∴∠=o,90D ABD∴∠+∠=o,FBQ是Oe的切线,90FBD∴∠=o,90FBA ABD∴∠+∠=o,FBA D∴∠=∠,AB AC=Q,C ABC∴∠=∠,C D∠=∠Q,ABF ABC∴∠=∠;()2如图2,连接OC,90OHC HCA ∠=∠=o Q ,//AC OH ∴, ACO COH ∴∠=∠, OB OC =Q , OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=o Q ,ABD ∴V ∽HOC V , 2AD BDCH OC∴==, 12CH DA ∴=;()3由()2知,ABC V ∽HOC V ,2AB BDOH OC∴==, 6OH =Q ,O e 的半径为10, 212AB OH ∴==,20BD =,16AD ∴==,在ABF V 与ABE V 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩o , ABF ∴V ≌ABE V , BF BE ∴=,AF AE =, 90FBD BAD ∠=∠=o Q ,2AB AF AD ∴=⋅,212916AF ∴==,9AE AF ∴==,7DE ∴=,2215BE AB AE =+=,AD Q ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. 【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.(2019·黄石市河口中学中考模拟)如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34. 【解析】根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=34;故答案为34.22.(2019·河南中考模拟)对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的中位数,用max{a ,b ,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=(1)1(1)a a a ≥-⎧⎨--⎩<,根据以上材料,解决下列问题:若max{3,5﹣3x ,2x ﹣6}=M{1,5,3},则x 的取值范围为_____.【答案】29 32x≤≤【解析】∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴533 263xx-≤⎧⎨-≤⎩,∴29 32x≤≤,故答案为29 32x≤≤.【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,根据题意得到不等式去求解,考查综合应用能力.23.(2019·内蒙古中考模拟)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=2HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.【答案】①②③【解析】由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确,故答案为:①②③.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定与性质的综合运用,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.24.(2019·浙江中考模拟)如图,点A是射线y═54x(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=kx交CD边于点E,则DEEC的值为_____.【答案】5 4【解析】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=54x得:y=54m,则点A的坐标为:(m,54m),线段AB的长度为54m,点D的纵坐标为54m,∵点A在反比例函数y=kx上,∴k=54m2,即反比例函数的解析式为:y=254mx,∵四边形ABCD为正方形,∴四边形的边长为54 m,点C,点D和点E的横坐标为m+54m=94m,把x=94m代入y=254mx得:y=59 m,即点E的纵坐标为59 m,则EC=59m,DE=54m﹣59m=2536m,∴54DE EC故答案为:5 4【点睛】本题考查了反比例函数图象上的点的坐标特征和正方形的性质,正确掌握代入法和正方形的性质是解题的关键.25.(2019·浙江中考模拟)婷婷在发现一个门环的示意图如图所示.图中以正六边形ABCDEF 的对角线AC的中点O为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=,则该圆的半径为_____cm.【答案】36 【解析】 连接OB ,OP ,∵AB =BC ,O 为AC 的中点, ∴OB ⊥AC , ∵AQ 是⊙O 的切线, ∴OP ⊥AQ , 设该圆的半径为r , ∴OB =OP =r , ∵∠ABC =120°, ∴∠BAO =30°,∴AB =BC =CD =2r ,AO 3r , ∴AC =23r ,∴sin∠PAO =OP AO 3r 3== 过Q 作QG ⊥AC 于G ,过D 作DH ⊥QG 于H , 则四边形DHGC 是矩形,∴HG =CD ,DH =CG ,∠HDC =90°, ∴sin∠PAO =Q A 1233G Q ==QDH =120°﹣90°=30°, ∴QG =12,∴AG 22AQ QG 122-=∴QH=12﹣2r,DH=23122r-,∴tan∠QDH=tan30°=1223323122QH rDH r-==-,解得r=36+,∴该圆的半径为36+cm,故答案为36+.【点睛】本题考查了正多边形与圆,切线的性质,等腰三角形的性质,矩形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.(2019·河北中考模拟)红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:时间(天) 1 3 6 10 36 …日销售量(件) 94 90 84 76 24 …未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.27.(2019·山东中考模拟)已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【答案】(1)见解析;(2)EF2=BE2+DF2;理由见解析;(3)2【解析】(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG,∴AF=AG,DF=BG,∠DAF=∠BAG,∵正方形ABCD,∴∠D=∠BAD=∠ABE=90°,AB=AD,∴∠ABG=∠D=90°,即G、B、C在同一直线上,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,即∠EAG=∠EAF,∴△EAG≌△EAF(SAS),∴EG=EF,∵BE+DF=BE+BG=EG,∴EF=BE+DF.(2)结论:EF2=BE2+DF2,理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH,∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,即∠EAH=∠EAF,∴△EAH≌△EAF(SAS),∴EH=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴∠ABE=∠MDN,∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,∴EH2=BE2+BH2,∴EF2=BE2+DF2,(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=2,∴CM=12CF=1,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形∴EN=CM=1,∵∠EBN=45°,∴BE EN.【点睛】本题考查了正方形的性质,旋转,全等三角形的判定和性质,平行四边形的判定和性质,勾股定理,圆周角定理,等腰三角形性质,其中(1)(2)里运用转化思想是解题关键,为半角模型的常规题型.第(3)问作为填空题可用特殊位置得到答案,证明过程关键条件是正方形对角线,利用两个45°角联想到四点共圆,再利用圆周角定理得到△AEF为等腰直角三角形.28.(2019·河南中考模拟)如图,抛物线y=﹣34x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=34x+3经过点A、C.(1)求抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t . ①若以点C 、O 、M 、P 为顶点的四边形是平行四边形,求t 的值.②当射线MP ,AC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.【答案】(1)239344y x x =--+;(2)①满足条件的t 的值为2或﹣2或﹣2﹣2;②综合以上可得t 的值为72122,,255--- 【解析】(1)在y =34x+3中,令x =0,y =3;令y =0,x =﹣4,得A (﹣4,0),C (0,3), 代入抛物线y=-34x 2+bx+c 解析式得:943b c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式239344y x x =--+; (2)设P (t ,239344x x --+), ∵四边形OCMP 为平行四边形,∴PM=OC =3,PM∥OC,∴M 点的坐标可表示为(t ,34t+3), ∴PM=2334t t --, ∴|2334t t --=3, 当﹣34t 2﹣3t =3,解得t =2,当﹣34t2﹣3t=﹣3,解得t1=﹣2+22,t2=﹣2﹣22,综上所述,满足条件的t的值为2或﹣2+22或﹣2﹣22;(3)如图1,若当MP平分AC、MO的夹角,则∠AMN=∠OMN,∵PN⊥OA,∴AN=ON,∴t的值为﹣2;如图2,若AC平分MP、MO的夹角,过点C作CH⊥OA,CG⊥MP,则CG=CH,∵1122ACOS OM CH OC CG=⋅=⋅V,∴OM=OC=3,∵点M在直线AC上,∴M(t,34t+3),∴MN 2+ON 2=OM 2,可得,223(3)94t ++=, 解得t =﹣7225, 如图3,若MO 平分AC 、MP 的夹角,则可得∠NMO=∠OMC,过点O 作OK⊥AC,∴OK=ON ,∵∠AKO=∠AOC=90°,∠OAK=OAC , ∴△AOK∽△ACO,∴AO OK AC OC=, ∴453OK =, ∴OK=125, ∴t=﹣125, 综合以上可得t 的值为72122,,255---. 【点睛】本题考查了二次函数的知识,其中涉及了平行四边形的判定,角平分线的性质定理、等腰三角形的判定等知识.。

四川省成都市2020年中考数学模拟卷(四)(含解析)

四川省成都市2020年中考数学模拟卷(四)(含解析)

