中考数学(四川专版) 中考总复习四川省成都中考数学模拟试题
2024年四川省成都市中考数学模拟押题预测试题

2024年四川省成都市中考数学模拟押题预测试题一、单选题1.2024的相反数是( )A .2024B .2024-C .2024D .12024 2.有关数据显示,2024年1月,新能源汽车产销125.2万辆.将数据125.2万用科学记数法表示为( )A .512.5210⨯B .61.25210⨯C .70.125210⨯D .71.25210⨯ 3.下列各式中计算正确的是( )A .246+=a a aB .248a a a ⋅=C .()12660a a a a ÷=≠D .()32639a a -= 4.某无盖分类垃圾桶如右图所示,则它的俯视图是( )A .B .C .D . 5.下列事件中,属于必然事件的是( )A .投掷一枚硬币时,硬币的正面朝上B .投掷飞镖一次,命中靶心C .从只装有白球的盒子里摸出一个球,摸到一个白球D .玩“石头, 剪刀, 布”, 对方出“剪刀”6.若点()1,1A x -,()2,1B x ,()3,5C x 都在反比例函数5y x=-的图象上,则1x ,2x 与3x 的大小关系是( )A .321x x x <<B .213x x x <<C .132x x x <<D .231x x x <<7.我国古代数学专著《九章算术》中记载了一个“盈不足”的问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”大概意思是说:现有几个人共同买猪,若每人出100钱,则多出100钱;若每人出90钱,则钱刚刚好.设人数为x 人,则( )A .10010090x x -=B .10010090x x +=C .10010090x x += D .10010090x x -= 8.如图,已知正方形ABCD 的边长为4,E 是AB 边延长线上一点,2BE =,F 是AB 边上一点,将CEF △沿CF 翻折,使点E 的对应点G 落在AD 边上,则BF 的长是( )A .43BC .1 D二、填空题9在实数范围内有意义,则x 的取值范围是. 10.因式分解:299x -=.11.已知一次函数的图象2y kx =-与直线34y x =+平行, 则k =.12.如图, AD BE CF ∥∥,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若23=AB BC ,6DE =,则DF 的长为.13.在等边三角形ABC 中,6AB =,BD AC ⊥于点D ,点E ,F 分别是BC ,CD 上的动点,CEF V 沿EF 所在直线折叠后点C 落在BD 上的点'C 处,若'BEC V 是等腰三角形,则'BC =.三、解答题14.计算或解不等式组.(1)()16---(2)解不等式组()41713843x x x x ⎧+≤+⎪⎨--<⎪⎩并求它的所有整数解的和. 15.为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:根据统计整理并制作了如图所示的两幅统计图表:(1)在这次调查中一共抽查了名学生;(2)表中x,y的值分别为:x =,y =;(3)在扇形统计图中,C 部分所对应的扇形的圆心角是度;(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.16.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架80cm AC =,60cm BC =,,AB DO 均与地面平行,支架AC 与BC 之间的夹角90ACB ∠=︒.(1) 求两轮轴,A B 之间的距离;(2)若OF 的长度为,135FOD ∠=︒,求点F 到AB 所在直线的距离. 17.如图,ABC V 中,10AB BC ==,以AB 为直径的O e 交AC 于点D ,过点D 分别作DE AB ⊥于点E ,DF BC ⊥于点F ,延长DE 交O e 于点G ,延长CF 分别交DG 于点H ,交O e 于点M .(1)求证:DF 是O e 的切线;(2)若1tan 2A =,求GH ,HM 的长. 18.如图,反比例函数2y x =与一次函数12y x =的图象交于点()2,1A --和点B ,点P 是反比例函数在第一象限内的图象上的动点,且在直线AB 的上方.(1)填空:点B 的坐标为,线段AB 的长度为 ;(2)若点P 的横坐标为1,试判断PAB V 的形状,并说明理由;(3)若直线,PA PB 与x 轴分别交于M 、N 两点,求证:PM PN =.