2020年四川省成都市中考数学模拟卷A 卷(共100分) 第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.(2019·山东中考模拟)在实数1、0、﹣1、﹣2中,最小的实数是( ) A .-2 B .-1C .1D .0【答案】A 【解析】Q 1>0>-1>-2 ∴最小的实数是-2.故选A. 【点睛】本题考查了实数的大小比较,熟练掌握比较法则是解题的关键.2.(2019·浙江中考模拟)据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( ) A .84.610⨯ B .84610⨯ C .94.6 D .94.610⨯【答案】D 【解析】4 600 000 000用科学记数法表示为:4.6×109. 故选D . 【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(2019·北京中考模拟)某个几何体的三视图如图所示,该几何体是A .B .C .D .【答案】A 【解析】由该几何体的主视图可以判断C 项错误,由该几何体的俯视图可以判断B 和D 错误,所以选择A 项. 【点睛】本题考查由三视图判断几何体,解题的关键是掌握根据三视图判断几何体. 4.(2019·广东中考模拟)下列运算正确的是( ) A .3a ﹣a =3B .a 6÷a 2=a 3C .﹣a (1﹣a )=﹣a+a 2D .2122-⎛⎫=- ⎪⎝⎭【答案】C 【解析】解:A.3a =a =2a ,故A 错误; B .a 6÷a 2=a 4,故B 错误;C .﹣a (1﹣a )=﹣a+a 2,故C 正确;D .212-⎛⎫ ⎪⎝⎭=4,故D 错误. 故选:C . 【点睛】本题考查了合并同类项,同底数幂的除法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握. 5.(2019·上海中考模拟)关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C 【解析】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-4x,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-4x,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.6.(2019·甘肃中考模拟)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9【答案】A【解析】【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 7.(2019·山东中考模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A .1.70,1.75B .1.70,1.70C .1.65,1.75D .1.65,1.70【答案】A 【解析】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70, 所以中位数是1.70,同一成绩运动员最多的是1.75,共有4人, 所以,众数是1.75.因此,中位数与众数分别是1.70,1.75, 故选A . 【点睛】本题考查了中位数与众数,熟练掌握中位数及众数的定义以及求解方法是解题的关键.8.(2019·云南中考模拟)某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( ) A .400400(130%)x x-+=4 B .400400(130%)x x-+=4C .400400(130%)x x--=4 D .4004004(130%)x x-=- 【答案】A 【解析】设每月原计划生产的医疗器械有x 件, 根据题意,得:()4004004130%x x-=+ 故选A . 【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.(2019·江苏中考模拟)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°【答案】C 【解析】解:∵∠AOD=2∠ACD ,∠ACD=25°, ∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°, 故选:C . 【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,10.(2019·广州大学附属中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-和点(0,3)-,且顶点在第四象限,设P a b c =++,则P 的取值范围是( ).A .31P -<<-B .60P -<<C .30P -<<D .63P -<<-【答案】B 【解析】∵抛物线2y ax bx c =++(0a ≠)过点(﹣1,0)和点(0,﹣3),∴0=a ﹣b+c ,﹣3=c ,∴b=a ﹣3,∵当x=1时,2y ax bx c =++=a+b+c ,∴P=a b c ++=a+a ﹣3﹣3=2a ﹣6,∵顶点在第四象限,a >0,∴b=a ﹣3<0,∴a <3,∴0<a <3,∴﹣6<2a ﹣6<0,即﹣6<P <0.故选B .第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上) 11.(2019·江苏中考模拟)4的算术平方根是 . 【答案】2. 【解析】∵224=,∴4算术平方根为2.故答案为2.12.(2019·江苏中考模拟)如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .如果35DE BC =,CE =16,那么AE 的长为_______【答案】6 【解析】 ∵DE∥BC,∴DE EA BC AC =. ∵35DE BC =,CE=16, ∴3165AE AE -=,解得AE=6. 故答案为6. 【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.13.(2019·上海中考模拟)如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __.【答案】k>3 【解析】因为正比例函数y=(k-3)x 的图象经过第一、三象限, 所以k-3>0, 解得:k >3, 故答案为:k >3. 【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-3)x 的图象经过第一、三象限解答.14.(2019·浙江中考模拟)一个不透明的袋中只装有1个红球和2个白球,它们除颜色外其余均相同. 现随机从袋中摸出两个球,颜色是一红一白的概率是____. 【答案】23【解析】 画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一白的有4种情况, ∴颜色是一红一白的概率为4263=, 故答案是:23. 【点睛】考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)(2019·江苏中考模拟)计算:201(31)4sin 603-︒⎛⎫+- ⎪⎝⎭【答案】3 【解析】 解:原式=9+1-342⨯3. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. (2)(2019·江苏中考模拟)解方程:22161242x x x x +-=--+ 【答案】5x =-【解析】()22162x x +-=-23100x x +-=解得15x =-,22x = 经检验:2x =不符合题意. 原方程的解为: 5.x =- 【点睛】考查分式方程的解法,掌握分式方程的解题的步骤是解题的关键.注意检验.16.(2019·山东中考模拟)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根.【答案】213(m 3m)+.13-.【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可.试题解析:原式=()()()()()22m 3m 9m 3m 2113m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++.∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-.17.(2019·湖北中考模拟)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】(1)20;(2)作图见试题解析;(3)12.【解析】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .18.(2019·山东中考模拟)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【答案】(1)55;(2)不符合要求.【解析】解:(1)∵Rt△ABC中,tanA=,∴AB===55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.考点:解直角三角形的应用19.(2019·山东中考模拟)如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.【答案】(1)4yx;(2)5【解析】解:(1)∵CD∥y轴,CD=43,∴点D的坐标为:(m+2,43),∵A,D在反比例函数y=kx(x>0)的图象上,∴4m=43(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=4x;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.∴PA+PB=PF+PB=BF=2222AB AF4225+=+=.【点睛】此题考查了待定系数法求反比例函数的解析式以及轴对称的性质.注意准确表示出点D的坐标和利用轴对称正确找到点P的位置是关键.20.(2019·河北中考模拟)已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=12 DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.【答案】(1)见解析;(2)见解析;(3)215.【解析】()1BD Q 为O e 的直径,90BAD ∴∠=o ,90D ABD ∴∠+∠=o ,FB Q 是O e 的切线,90FBD ∴∠=o ,90FBA ABD ∴∠+∠=o ,FBA D ∴∠=∠,AB AC =Q ,C ABC ∴∠=∠,C D ∠=∠Q ,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=o Q ,//AC OH ∴,ACO COH ∴∠=∠,OB OC =Q ,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=o Q ,ABD ∴V ∽HOC V ,2AD BD CH OC∴==, 12CH DA ∴=; ()3由()2知,ABC V ∽HOC V ,2AB BD OH OC∴==, 6OH =Q ,O e 的半径为10,212AB OH ∴==,20BD =,16AD ∴==,在ABF V 与ABE V 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩o , ABF ∴V ≌ABE V ,BF BE ∴=,AF AE =,90FBD BAD ∠=∠=o Q ,2AB AF AD ∴=⋅,212916AF ∴==, 9AE AF ∴==,7DE ∴=,15BE ==,AD Q ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. 【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.B卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.(2019·黄石市河口中学中考模拟)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34;故答案为34.22.(2019·河南中考模拟)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=(1)1(1) a aa≥-⎧⎨--⎩<,根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为_____.【答案】29 32x≤≤【解析】∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴533 263xx-≤⎧⎨-≤⎩,∴29 32x≤≤,故答案为29 32x≤≤.【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,根据题意得到不等式去求解,考查综合应用能力.23.(2019·内蒙古中考模拟)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=2HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.【答案】①②③【解析】由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确,故答案为:①②③.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定与性质的综合运用,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.24.(2019·浙江中考模拟)如图,点A是射线y═54x(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=kx交CD边于点E,则DEEC的值为_____.【答案】5 4【解析】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=54x得:y=54m,则点A的坐标为:(m,54m),线段AB的长度为54m,点D的纵坐标为54m,∵点A在反比例函数y=kx上,∴k=54m2,即反比例函数的解析式为:y=254mx,∵四边形ABCD为正方形,∴四边形的边长为54 m,点C,点D和点E的横坐标为m+54m=94m,把x=94m代入y=254mx得:y=59 m,即点E的纵坐标为59 m,则EC=59m,DE=54m﹣59m=2536m,∴54= DE EC故答案为:5 4【点睛】本题考查了反比例函数图象上的点的坐标特征和正方形的性质,正确掌握代入法和正方形的性质是解题的关键.25.(2019·浙江中考模拟)婷婷在发现一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC 的中点O为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=123cm,则该圆的半径为_____cm.【答案】36+【解析】连接OB,OP,∵AB=BC,O为AC的中点,∴OB⊥AC,∵AQ是⊙O的切线,∴OP⊥AQ,设该圆的半径为r,∴OB=OP=r,∵∠ABC =120°,∴∠BAO =30°,∴AB =BC =CD =2r ,AO =3r , ∴AC =23r , ∴sin∠PAO =OP AO 3r 3==, 过Q 作QG ⊥AC 于G ,过D 作DH ⊥QG 于H ,则四边形DHGC 是矩形,∴HG =CD ,DH =CG ,∠HDC =90°,∴sin∠PAO =Q A 1233G Q ==,∠QDH =120°﹣90°=30°, ∴QG =12,∴AG =22AQ QG 122-=,∴QH =12﹣2r ,DH =23122r -, ∴tan∠QDH =tan30°=3323122QH DH r ==-, 解得r =36+,∴该圆的半径为36+cm ,故答案为36+.【点睛】本题考查了正多边形与圆,切线的性质,等腰三角形的性质,矩形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.(2019·河北中考模拟)红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:时间(天) 1 3 6 10 36 …日销售量(件) 94 90 84 76 24 …未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.27.(2019·山东中考模拟)已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【答案】(1)见解析;(2)EF2=BE2+DF2;理由见解析;(3)2【解析】(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG,∴AF=AG,DF=BG,∠DAF=∠BAG,∵正方形ABCD,∴∠D=∠BAD=∠ABE=90°,AB=AD,∴∠ABG=∠D=90°,即G、B、C在同一直线上,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,即∠EAG=∠EAF,∴△EAG≌△EAF(SAS),∴EG=EF,∵BE+DF=BE+BG=EG,∴EF=BE+DF.(2)结论:EF2=BE2+DF2,理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH,∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,即∠EAH=∠EAF,∴△EAH≌△EAF(SAS),∴EH=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴∠ABE=∠MDN,∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,∴EH2=BE2+BH2,∴EF2=BE2+DF2,(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=2,∴CM=12CF=1,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形∴EN=CM=1,∵∠EBN=45°,∴BE =2EN=2 .故答案为2【点睛】本题考查了正方形的性质,旋转,全等三角形的判定和性质,平行四边形的判定和性质,勾股定理,圆周角定理,等腰三角形性质,其中(1)(2)里运用转化思想是解题关键,为半角模型的常规题型.第(3)问作为填空题可用特殊位置得到答案,证明过程关键条件是正方形对角线,利用两个45°角联想到四点共圆,再利用圆周角定理得到△AEF 为等腰直角三角形.28.(2019·河南中考模拟)如图,抛物线y =﹣34x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C .直线y =34x +3经过点A 、C . (1)求抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t .①若以点C 、O 、M 、P 为顶点的四边形是平行四边形,求t 的值. ②当射线MP ,AC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.【答案】(1)239344y x x =--+;(2)①满足条件的t 的值为2或﹣2或﹣2﹣2;②综合以上可得t 的值为72122,,255--- 【解析】(1)在y =34x+3中,令x =0,y =3;令y =0,x =﹣4,得A (﹣4,0),C (0,3), 代入抛物线y=-34x 2+bx+c 解析式得:943b c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式239344y x x =--+; (2)设P (t ,239344x x --+), ∵四边形OCMP 为平行四边形,∴PM=OC =3,PM∥OC,∴M 点的坐标可表示为(t ,34t+3), ∴PM=2334t t --,∴|2334t t --=3, 当﹣34t 2﹣3t =3,解得t =2, 当﹣34t 2﹣3t =﹣3,解得t 1=﹣2+22,t 2=﹣2﹣22, 综上所述,满足条件的t 的值为2或﹣2+22或﹣2﹣22;(3)如图1,若当MP 平分AC 、MO 的夹角,则∠AMN=∠OMN,∵PN⊥OA,∴AN=ON ,∴t 的值为﹣2;如图2,若AC 平分MP 、MO 的夹角,过点C 作CH⊥OA,CG⊥MP,则CG =CH , ∵1122ACO S OM CH OC CG =⋅=⋅V , ∴OM=OC =3,∵点M 在直线AC 上, ∴M(t ,34t+3), ∴MN 2+ON 2=OM 2,可得,223(3)94t ++=,解得t =﹣7225, 如图3,若MO 平分AC 、MP 的夹角,则可得∠NMO=∠OMC,过点O 作OK⊥AC,∴OK=ON ,∵∠AKO=∠AOC=90°,∠OAK=OAC ,∴△AOK∽△ACO,∴AO OK AC OC=, ∴453OK =,∴OK=125,∴t=﹣125,综合以上可得t的值为7212 2,,255---.【点睛】本题考查了二次函数的知识,其中涉及了平行四边形的判定,角平分线的性质定理、等腰三角形的判定等知识.。

2020年四川省中考数学模拟试题与答案

2020年四川省中考数学模拟试题与答案

2020年四川省市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。

2020年四川省绵阳市中考数学模拟试卷 (含答案解析)

2020年四川省绵阳市中考数学模拟试卷 (含答案解析)

2020年四川省绵阳市中考数学模拟试卷一、选择题(本大题共12小题,共36.0分)1.(−3)2的相反数是()A. −6B. 9C. −9D. −192.下列说法:①每一个图形都有对称轴;②等腰三角形都有对称轴;③△ABC和△A′B′C′关于直线l对称,则△ABC和△A′B′C′全等;④五角星不是轴对称图形.其中正确的有()A. 4个B. 3个C. 2个D. 1个3.截至2018年12月底,台州市人口总数已达到6054000人.将6054000用科学记数法表示为()A. 6.054×107B. 6.054×106C. 60.54×105D. 6054×1034.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个5.若√x−6在实数范围内有意义,则x的取值范围是()A. x>0B. x>6C. x≥6D. x≤66.《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x人,则根据题意可列方程为()A. 5x+45=7x+3B. 5x+45=7x−3C. 5x−45=7x+3D. 5x−45=7x−37.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=12,OP=15,则PE的长为()A. 9B. 10C. 11D. 128.从1,2,3这三个数字中随机抽取两个,抽取的这两个数的和是奇数的概率是()A. 13B. 12C. 23D. 569.如图,AB//CD,EF=EB,∠MEB=70°,则∠BFD的度数为A. 30°B. 35°C. 40°D. 45°10.A,B两地相距80千米,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A. 40km/ℎB. 45km/ℎC. 50km/ℎD. 60km/ℎ11.如图,一桥拱呈抛物线状,桥的最大高度是16m,跨度是40m,则在线段AB上离中心点M,5m处的地方,桥的高度是()A. 14mB. 15mC. 13mD. 12m12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=√2,将△ABC绕点AAB的值为()逆时针旋转60°,得到△ADE,连接BE,则BE+12A. √6B. 2√2C. √3D. √2二、填空题(本大题共6小题,共24.0分)13.因式分解6xy2−9x2y−y3=______.14.把点P(−3,5)向上平移2个点得P1点,则P1点的坐标为______ .15.对于多项式(n−1)x m+2−3x2+2x(其中m是大于−2的整数).若n=2,且该多项式是关于x的三次三项式,则m的值为______.16.甲市火车货运站现有苹果1530吨,梨1150吨,安排一列货车将这批苹果和梨运往乙市.这列货车可以挂A、B两种不同规格的货箱共50节,已知用一节A型货箱的运费是0.5万元,用一节B型货箱的运费用是.0.8万元.(1)设运输这批苹果和梨的总运费为y(万元),用A型货箱的节数为x(节),试写出y与x的函数关系式.(2)已知35吨苹果和15吨梨可装满一节A型货箱,25吨苹果和35吨梨可装满一节B型车箱,请问运输所有苹果和梨的方案共有几种,请设计出来.(3)利用函数的性质说明,在第(2)问的方案中,哪种方案的运费最少,最少运费用是多少?17.如图,∠ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连接EF,则EF的最小值为________.18.若不等式(2−m)x>2m−4的解集是x<−2,则m的取值范围是______.三、解答题(本大题共7小题,共90.0分)19.(1)计算:4+(−3)2+20180×|1−√3|+tan45°−2sin60°.(2)先化简,再求值:xx2−1÷(1+1x−1),其中x=√2−1.20.甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?21.某射击队有甲、乙两名射手,他们各自射击7次,射中靶的环数记录如下:甲:8,8,8,9,6,8,9乙:10,7,8,8,5,10,8(1)分别求出甲、乙两名射手打靶环数的平均数、众数、中位数;(2)如果要选择一名成绩比较稳定的射手,代表射击队参加比赛,应如何选择?为什么?22.如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD=30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.23.如图,在平面直角坐标系中,直线BC与y轴交于点A(0,4),与x轴交于点D,B、C是反比例(x>0)上的点,OB⊥BC于点B,∠BOD=60∘.函数y=kx(1)求直线BC的解析式.(2)求反比例函数的解析.24.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(−3,2),B(0,−2),其对称轴为直线x=,C(0,)为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB延长线于点F.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若⊙O半径为5,CD=6,求DE的长;(3)求证:BC2=4CE⋅AB.-------- 答案与解析 --------1.答案:C解析:解:(−3)2的相反数是−9,故选:C.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.答案:C解析:【分析】本题主要考查了轴对称图形的概念和性质,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;由于只有轴对称图形才有对称轴,于是可知①说法错误.同理,分析其余说法的正误,进而确定正确说法的个数.【解答】解:对称轴只针对轴对称图形而言,只有轴对称图形才有对称轴,故①错误;等腰三角形是轴对称图形,其对称轴是等腰三角形底边上的高(中线、角平分线)所在的直线,故②正确;根据轴对称图形的性质可知,轴对称图形的对应线段相等、对应角相等,进而可得△ABC≌△A′B′C′,故③正确;五角星是轴对称图形,故④错误.故选C.3.答案:B解析:【分析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6054000=6.054×106,故选B.4.答案:B解析:解:由题可得,是正方体的平面展开图的有:共2个,故选:B.由平面图形的折叠及正方体的表面展开图的特点进行判断即可.此题主要考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.5.答案:C解析:解:√x−6在实数范围内有意义,则x−6≥0,故x的取值范围是:x≥6.故选:C.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.答案:A解析:解:设买羊人数为x人,则根据题意可列方程为5x+45=7x+3.故选:A.设买羊人数为x人,根据出资数不变列出方程.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.答案:A解析:【分析】本题考查的是角平分线的性质、勾股定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.根据勾股定理求出PD,根据角平分线的性质解答.【解答】解:在Rt△OPD中,PD=√OP2−OD2=√152−122=9,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=9,故选A.8.答案:C解析:解:画树状图得:∵共有6种等可能的结果,其和是奇数的4种情况,∴其和是奇数的概率是:46=23故选C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和是奇数的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.答案:B解析:【分析】本题主要考查了平行线的性质和三角形的外角性质及等腰三角形的性质.根据AB//CD先求得∠MFD 的度数,再根据EF=EB,∠MEB=70°求得∠EFB的度数,最后利用∠BFD=∠MFD−∠EFB即可得到答案.【解答】解:∵AB//CD,∠MEB=70°∴∠MFD=∠MEB=70°,∵EF=EB,∠MEB=70°,∴∠EFB=∠B=12∠MEB=35°,∴∠BFD=∠MFD−∠EFB=70°−35°=35°.故选B.10.答案:A解析:【分析】本题主要考查分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.求的是速度,路程明显,一定是根据时间来列等量关系,等量关系为:甲用的时间−乙用的时间=1−2060.【解答】解:设甲的速度为xkm/ℎ,那么乙的速度为1.5xkm/ℎ,根据题意得:80 x −801.5x=1−2060,解得:x=40,经检验:x=40是原方程的解,故甲的速度为40km/ℎ.故选A.11.答案:B解析:【分析】此题考查利用抛物线的特点建立平面直角坐标系,求出抛物线解析式,进一步利用解析式解决问题.以AB为x轴,点M为坐标原点作出平面直角坐标系,表示出A点坐标,C点坐标,设出抛物线的解析式,代入点求出解析式,再进一步代入数值解答即可.【解答】解:如图,建立平面直角坐标系,点A 的坐标是(−20,0),点C 的坐标是(0,16), 设抛物线的解析式为y =ax 2+k ,把点A 、C 代入函数解析式得{400a +k =0k =16, 解得{a =−125k =16,因此抛物线的解析式为y =−125x 2+16,令x =5,y =−125×52+16=15,则桥的高度是15m .故选B .12.答案:C解析:解:如图,连接BD ,延长BE 交AD 于点F ,∵∠ACB =90°,AC =BC =√2,∴AB =2, ∵将△ABC 绕点A 逆时针旋转60°,得到△ADE , ∴AD =AB =2,∠BAD =60°,AE =DE ∴△ABD 是等边三角形∴AB =BD ,且AE =DE∴BF 是AD 的垂直平分线∴AF =DF =1,∴BF =√AB 2−AF 2=√3∵AE =DE ,∠AED =90°,EF ⊥AD∴EF =12AD =12AB ∴BF =BE +EF =12AB +BE =√3 故选:C .连接BD ,延长BE 交AD 于点F ,由旋转的性质可得AD =AB =2,∠BAD =60°,AE =DE ,可得△ABD 是等边三角形,可证BF 是AD 的垂直平分线,由勾股定理可求BF 的值,即可求解. 本题考查了旋转的性质,等腰直角三角形的性质,证明BF 是AD 的垂直平分线是本题的关键. 13.