四、填空题19.设x 1,x 2是方程2x 2-4x -3=0的两个根,则1122x x x x ++的值是.20.关于x 的方程1122x m x x x+--=--的解为非负数,则m 的取值范围是. 21.如图,O e 与四边形ABCD 各边都相切,切点分别为E ,F ,G ,H ,四边形的周长为36cm ,则+=AB CD cm .22.在平面直角坐标系中,抛物线2(0)y ax bx c a =+++≠与x 轴的一个交点坐标 2,0 ,对称轴为直线1x =,其部分图象如图所示,下列结论:①抛物线过原点;②<0a b c -+;③20a b c ++=;④抛物线的顶点坐标为(1,)2b ;⑤当1x <时,y 随x 的增大而增大.其中结论正确的是 .23.如图,矩形ABCD 中,28AB AD ==,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE ,则DE 的长为.五、解答题24.“抖音直播带货”已经成为时尚的销售方式,某带货主播准备销售一种防护品,进货价格为每件50元,并且每件的售价不低于进货价.经过初期试销售调查发现:每月的销售量y (件)与每件的售价x (元)之间满足如图所示的函数关系.(1)求每月的销售量y (件)与每件的售价x (元)之间的函数关系式;(不必写出自变量的取值范围)(2)物价部门规定,该防护品每件的利润不许高于进货价的50%.该带货主播销售这种防护品每月的总利润要想达到10000元,那么每件的售价应定为多少元?25.如图1,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.26.在ABC V 中,90C ∠=︒,AC BC =,直线DE 分别与AC ,BC 交于点D ,E ,点P 是直线DE 上一动点,将CP 绕点C 逆时针旋转90︒,得到线段CQ ,连接PQ .(1)若45CDE ∠=︒,根据条件解答下列问题: ①如图1,当点P 与点D 重合时,直接写出AP 与BQ 的数量关系; ②如图2,当点P 与点D 不重合时,①中结论仍然成立吗?如果成立,请证明:如果不成立,请说明理由.(2)若30∠=︒CDE ,如图3,CD =2AD =,连接BQ ,当BQ 最小时,求BQ DE的值.。
2024年四川省成都市中考数学预测试卷(一)及答案解析

2024年四川省成都市中考数学预测试卷(一)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.(4分)在﹣2,,0,﹣2.5四个数中,最小的数是()A.﹣2B.C.0D.﹣2.52.(4分)2023年上半年我国新能源汽车取得显著成绩,新能源汽车使用环境持续优化,截至6月底,全国累计建成各类充电桩超过660万台.将数据“660万”用科学记数法表示为()A.6.6×106B.6.6×105C.660×105D.66×105 3.(4分)下列计算正确的是()A.x+x=x2B.(x+y)2=x2+y2C.(﹣x+3)(x+3)=9﹣x2D.3(x﹣2y)=3x﹣2y4.(4分)2023年7月28日至8月8日,第31届世界大学生夏季运动会在四川省成都市举行,为此,成都市共建成49个场馆,其中新建场馆13处,改造场馆36处.大运村设在成都大学,依托现有校区和建设发展规划,新建生活服务中心、医疗中心、国际教育交流中心、实训楼等单体建筑22栋.数据49,13,36,22的中位数为()A.13B.24.5C.29D.365.(4分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O.若要使平行四边形ABCD成为矩形,需要添加的条件是()A.AC⊥BD B.OA=OB C.AB=BC D.∠ABD=∠DBC 6.(4分)川剧由昆腔、高腔、胡琴、弹戏、灯调五种声腔组成,其中,除灯调系源于本土外,其余均.由外地传入.如果小曦要选择其中一种声腔来学习,那么选中外地传入声腔的概率为()A.B.C.1D.7.(4分)小明仿照我国古算题编写了一道题:“今有九百元可得鸡兔共十又一只,一百八十元鸡两只,二百四十元兔四只.问鸡兔各几何?”设鸡有x只,兔有y只,则可列方程组为()A.B.C.D.8.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,M是抛物线的顶点,则下列说法正确的是()A.abc<0B.b+3a>0C.当x>0时,y的值随x值的增大而增大D.