答案:−y(3x −y)2解析:解:6xy 2−9x 2y −y 3,=−y(9x 2−6xy +y 2),=−y(3x −y)2.故答案为:−y(3x −y)2.先提取公因式−y ,再对余下的多项式利用完全平方公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.答案:(−3,7)解析:解:点P(−3,5)向上平移2个点得P 1点,则P 1点的坐标为(−3,7).故答案为(−3,7).利用点平移的坐标规律求解.本题考查了坐标与图形变化−平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 15.答案:1解析:解:∵n =2时,多项式是关于x 的三次三项式,∴m +2=3,解得,m =1,故答案为:1.根据多项式中次数最高的项的次数叫做多项式的次数解答.本题考查的是多项式的概念,掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键. 16.答案:(1)由题意得:y =0.5x +0.8(50−x)=−0.3x +40,故所求函数关系为y =−0.3x +40;(2)根据题意可列不等式组{35x +25(50−x )≥153015x +35(50−x )≥1150, 解得:28≤x ≤30,∴x =28,29,30,共有3种方案.①A28 B22②A29 B21③A30B20;(3)∵y=−0.3x+40,k=−0.3<0,∴x值越大,y值越小,因此方案③运费最少当x=30时,总运费最少,即y最少=−0.3×30+40=31(万元).解析:本题主要考查的是一次函数的应用,一次函数的性质和一元一次不等式组的应用等有关知识.(1)根据等量关系:总运费=货箱的节数×运费,可得出函数解析式;(2)根据苹果的总重量≥1530,梨的总重量≥1150,列出不等式组求解即可;(3)由一次函数的增减性求解即可.17.答案:√10解析:【分析】本题考查等腰直角三角形的性质,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.由题意EF=√DE2+DF2=√1+DF2,推出当DF的值最小时,EF的值最小,根据垂线段最短即可解决问题;【解答】解:∵△ADE是等腰直角三角形,∴∠ADE=∠EDF=90°,∵AD=DE=1,∴EF=√DE2+DF2=√1+DF2,∴当DF的值最小时,EF的值最小,∵AF⊥BC时,AF的值最小,∴DF的值最小,∵∠B=30°,AB=4,∴此时AF=12∴DF=3,EF=√10,故答案为√10.18.答案:m>2解析:【分析】本题考查了不等式的性质和解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键.根据不等式的性质3,可得答案.【解答】解:∵(2−m)x>2m−4,∴−(m−2)x>2(m−2),∵不等式的解集是x<−2,∴m−2>0,解得:m>2,故答案为m>2.19.答案:解:(1)原式=4+9+1×(√3−1)+1−2×√32=4+9+√3−1+1−√3=13;(2)原式=x(x+1)(x−1)÷(x−1x−1+1x−1)=x(x+1)(x−1)⋅x−1x=1x+1,当x=√2−1时,原式=√2−1+1=√22.解析:本题主要考查分式的化简求值,实数的运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的运算能力.(1)先计算乘方、零指数幂、取绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.20.答案:解:(1)由题意可得,y甲=0.9x,当0≤x≤100时,y乙=x,当x>100时,y乙=100+(x−100)×0.8=0.8x+20,由上可得,y乙={x(0≤x≤100)0.8x+20(x>100);(2)当0.9x<0.8x+20时,得x<200,即此时选择甲商场购物更省钱;当0.9x=0.8x+20时,得x=200,即此时两家商场购物一样;当0.9x>0.8x+200时,得x>200,即此时选择乙商场购物更省钱.解析:(1)根据题意,可以分别写出两家商场对应的y关于x的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.21.答案:解:(1)甲的平均数为:17(8+8+8+9+6+8+9)=8,乙的平均数为:17(10+7+8+8+5+10+8)=8,甲的众数为8,乙的众数为8;甲点中位数为8,乙的中位数为8.(2)S 甲2=17[4(8−8)2+2(9−8)2+(6−8)2]=67, S 乙2=17[3(8−8)2+2(10−8)2+(7−8)2+(5−8)2]=187,∵S 甲2<S 乙2, ∴甲的射击成绩更稳定,所以选择甲代表射击队参加比赛.解析:此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.(1)根据平均数的计算公式、众数以及中位数的定义分别进行解答即可;(2)先求出甲和乙的方差,再根据方差的定义,方差越小数据越稳定,即可得出答案.22.答案:证明:(1)∵AB 是⊙O 的直径,M 是CD 的中点,∴AB ⊥CD ,∴BD =BC ,∴∠ABD =∠ABC =30°,即∠CBD =60°,∴△BCD 是等边三角形;(2)∵∠EAC =∠ABD ,∠ABD =∠ACD ,∴∠EAC =∠ACD ,∴AE//CD ,由(1)知AB ⊥CD ,∴AE ⊥AB ,∵点A 在⊙O 上,∴AE 是⊙O 的切线;(3)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACE =90°,∵∠EAC =30°,∴AE =2CE =4,在Rt △EAB 中,∠ABE =30°,∴BE =2AE =8,∴AB =√BE 2−AE 2=√82−42=4√3,∴⊙O 的半径为2√3. 解析:本题是圆的综合问题,解题的关键是掌握等边三角形的判定、圆心角定理、圆周角定理和勾股定理等知识. (1)由AB 是⊙O 的直径,M 是CD 的中点知AB ⊥CD ,BD =BC ,结合∠ABD =∠ABC =30°,即∠CBD =60°即可得证;(2)先证AE//CD ,由AB ⊥CD 知AE ⊥AB ,据此即可得证;(3)由AB 是直径知∠ACB =∠ACE =90°,由∠EAC =30°知AE =2CE =4,∠ABE =30°知BE =2AE =8,根据勾股定理可得直径AB 的长,从而得出答案.23.答案:解:于点B ,, .∵点A 的坐标为A(0,4),∴AO =4,∴在Rt △AOD 中,OD =√3AO =4√3,∴D(4√3,0).设直线BC 的解析式为y =ax +b ,∵直线BC 经过点A(0,4),D(4√3,0),∴{b =44√3a +b =0, 解得{a =−√33b =4,∴直线BC 的解析式为y =−√33x +4; (2)如图,过点B 作轴于点E .在Rt △BOD 中,OD =4√3,, ∴OB =12OD =2√3.在Rt △OBE 中,, ∴BE =√32OB =3,OE =12OB =√3,∴B(√3,3).∵反比例函数的图象经过点B(√3,3),∴3=√3,解得k =3√3, ∴反比例函数的解析式为y =3√3x . 解析:本题考查反比例函数的应用,待定系数法求反比例函数和一次函数,以及直角三角形的性质,正确掌握待定系数法是解题关键. (1)求出点A 和点D 的坐标,再根据直线BC 过点A 和点D ,利用待定系数法求解析式即可; (2)过点B 作轴于点E.根据直角三角形的性质求出OB ,BE ,OE ,进而求出点B 的坐标,然后根据反比例函数经过点B ,利用待定系数法求出解析式即可.24.答案:解:(1)根据题意得{9a −3b +c =2c =−2−b 2a =52,解得{a =16b =−56c =−2, 所以抛物线解析式为y =16x 2−56x −2;(2)作EP//y 轴交AD 于P ,如图1,设直线AD 的解析式为y =mx +n ,把A(−3,2),C(0,12)分别代入得{−3m +n =0n =12,解得{m =−12n =12, 所以直线AD 的解析式为y =−12x +12,解方程组{y =16x 2−56x −2y =−12x +12得{x =−3y =2或{x =5y =−2,则D(5,−2), 设E(x,16x 2−56x −2)(−3<x <5),则P(x,−12x +12),∴PE =−12x +12−(16x 2−56x −2)=−16x 2+13x +52, ∴S △AED =S △AEP +S △DEP=12⋅(5+3))⋅(−16x 2+13x +52) =−23(x −1)2+323,当x =1时,△ADE 的面积最大,最大面积为323,此时E 点坐标为(1,−83).解析:本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和勾股定理的逆定理;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用两点间的距离公式计算线段的长;注意分类讨论思想的应用.(1)利用待定系数法求抛物线解析式;(2)作EP//y 轴交AD 于P ,如图1,先利用待定系数法求出直线AD 的解析式为y =−12x +12,联立解析式求得D(5,−2),设E(x,16x 2−56x −2)(−3<x <5),则P(x,−12x +12),所以PE =−16x 2+13x +52,根据三角形面积公式和S △AED =S △AEP +S △DEP 可得S △AED =−23(x −1)2+323,然后根据二次函数的最值问题求出△ADE 的面积最大,且求出对应的E 点坐标.25.答案:解:(1)EF 与⊙O 相切,理由如下:连接AD ,OD ,如图所示:∵AB 为⊙O 的直径,∴∠ADB =90°.∴AD ⊥BC .∵AB =AC ,∴CD =BD =12BC .∵OA =OB ,∴OD 是△ABC 的中位线,∴OD//AC .∵EF ⊥AC ,∴EF ⊥OD .∴EF 与⊙O 相切.(2)解:由(1)知∠ADC =90°,AC =AB =10,在Rt △ADC 中,由勾股定理得:AD =√AC 2−CD 2=√102−62=8.∵S ACD =12AD ⋅CD =12AC ⋅DE ,∴12×8×6=12×10×DE .∴DE =245.(3)证明:由(1)得:CD =12BC ,AD ⊥BC ,∴∠ADC =90°,∵EF ⊥AC ,∴∠DEC =90°=∠ADC ,∵∠C =∠C ,∴△CDE∽△CAD ,∴CD AC =CECD ,∴CD2=CE⋅AB,∵AB=AC,∴14BC2=CE⋅AB,∴BC2=4CE⋅AB.解析:(1)连接AD,OD,证明OD是△ABC的中位线,得出OD//AC.由已知条件证得EF⊥OD,即可得出结论;(2)根据勾股定理求出AD,再由三角形面积计算即可;(3)由(1)得CD=12BC,AD⊥BC,证明△CDE∽△CAD,得出CDAC=CECD,则CD2=CE⋅AB,即可得出结论.本题是圆的综合题目,考查了圆周角定理、切线的判定、等腰三角形的性质、三角形中位线定理、勾股定理、相似三角形的判定与性质以及三角形面积等知识;熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.。

四川省2020年中考数学模拟卷(解析版)

四川省2020年中考数学模拟卷(解析版)

2020年中考数学模拟卷本文档含有大量公式,在网页中显示可能会出现位置错误的情况,下载后在word 中均可正常显示,欢迎下载!A 卷 100分,B 卷50分A 卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1. 2-的相反数是( ) A .22- B .22 C .2- D .2【答案】D【解析】-2的相反数是2,2.如图所示的几何体的俯视图是( )A .B .C .D .【答案】D【解析】从上往下看,该几何体的俯视图与选项D 所示视图一致.3.电影《流浪地球》从2月5日上映以来,凭借其气势磅礴的特效场面与动人的父子情获得大众的喜爱与支持,截止3月底,中国电影票房高达4559000000元.数据4559000000用科学记数法表示为( )A .845.5910⨯;B .945.5910⨯;C .94.55910⨯;D .104.55910⨯.【答案】C【解析】4559000000=4.559×109,4.下列运算正确的是().A.B.C.D.【答案】C【解析】根据合并同类项法则,可知,故本选项错误;根据同底数幂相乘法则,可知,故本选项错误;根据同底数幂相除法则,可知,故本选项正确;根据二次根式运算法则,故本选项错误.5.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解析】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;A是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,6.如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A.x=-3 B.x=4 C.x=43-D.x=34-【答案】A【解析】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,7.如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )A.∠ABC=90°B.∠BCD=90°C.AB=CD D.AB∥CD【答案】C【解析】A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;8.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【答案】A【解析】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,9.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.3D.5【答案】D【解析】∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E ,∵CD=8, ∴CE=DE=12CD=4, 连接OC ,则OC=OA=5,在Rt△OCE 中,OE=222254OC CE -=-=3,∴AE=AO+OE=8,则AC=22224845CE AE +=+=,10.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc<0;②b 2﹣4ac >0;③3a+c>0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 ①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+<故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 4的算术平方根是 .【答案】2.【解析】∵224=,∴4算术平方根为2.故答案为2.12.如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .如果35DE BC =,CE =16,那么AE 的长为_______【答案】6∵DE∥BC, ∴DE EA BC AC =. ∵35DE BC =,CE=16, ∴3 165AE AE -=,解得AE=6. 13.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 【答案】k>3【解析】因为正比例函数y=(k-3)x 的图象经过第一、三象限,所以k-3>0,解得:k >3,故答案为:k >3.14.一个不透明的袋中只装有1个红球和2个白球,它们除颜色外其余均相同. 现随机从袋中摸出两个球,颜色是一红一白的概率是____.【答案】23【解析】画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一白的有4种情况, ∴颜色是一红一白的概率为4263=, 故答案是:23. 三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)计算:201(31)4sin 603-︒⎛⎫+- ⎪⎝⎭【答案】3解:原式=9+1-342⨯ =10-23. (2)解方程:22161242x x x x +-=--+ 【答案】5x =-【解析】()22162x x +-=-23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-16.先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 【答案】213(m 3m)+.13-. 【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可.试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 17.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】(1)20;(2)作图见试题解析;(3)12.【解析】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .18.如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【答案】(1)55;(2)不符合要求.【解析】解:(1)∵Rt△ABC中,tanA=,∴AB===55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.19.如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.【答案】(1)4yx;(2)5【解析】解:(1)∵CD∥y轴,CD=43,∴点D的坐标为:(m+2,43),∵A,D在反比例函数y=kx(x>0)的图象上,∴4m=43(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=4x;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.∴PA+PB=PF+PB=BF=2222AB AF4225+=+=.20.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=12 DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.【答案】(1)见解析;(2)见解析;(3)215. 【解析】 ()1BD Q 为O e 的直径,90BAD ∴∠=o ,90D ABD ∴∠+∠=o ,FB Q 是O e 的切线,90FBD ∴∠=o ,90FBA ABD ∴∠+∠=o ,FBA D ∴∠=∠,AB AC =Q ,C ABC ∴∠=∠,C D ∠=∠Q ,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=o Q ,//AC OH ∴,ACO COH ∴∠=∠,OB OC =Q ,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=o Q ,ABD ∴V ∽HOC V ,2AD BD CH OC∴==, 12CH DA ∴=; ()3由()2知,ABC V ∽HOC V ,2AB BD OH OC∴==, 6OH =Q ,O e 的半径为10,212AB OH ∴==,20BD =,16AD ∴==,在ABF V 与ABE V 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩o , ABF ∴V ≌ABE V ,BF BE ∴=,AF AE =,90FBD BAD ∠=∠=o Q ,2AB AF AD ∴=⋅,212916AF ∴==, 9AE AF ∴==,7DE ∴=,15BE ==,AD Q ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34;故答案为34.22.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=(1)1(1)a aa≥-⎧⎨--⎩<,根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为_____.【答案】29 32x≤≤【解析】∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴533 263xx-≤⎧⎨-≤⎩,∴29 32x≤≤,故答案为29 32x≤≤.23.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有2HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.【答案】①②③【解析】由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确,故答案为:①②③.24.如图,点A是射线y═54x(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=kx交CD边于点E,则DEEC的值为_____.【答案】5 4【解析】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=54x得:y=54m,则点A的坐标为:(m,54m),线段AB的长度为54m,点D的纵坐标为54m,∵点A在反比例函数y=kx上,∴k=54m2,即反比例函数的解析式为:y=254mx,∵四边形ABCD为正方形,∴四边形的边长为54 m,点C,点D和点E的横坐标为m+54m=94m,把x=94m代入y=254mx得:y=59 m,即点E的纵坐标为59 m,则EC=59m,DE=54m﹣59m=2536m,∴54DE EC故答案为:5 425.婷婷在发现一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC的中点O 为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=123cm,则该圆的半径为_____cm.【答案】36+【解析】连接OB,OP,∵AB=BC,O为AC的中点,∴OB⊥AC,∵AQ是⊙O的切线,∴OP⊥AQ,设该圆的半径为r,∴OB=OP=r,∵∠ABC=120°,∴∠BAO=30°,∴AB=BC=CD=2r,AO3r,∴AC=3r,∴sin∠PAO=OPAO3r3==过Q作QG⊥AC于G,过D作DH⊥QG于H,则四边形DHGC是矩形,∴HG=CD,DH=CG,∠HDC=90°,∴sin∠PAO =Q QG 1A 1233G Q ==,∠QDH =120°﹣90°=30°, ∴QG =12, ∴AG =22AQ QG 122-=,∴QH =12﹣2r ,DH =23122r -,∴tan∠QDH =tan30°=1223323122QH r DH r -==-, 解得r =36+,∴该圆的半径为36+cm ,故答案为36+.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表:时间(天)1 3 6 10 36 … 日销售量(件) 94 90 84 76 24 … 未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来研究 这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.27.已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【答案】(1)见解析;(2)EF2=BE2+DF2;理由见解析;(3)2【解析】(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG,∴AF=AG,DF=BG,∠DAF=∠BAG,∵正方形ABCD,∴∠D=∠BAD=∠ABE=90°,AB=AD,∴∠ABG=∠D=90°,即G、B、C在同一直线上,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,即∠EAG=∠EAF,∴△EAG≌△EAF(SAS),∴EG=EF,∵BE+DF=BE+BG=EG,∴EF=BE+DF.(2)结论:EF2=BE2+DF2,理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH,∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,即∠EAH=∠EAF,∴△EAH≌△EAF(SAS),∴EH=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴∠ABE=∠MDN,∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,∴EH2=BE2+BH2,∴EF2=BE2+DF2,(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=2,∴CM=12CF=1,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形∴EN=CM=1,∵∠EBN=45°,∴BE EN.28.如图,抛物线y=﹣34x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=34x+3经过点A、C.(1)求抛物线的解析式;(2)P是抛物线上一动点,过P作PM∥y轴交直线AC于点M,设点P的横坐标为t.①若以点C、O、M、P为顶点的四边形是平行四边形,求t的值.②当射线MP,AC,MO中一条射线平分另外两条射线的夹角时,直接写出t的值.【答案】(1)239344y x x =--+;(2)①满足条件的t 的值为2或﹣2或﹣2﹣2;②综合以上可得t 的值为72122,,255--- 【解析】(1)在y =34x+3中,令x =0,y =3;令y =0,x =﹣4,得A (﹣4,0),C (0,3), 代入抛物线y=-34x 2+bx+c 解析式得:943b c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式239344y x x =--+; (2)设P (t ,239344x x --+), ∵四边形OCMP 为平行四边形,∴PM=OC =3,PM∥OC,∴M 点的坐标可表示为(t ,34t+3), ∴PM=2334t t --, ∴|2334t t --=3, 当﹣34t 2﹣3t =3,解得t =2, 当﹣34t 2﹣3t =﹣3,解得t 1=﹣2t 2=﹣2﹣2, 综上所述,满足条件的t 的值为2或﹣22﹣2;(3)如图1,若当MP 平分AC 、MO 的夹角,则∠AMN=∠OMN,∵PN⊥OA,∴AN=ON ,∴t 的值为﹣2;如图2,若AC 平分MP 、MO 的夹角,过点C 作CH⊥OA,CG⊥MP,则CG =CH , ∵1122ACO S OM CH OC CG =⋅=⋅V , ∴OM=OC =3,∵点M 在直线AC 上,∴M(t ,34t+3), ∴MN 2+ON 2=OM 2,可得,223(3)94t ++=,解得t =﹣7225, 如图3,若MO平分AC、MP的夹角,则可得∠NMO=∠OMC,过点O作OK⊥AC,∴OK=ON,∵∠AKO=∠AOC=90°,∠OAK=OAC,∴△AOK∽△ACO,∴AO OK AC OC=,∴453OK =,∴OK=125,∴t=﹣125,综合以上可得t的值为7212 2,,255---.。