若CM⊥AM,则二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)因式分解:3x2y﹣27y=.10.(4分)已知反比例函数图象上的两点(﹣2,y1),(3,y2),且y1>y2,则k 的取值范围是.11.(4分)如图,△ABC≌△DEF,AE=2,AD=3,则AB=.12.(4分)在平面直角坐标系xOy中,点M(﹣2,5)关于x轴对称的点的坐标是.13.(4分)如图,△ABC为锐角三角形,点D在边BC上,∠B=∠BAD=∠CAD.分别以点A,C为圆心、大于的长为半径作弧,两弧相交于点E,F,作直线EF交AD于点P.若,△ABC的面积为8,则△CDP的面积为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:15.(8分)成都市某中学为2024年“尤伯杯”预热,组织全校学生参加了“尤伯杯羽毛球比赛”知识竞赛,为了解全校学生竞赛成绩x(单位:分)的情况,随机抽取了一部分学生的成绩,分成四组:A.70分以下(不包括70);B.70≤x<80;C.80≤x<90;D.90≤x≤100,并绘制了如下两幅不完整的统计图.根据上述信息,解答下列问题.(1)被抽取的学生成绩在C组的有人,请补全条形统计图;(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,若该中学全校共有3600人,则成绩在A组的大约有人;(3)现从D组前四名(2名男生和2名女生)中任选2名代表发表感言,请用列表或画树状图的方法,求选中1名男生和1名女生的概率.16.(8分)屏风是一种古老的家具,它作为一种灵活的空间元素、装饰元素和设计元素,具有实用和艺术欣赏两方面的功能,能通过自身形状、色彩、质地、图案等特质融于丰富多元的现代空间环境,传达着新中式的意味,演绎出中国传统文化韵味,因此至今仍然被广泛地运用.小曦在房间墙角摆放了一架双面屏风,俯视图如图所示,两面屏风AC,BC与墙角AOB围成了一个独立空间用来堆放杂物,经测量AC=BC=1m,∠CAO=∠CBO=60°,请算出这个独立空间的面积.(结果精确到0.01m2.参考数据:,)17.(10分)如图,在Rt△ABC中,∠ACB=90°,AB与⊙O相切于点F,点C为⊙O上一点,CF平分∠ACB,AC和BC分别与⊙O相交于点E,D,DG⊥AB于点G.(1)求证:DG是⊙O的切线;(2)若,⊙O的半径为,求AF的长.18.(10分)如图,在平面直角坐标系中,一次函数y=3x+b的图象与坐标轴交于点A,B,与反比例函数的图象交于点C(1,a),D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,其中点A的坐标为(﹣3,0).(1)求反比例函数的表达式;(2)连接DB,DC,当△DCE的面积等于△DBC面积的2倍时,求点E的坐标;(3)若P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,求点D的纵坐标.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知非零实数a,b满足a+3b+2ab=0,则=.20.(4分)已知一元二次方程x2﹣6x+m=0的一个根为,则m的值为.21.(4分)“不倒翁”玩具的主视图如图所示,PA,PB分别与不倒翁底部所在的⊙O相切于点A,B,若⊙O的半径为5cm,∠P=50°,则劣弧AB的长为.(结果保留π)22.(4分)一个直角三角形的边长都是整数,则称这种直角三角形为“完美勾股三角形”,k为其面积和周长的比值.当k=2时,满足条件的“完美勾股三角形”的周长为;当0<k≤1时,若存在“完美勾股三角形”,则k =.23.(4分)如图,在正方形ABCD中,O是BC的中点,P是边CD上一动点,将△OCP 沿OP翻折得△OC′P,连接C′D,在C′D左侧有一点E,使得△C′DE为等腰直角三角形,且∠DC′E=90°,连接CE.若正方形ABCD的边长为6,则CE的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2024年世界园艺博览会将在成都举行,某社区决定采购甲、乙两种盆栽美化环境,若购买20盆甲种盆栽和10盆乙种盆栽,则需要130元;若购买30盆甲种盆栽和20盆乙种盆栽,则需要220元.(1)甲、乙两种盆栽的单价各是多少元?(2)若该社区联合附近社区购买甲、乙两种盆栽共1000盆,设购买m盆(500≤m≤700)乙种盆栽,总费用为W元,请你帮社区设计一种购买方案,使总花费最少,并求出最少费用.25.(10分)如图,在平面直角坐标系中,已知一抛物线经过原点,与x轴交于另一点A,顶点坐标为(2,﹣1),过点G(2,0)的直线y=kx+b(k≠0)与抛物线交于点B,C,且点B在点C的左侧.(1)求抛物线的函数表达式;(2)连接AB,AC,当△ABG的面积与△ACG的面积之比为1:2时,求直线的函数表达式;(3)若有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,求证:.26.(12分)如图,已知△ABC为等边三角形,D,E分别是边BC,AC上一点,AD与BE 相交于点F,点G是射线AD上一点,且BD=BG=CE,CF与EG相交于点H.(1)求∠AFE的度数;(2)求证:H是EG的中点;(3)若BD=4,AF=6,求△ABC的边长.2024年四川省成都市中考数学预测试卷(一)参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.【分析】根据负数小于零小于正数得到答案即可.【解答】解:,故选:D.【点评】本题主要考查有理数比较大小,熟练掌握有理数大小比较是解题的关键.2.【分析】确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值小于1时,n 是负整数.据此求解即可.【解答】解:660万=6600000=6.6×106,故选:A.【点评】本题考查科学记数法,关键是熟记科学记数法的一般形式为a×10n,其中1≤|a|<10,n为整数.3.【分析】根据运算法则和完全平方公式、平方差公式逐项判断即可.【解答】解:A、x+x=2x,原计算错误,不符合题意;B、(x+y)2=x2+2xy+y2,原计算错误,不符合题意;C、(﹣x+3)(x+3)=9﹣x2,原计算正确,符合题意;D、3(x﹣2y)=3x﹣6y,原计算错误,不符合题意;故选:C.【点评】本题考查整式的混合运算,关键是完全平方公式的应用.4.【分析】根据中位数的定义,先将数据从小到大排序,中间两数的平均数就是这组数据的中位数.【解答】解:将数据49,13,36,22从小到大排序为13,22,36,49,所以这组数据的中位数为.故选:C.【点评】本题考查了求中位数,正确理解中位数的定义是解题的关键.5.【分析】根据矩形的判定方法逐项判断即可.【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,即AC=BD,∴平行四边形ABCD是矩形,符合题意;C、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠BDC,∵∠ABD=∠DBC,∴∠BDC=∠DBC,∴BC=CD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意,故选:B.【点评】本题考查矩形的判定,涉及到平行四边形的性质、菱形的判定、等腰三角形的判定等知识,熟知矩形的判定是解答的关键.6.【分析】根据概率公式直接求解即可.【解答】解:五种声腔中,外地传入的声腔有四种,故中外地传入声腔的概率,故选:D.【点评】本题主要考查了概率的求法,熟练掌握概率公式是解题的关键.7.【分析】根据题目中的等量关系列出方程即可.【解答】解:根据题意可得:,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,读懂题意是解题的关键.8.【分析】根据抛物线的位置判断即可;利用对称轴公式,可得b=﹣4a,可得结论;应该是x>2时,y随x的增大而增大;设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x 轴于点K.利用相似三角形的性质,构建方程求出a即可.【解答】解:A.∵抛物线开口向上,∴a>0,∵对称轴是直线x=2,∴,∴b=﹣4a<0∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故不正确,不符合题意,B.∵b=﹣4a,a>0,∴b+3a=﹣a<0,故不正确,不符合题意,C.观察图象可知,当0<x≤2时,y随x的增大而减小,不正确,不符合题意,D.∵抛物线经过(﹣1,0),(5,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,∴M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.