2020届中考模拟成都市中考数学模拟试题含参考答案(word版)

2020届中考模拟成都市中考数学模拟试题含参考答案(word版)

4月29日成都记数法表示181万为( )5(A) 18.1 X 10 (B)1.8124.计算x3y的结果是(6 —7X10 (C) 1.81 X 10(D)181 4X 10(D成都市高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。

4 .请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第I卷(选择题,共30 分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在-3 , -1 , 1 , 3四个数中,比-2小的数是()(A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()出田田由召M)W(C)(D)3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学6.平面直角坐标系中,点P (-2 , 3)关于x轴对称的点的坐标为( )(A) 34 (C) 124 5.如图,11 //I2,/仁56° ,则/2的度数为()(B) 56(D) 1466.平面直角坐标系中,点P (-2 , 3)关于x轴对称的点的坐标为( ) 10.如图,AB为O O的直径,点(A103(C(B)109518第口卷(非选择题,共70分)、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.已知|a+2|=0,贝U a = ___ .12.如图,△ ABC^A A'B'C',其中/ A= 36°,/ C'= 24°,则/ B=___°213.已知Pi (x i,y i), P2(x2, y2)两点都在反比例函数y 的图象上,且xx1< x214.如图,在矩形ABCD中, AB=3,对角线AC BD相交于点O, AE垂直平分OB于点E,则AD的长为(A) (-2 , -3 ) (B) (2, -3 ) (C) (-3 , 2) (D) (3, -2 )7.分式方程1的解为()x 3(A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差s2如下表所示:甲乙丙丁x78872 s1 1.21 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )(A)甲(B) 乙(C) 丙(D) 丁9.二次函数y 2x23的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )(A)抛物线开口向下(B) 抛物线经过点(2,3)(C)抛物线的对称轴是直线x=1 (D) 抛物线与x轴有两个交点C在OO上,若/ OCA=50 , AB=4,贝U BC的长为(三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算: 2 316 2sin30o20162(2)已知关于x 的方程3x 2x m 0没有实数根,求实数 m 的取值范围16.(本小题满分 6分)化简:xx17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展 学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度1.5m ,测得旗杆顶端D 的仰角/ DBB 32°,量出测点A 到旗杆底部 距离AO 20m.根据测量数据,求旗杆 CD 的高度。

四川省成都市2020年中考数学模拟卷(六)(含解析)

四川省成都市2020年中考数学模拟卷(六)(含解析)

2020年四川省成都市中考数学模拟卷A卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.估计13的值在A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C.<<4,则13的值在3和4之间,故选C.【解析】∵9<13<16,∴3132.下面有4个汽车标志图案,其中是中心对称图形的是A.B.C.D.【答案】B.【解析】根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选B.3.下列计算正确的是A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.22=2【答案】D.【解析】2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;322=2D正确;故选D.4.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为A.60°B.65°C.72°D.75°【答案】C.【解析】由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选C.5.一组数据为:31,30,35,29,30,则这组数据的方差是A.22 B.18 C.3.6 D.4.4 【答案】D.【解析】这组数据的平均数为31303529305++++=31,所以这组数据的方差为15⨯[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选D.6.如图是一个几何体的三视图,则该几何体的展开图是A.B.C. D.【答案】B.【解析】主视图和左视图均为等腰三角形,底面为圆,所以该几何体为圆锥,∵圆锥的侧面展开图是扇形,底面是圆,∴B符合,故选B.7.已知一次函数y=kx+b的图象如图,则k、b的符号是A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 【答案】D.【解析】由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.8.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是A.﹣1 B.1 C.3 D.5【答案】A.【解析】∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.故选A.9.如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A﹣D﹣C 的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B﹣C﹣D﹣A的路径向点A运动,当Q到达终点时,P停止移动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是A.B.C.D.【答案】A.【解析】当0≤t≤1时,S12=⨯2×(2﹣2t)=2﹣2t,∴该图象y随x的增大而减小,当1<t≤2时,S12=(2﹣t)(2t﹣2)=﹣t2+4t﹣4,∴该图象开口向下,当2<t≤3,S12=(t﹣2)(2t﹣4)=(t﹣2)2,∴该图象开口向上,故选A.10.如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l 上为止,点A运动经过的路径的长度为A.8833ππB.163πC.4433ππD163π【答案】A.【解析】如图,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为图中弧线长.由题意可知¶·23AD A A =,∠DOA 2=120°,DO =3所以点A 运动经过的路径的长度=26041204381803ππ⋅⋅⨯=π83π,故选A . 第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.124183= . 6.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解: 12418=266=63. 12.(2019·浙江中考模拟)圆心角为120º的扇形的面积为12π,则扇形的弧长为______.【答案】4π.【解析】解:令扇形的半径和弧长分别为R 和l ,则∵S =2120360R π =12π,∴R =6,∴l =1206180π⨯=4π. ∴扇形的弧长为4π.故答案为4π.【点睛】本题考查了弧长的计算和扇形面积的计算.解答该题需要牢记弧长公式和扇形的面积公式.13.(2019·上海中考模拟)不等式组1>011xxx+⎧⎨-≤⎩的解集是______.【答案】-1<x≤2.【解析】解1011 xx+>⎧⎨-≤⎩由10x+>得x>-1,由1x-≤1得x≤2,所以不等式组的解集为-1<x≤2.【点睛】这是一道考查解一元一次不等式组的题目,解题的关键是正确求出每个不等式的解集. 14.(2019·福建中考模拟)如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=_____.【答案】3:1【解析】∵四边形ABCD为平行四边形,∴DE∥AB,DC=AB,∴△DEF∽△BAF.∵△DEF的面积与△BAF的面积之比为9:16,∴3=4 DEBA,∵3=343DE DEEC CD DE==--.故答案为3:1.【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,根据相似三角形的性质求出DE 、BA 之间的关系是解题的关键.三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)(2019·上海中考模拟)计算:(﹣1)2019﹣|121()3-. 【答案】119. 【解析】原式=111)19--+=119. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键.(2)(2019·江苏中考模拟)解方程:x 2+2x ﹣3=0(公式法)【答案】x 1=1,x 2=﹣3.【解析】△=22﹣4×(﹣3)=16>0,x =2421-±⨯, 所以x 1=1,x 2=﹣3.【点睛】本题考查了解一元二次方程-公式法:用求根公式解一元二次方程的方法是公式法.16.(2019·北京中考模拟)已知:关于x 的一元二次方程x 2-4x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【答案】(1)m <2;(2)m=0.【解析】(1)∵方程有两个不相等的实数根,∴△>0.∴△=16-8m >0.∴m<2(2)∵m<2,且m为非负整数,∴m=0或1当m=0时,方程为x2-4x=0,解得x1=0,x2=4,符合题意;当m=1时,方程为x2-4x+2=0,根不是整数,不符合题意,舍去.综上m=0【点睛】本题考查了学生通过根的判别式来确定一元二次方程中待定系数范围,掌握代入法解题是解决此题的关键.17.(2019·天津中考模拟)某校九年级有600名学生,在体育中考前进行了一次模拟体测.从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:(Ⅰ)本次抽取到的学生人数为,图2中m的值为;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校九年级模拟体测中得12分的学生约有多少人?【答案】(Ⅰ)50,28;(Ⅱ)平均数:10.66;众数是:12;中位数是:11;【解析】解:(Ⅰ)本次参加跳绳的学生人数是4+5+11+14+16=50(人),m=100×1450=28.故答案是:50,28;(Ⅱ)平均数是:150(4×8+5×9+11×10+14×11+1612)=10.66(分),∵在这组数据中,12出现了16次,出现次数最多;∴这组样本数据的众数是:12;∵将这组样本数据自小到大的顺序排列,其中处于最中间位置的两个数都是11,有1111112+=; ∴这组样本数据的中位数是:11;(Ⅲ)∵该校九年级模拟体测中得12分的学生人数比例为32%,∴估计该校九年级模拟体测中得12分的学生有600×12%=72(人).答:该校九年级模拟体测中得12分的学生有72人.【点睛】本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(2019·海南中考模拟)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.(1)求∠APB 的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.【答案】(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】(1)在△APB 中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)只需算出航线上与P 点最近距离为多少即可过点P 作PH⊥AB 于点H在Rt△APH 中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50算出PH=25>25,不会进入暗礁区,继续航行仍然安全.考点:解直角三角形19.(2019·四川中考模拟)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.(1)求反比例函数的表达式;(2)点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P 在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.【答案】(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.20.(2019·黄冈市启黄中学中考模拟)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【答案】解:(1)证明见解析;(2)⊙O的半径是7.5cm.【解析】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴2235+=AD DE AE连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴AD AC AE AD=.∴3535=.则AC=15(cm).∴⊙O的半径是7.5cm.考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.B卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.(2019·山东中考模拟)若关于x的方程2x m2x22x++=--有增根,则m的值是▲【答案】0.【解析】方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.22.(2019·河南中考模拟)已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是_____.【答案】a=1.【解析】解:∵方程ax2﹣(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵△=(a+2)2﹣4a×2=(a﹣2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1、x2,∴x1•x2=,∵x1、x2均为正整数,∴为正整数,∵a 为整数,a≠2且a≠0, ∴a=1, 故答案为:a=1. 【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:①找出△=(a-2)2≥0;②找出x 1•x 2=为正整数.本题属于中档题,难度不大,解决该题型题目时,由方程的两根均为整数确定a 的值是难点.23.(2019·浙江中考模拟)如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.【答案】3π﹣6. 【解析】解:把4×4的正方形分成a ,b ,c ,d ,e ,阴影部分6个部分.可得S 阴=S 正方形﹣a ﹣b ﹣c ﹣d ﹣e =4×4﹣229049034433360360ππ⎛⎫⎛⎫⋅⋅⋅⋅⨯--⨯- ⎪ ⎪⎝⎭⎝⎭22349021903112233236023602ππ⎛⎫⎛⎫+⋅⋅⋅⋅-⨯--⨯⨯--⨯⨯ ⎪ ⎪⎝⎭⎝⎭=3π﹣6,故答案为3π﹣6.【点睛】本题考查扇形的面积,弓形的面积,三角形的面积,正方形的面积等知识,解题的关键是学会用分割法解决问题,属于中考填空题中的压轴题.24.(2019·重庆初三)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=43,反比例函数y=﹣12x的图象经过点C,与AB交与点D,则△COD的面积的值等于_____;【答案】10.【解析】详解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC.∵DE∥AO,∴S△ADO=S△DEO,同理S△BCD=S△CDE.∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO.∵tan∠AOC=43,∴OF=3x,∴OC=5x,∴OA=OC=5x.∵S菱形ABCO=AO•CF=20x2.∵C(﹣3x,4x),∴12×3x×4x=6,∴x2=1,∴S菱形ABCO=20,∴△COD的面积=10.故答案为10.点睛:本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.25.(2019·内蒙古中考模拟)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC 边上的动点(点M 不与B ,C 重合),CN⊥DM,CN 与AB 交于点N ,连接OM ,ON ,MN .下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN 2+CM 2=MN 2;其中正确的结论是_____.(填写所有正确结论的序号)【答案】①②④ 【解析】∵正方形ABCD 中,CD =BC ,∠BCD=90°, ∴∠BCN+∠DCN=90°, 又∵CN⊥DM,∴∠CDM+∠DCN=90°, ∴∠BCN=∠CDM,在△CNB 和△DMC 中,∠∠∠∠90BCN CDMBC CD CBN DCM ⎧=⎪=⎨⎪==⎩o ,∴△CNB≌△DMC(ASA ),①正确; ∴CM=BN ,∵四边形ABCD 是正方形,∴∠OCM=∠OBN=45°,OC =OB =OD ,在△OCM 和△OBN 中,∠O ∠OBN OC OBCM CM BN ⎧=⎪=⎨⎪=⎩,∴△OCM≌△OBN(SAS ), ∴OM=ON ,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,在△CON 和△DOM 中,∠O ∠DOM OC OD CN ON OM ⎧=⎪=⎨⎪=⎩,∴△CON≌△DOM(SAS ),②正确; ∵∠BON+∠BOM=∠COM+∠BOM=90°, ∴∠MON=90°,即△MON 是等腰直角三角形, 又∵△AOD 是等腰直角三角形, ∴△OMN∽△OAD,③不正确; ∵AB=BC ,CM =BN , ∴BM=AN ,222又Rt BMN 中,BM BN =MN ,+Q V 222AN CM =MN ∴+,④正确;故答案为①②④. 【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键. 二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 26.(2019·湖北中考模拟)大学生小亮响应国家创新创业号召,回家乡承包了一片坡地,改造后种植优质称猴桃.经核算这批称猴桃的种植成本为16元/kg .设销售时间为x (天),通过一个月(30天)的试销得出如下规律:①称猴桃的销售价格p (元/kg )与时间x (天)的关系: 当1≤x <20时,p 与x 满足一次函数关系.如下表:当20≤x ≤30时,销售价格稳定为24元/kg ;②称猴桃的销售量y (kg )与时间x (天)的关系:第一天卖出24kg ,以后每天比前一天多卖出4kg .(1)填空:试销的一个月中,销售价p(元/kg)与时间x(天)的函数关系式为;销售量y(kg)与时间x(天)的函数关系式为;(2)求试售第几天时,当天的利润最大?最大利润是多少?【答案】(1)p=136(120)224(2030)x xx⎧-+≤<⎪⎨⎪≤≤⎩,y=4x+24;(2)销售第30天时,利润最大,最大利润为1152元.【解析】解:(1)依题意,当1≤x<20时,设p=kx+b,得352336k bk b=+⎧⎨=+⎩,解得p=﹣12x+36,故销售价p(元/kg)与时间x(天)的函数关系式为,p=136(120)224(2030)x xx⎧-+<⎪⎨⎪⎩…剟,由②得,销售量y(kg)与时间x(天)的函数关系式为:y=4x+24,故答案为p=136(120)224(2030)x xx⎧-+<⎪⎨⎪⎩…剟,y=4x+24;(2)设利润为W,①当1≤x<20时,W=(﹣12x+36﹣16)(4x+24)=﹣2(x﹣17)2+1058∴x=17时,W最大=1058,②当20≤x≤30时,W=(24﹣16)(4x+24)=32x+192∴x=30时,W最大=1152∵1152>1058∴销售第30天时,利润最大,最大利润为1152元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).27.(2019·上海中考模拟)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【答案】(1)16(2)(3)或【解析】(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN=,∴∴AC=15∴AB==20∵S△ABC=×AB×AC=×BC×AF,∴AF==12,∵AF⊥BC∴cos∠EAF=cos∠MBN=∴AE=20∴EF==16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH==16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△FAE∽△FCA∴,∠AEF=∠FAC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF=∴BE=BF+EF=∵∠MBN=∠ACB,∠AEF=∠FAC,∴△BDE∽△CFA∴∴∴y=(0<x≤)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S△ABC=×AB×AC=×BC×AF,∴AF==12,∴BF=,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN=,∴BE=,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠M BN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴设CE=3k,AE=4k,(k≠0)∴BE=k,∵BC=BE﹣CE=25∴k=∴AE=,CE=,BE=∵∠ACB=∠FAE,∠AFC=∠AFE,∴△AFC∽△EFA,∴,设AF=7a,EF=20a,∴CF=a,∵CE=EF﹣CF=a=,∴a=,∴EF=,∵AC∥DF,∴,∴,∴DF=,综上所述:当BD为或时,△ADF与△ACE相似【点睛】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.28.(2019·天津二十中中考模拟)如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式; (2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB⊥x 轴于点B ,PC⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE⊥PF;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m , ∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF, ∴PC PB PF PE=. ∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F(0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省中考数学模拟试卷含答案A 卷 (100分)第Ⅰ卷 (选择题,共40分)一、选择题(本大题共10小题,每小题3分,共30分,以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的) 1、(2018.甘孜州)32-的倒数是( B ) A.32-B.23- C.32 D.232、(2018.甘孜州)由四个相同的小立方体塔成的几何体如图所示,则它的主视图是( A )3、(2018.甘孜州)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约4400000000人,这个数用科学记数法表示为( C )A.81044⨯B.8104.4⨯ C.9104.4⨯ D.10104.4⨯ 4、(2018.甘孜州)下列图形中,既是轴对称图形又是中心对称图形的是( D )5、(2018.甘孜州)如图,已知BC DE //,如果0701=∠,那么B ∠的度数为( C )A.070B.0100C.0110D.01206、(2018.甘孜州)在平面直角坐标系中,点A (2,3)与点B 关于y 轴对称,则点B 的坐标为( D )A.(-2,3)B.(-2,-3)C.(2,-3) D .(-3,-2)7、(2018.甘孜州)若4=x 是分式方程312-=-x x a 的根,则a 的值为(A) A.6 B.-6 C.4 D.-48、(2018.甘孜州)某校篮球队五名主力队员的身高分别是 173,180,181,176,178(单位:cm ),则这五名运动员身高的中位数是( C )A.181cmB.180cmC.178cmD.176cm9、(2018.甘孜州)抛物线()4322+--=x y 的顶点坐标( D )A.(-3,4)B.(-3,-4)C.(3,-4)D.(3,4)10.(2018.甘孜州)如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论正确得是( B )A.AB AC =B.BOD C ∠=∠21C.B C ∠=∠D. BOD A ∠=∠ 第Ⅱ卷 (非选择题.共110分)二、填空题(本大题共4小题,每小题4分,共16分);把答案填写在答题卡对应题号后面的横线上.11.(2018.甘孜州)已知3=x ,则x 的值为 3± 。

12.(2018.甘孜州)如图,已知BC AB =,要使CBD ABD ∆≅∆,还需添加一个条件,则可以添加的条件是 ∠ABD=∠CBD 或AD=CD 。

(只写一个即可,不需要添加辅助线)13.(2018.甘孜州)一次函数2-=kx y 的函数值y 随自变量x 的增大而减小,则k 的取值范围是 k <0 。

14.(2018.甘孜州)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,8=AC ,6=BD ,AD OE ⊥于点E ,交BC 于点F ,则EF 的长为524。

三、解答题(本大题共6分,共54分):解答应写出必要的文字说明,证明过程或演算步骤。

15.(2018.甘孜州)(本小题满分12分,每题6分)(1)计算:()45cos 414.3-8--π (2)化简:x x xx x --÷-1122解答:(1)解答:1-22-1-22224-1-22==×=原式 (2)解答:()()()2222-11-1-11--1-1-x x x x xx x x x x x x x x =+=+•=•=原式 16.(2018.甘孜州)(本小题满分6分)已知关于x 的方程022=+-m x x 有两个不相等的实数根,求实数m 的取值范围。

解答:.∵a=1,b=-2,c=m ,∴△=b 2-4ac=(-2)2-4×1×m=4-4m >0, 解得:m <1.17.(2018.甘孜州)(本小题满分8分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由045调为030,如图,已知原滑滑板AB 的长为4米,点D ,B,C 在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:414.12≈,732.13≈,449.26≈)解答:在Rt △ABC 中, AC=AB•sin45°=4×22=22. ∵∠ABC=45°, ∴AC=BC=22. 在Rt △ADC 中, AD=AC 2=42, AD ﹣AB=42﹣4≈1.66. ∴改善后滑板会加长1.66米.18.(2018.甘孜州)(本小题满分8分)某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图。

请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为 人,其中“非常满意”的人数为 人; (2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率。

解答:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人); 此次调查中结果为非常满意的人数为:50-4-8-20=18(人); (2)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况, ∴选择的市民均来自甲区的概率为:61122=19.(2018.甘孜州)(本小题满分10分)如图,已知一次函数b kx y +=的图象与反比例函数xy 8=的图象交于A,B 两点,点A 的横坐标是2,点B 的纵坐标是-2。

(1)求一次函数的解析式; (2)求AOB ∆的面积。

解答:(1)设A ,B 两点坐标分别为(2,m ),(n,-2);则带入反比例函数,易求出A(2,4),B(-4,-2),将A,B 两点代入一次函数解析式,联立{422-4-=+=+b k b k解得,{12==k b ,所以,一次函数解析式为2+=x y(2)令直线AB 与y 轴交点为D ,则OD=b=2;()()64222121=+××=+•=ΔB A AOB x x OD S20.(2018.甘孜州)(本小题满分10分)如图,AD 是ABC ∆的外接圆O Θ的直径,点P 在BC 延长线上,且满足B PAC ∠=∠. (1)求证:PA 是O Θ的切线;(2)弦AD CE ⊥交AB 于点F ,若12=⋅AB AF ,求AC 的长。

(1)是AD ☉O 的直径090ACD ∴=∠;090=∠+∠∴D CAD PBA D PBA PAC ∠=∠∠=∠,是PA AD PA PAD PAC CAD ∴⊥∴==+,,90∠∴,90∠∠∴00☉O 的切线(2)090,=∠+∠∴⊥CAD ACF AD CF ACF B ACF D D CAD ∠=∠∴==+,∠∠∴,90∠∠0ABC CAF BAC Δ∴,∠∠= ∽ACF Δ;ABACAC AF =∴AB AF AC •=∴2,32,12,122=∴=∴=•AC AC AB AFB 卷 (50分)一、填空题(每小题4分,共20分);把答案直接卸载答题卡上对应题号后面的横线上.21.(2018.甘孜州)已知mn n m 3=+,则nm 11+的值为 3 。

22.(2018.甘孜州)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为 20 。

23.(2018.甘孜州)直线上依次有A,B,C,D 四个点,AD=7,AB=2,若AB,BC,CD 可构成以BC 为腰的等腰三角形,则BC 的长为 5.22或 。

24.(2018.甘孜州)如图,在平面直角坐标系xOy 中,有一个由六个边长为1的正方形组成的图案,其中点A,B 的坐标分别为(3,5),(6,1)。

若过原点的直线l 将这个图案分成面积相等的两部分,则直线l 的函数解析式为 x y 53=。

25.(2018.甘孜州)如图,半圆的半径OC=2,线段BC 与CD 是半圆的两条弦,BC=CD ,延长CD 交直径BA 的延长线于点E ,若AE=2,则弦BD 的长为15 。

二、解答题(本大题共3小题,共30分);解答应写出必要的文字说明,证明过程或演算步骤.26.(2018.甘孜州)某商场将每件进价为80元的A 商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x 元,商场一天可通过A 商品获利润y 元.(1)求y 与x 之间的函数解析式(不必写出自变量x 的取值范围)(2)A 商品销售单价为多少时,该商场每天通过A 商品所获的利润最大? 解答:答案解:(1)由题意得,商品每件降价x 元时单价为x -100,销售量为x 8128+, 则()2560328-)80-x -(10081282++=+=x x x y(2)由(1)得,()28-232-2-=×==a b x 对称轴08-<∴开口向下,函数有最大值,即当2=x 时,y 有最大值。

27.(2018.甘孜州)(本题满分10分)如图,ABC Δ中,AB=AC,090=∠BAC ,点D ,E 分别在AB,BC 上,EDA EAD ∠=∠,点F 为DE 的延长线与AC 的延长线的交点. (1)求证:DE=EF(2)判断BD 和CF 的数量关系,并说明理由; (3)若3=AB ,5=AE ,求BD 的长。

解答:(1)证明:090∠∠∠∠∴,90∠=+=+=AFE EDA FAE EAD BACEF DE DE EF AE AFE FAE EDA EAD =∴==∴===,∠DE,∠AE ∴,∠∠(2)DM CE ME M BE 连接,使得边上取一点在,=DEMCEF DEM EF DE Δ∴∠=∠=,, ≌CEFΔ()SAS ;CFE MDE CF DM ∠=∠=,∴; CF DM //∴090=∠=∠∴BAC BDM DM BD DMB ABC AC AB =∴=∠∴=∠∴=,45,45,00CF BD =∴(3)过点E 作AD EN ⊥交AD 于点N , DN AN AD EN DE AE =∴⊥=;,5,3==AE AB ;5,2-3,====∴AE DE xDN x BD 则有设 2-3,45;45,00xx EN BN NEB ABC AD EN +==∴=∠∴=∠⊥ 中在END Rt Δ∴,根据勾股定理,求出1±=x ;其中1-=x 不符合题意,舍去。

相关文档
最新文档