∵AM⊥CM,∴∠AMC=∠KMH=90°,∴∠CMH=∠KMA,∵∠MHC=∠MKA=90°,∴△MHC∽△MKA,∴,∴,∴,∵a>0,∴,故正确,符合题意;故选:D.【点评】本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】首先提取公因式3y,再利用平方差进行二次分解即可.【解答】解:原式=3y(x2﹣9)=3y(x+3)(x﹣3),故答案为:3y(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】利用反比例函数的增减性求参数,分类讨论即可求解.【解答】解;若2k+1>0,∵﹣2<0<3,∴y1<0<y2,与y1>y2矛盾,∴2k+1<0,解得:.故答案为:.【点评】本题考查了已知反比例函数的增减性求参数,分类讨论即可求解.11.【分析】根据全等三角形的性质求解即可.【解答】解:∵AE=2,AD=3,∴DE=AD+AE=5,∵△ABC≌△DEF,∴AB=DE=5,故答案为:5.【点评】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.12.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:根据平面直角坐标系中对称点的规律可知,点M(﹣2,5)关于x轴的对称点为(﹣2,﹣5).故答案为:(﹣2,﹣5).【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【分析】根据角平分线的性质得到S△ABD:S△ADC=5:3,进而,,设BD=5x,CD=3x,根据等腰三角形的判定与性质,结合三角形的外角性质得到BD=AD=5x,CD=CP=AP=3x,则DP=2x,进而得到S△CDP:S△CAP=DP:AP=2:3即可求解.【解答】解:设点D到AB、AC的距离为a,b,∵∠BAD=∠CAD,∴a=b,∵,:S△ADC=5:3,又△ABC的面积为8,∴S△ABD∴,,设BD=5x,CD=3x,∵∠B=∠BAD,∴BD=AD=5x,∠PDC=2∠B,由作图痕迹得PE垂直平分AC,则PA=PC,∴∠CAP=∠ACP,则∠CPD=2∠CAD=2∠B,∴∠CPD=∠CDP,∴CD=CP=AP=3x,则DP=2x,:S△CAP=DP:AP=2:3,∴S△CDP∴,故答案为:.【点评】本题考查等腰三角形的判定与性质、线段垂直平分线的画法及其性质、三角形的外角性质、角平分线的性质等知识,解题的关键是掌握相关知识的灵活运用.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先根据二次根式的性质、特殊角的三角函数值、负整数指数幂以及绝对值的性质计算,再加减运算即可求解;(2)先求得每个不等式的解集,再求它们的公共部分即为该不等式组的解集.【解答】解:(1)﹣2tan60°﹣=﹣2×﹣4+4﹣2=;(2)不等式组,解不等式①,得x≥2,解不等式②,得x<4,∴该不等式组的解集为2≤x<4.【点评】本题考查实数的混合运算、解一元一次不等式组,涉及二次根式的化简、绝对值的化简、特殊角的三角函数值、负整数指数幂的运算,正确求解是解答的关键.15.【分析】(1)先由D组人数除以其所占的百分比求出抽取总人数,进而可求得C组人数,进而补全条形统计图即可;(2)用360°乘以B组人数所占的百分比即可求得其对应的圆心角的度数,用全校总人数乘以样本中A组人数所占的比例求解即可;(3)画树状图得到所有等可能的结果数,选出满足条件的结果数,然后利用概率公式求解即可.【解答】解:(1)抽查总人数为18÷30%=60(人),C组人数为60﹣6﹣12﹣18=24(人),故答案为:24,补全条形统计图如图:(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,成绩在A组的大约有(人),故答案为:72°,360;(3)画树状图:共有12种等可能的结果,其中选中1名男生和1名女生的有8种结果,故选中1名男生和1名女生的概率为.【点评】本题考查扇形统计图和条形统计图的关联、用样本估计总体、用列表或画树状图法求概率,理解题意,能从统计图中获取信息是解答的关键.16.【分析】过C作CE⊥OA于E,CF⊥OB于F,利用锐角三角函数分别求得AE,CE,CF,BF,利用三角形的面积和矩形的面积公式求解即可.【解答】解:过C作CE⊥OA于E,CF⊥OB于F,则四边形CEOF是矩形,在Rt△AEC中,,,在Rt△CFB中,,,+S△CFB+S矩形CEOF∴这个独立空间的面积为S△AEC==≈1.18m2.【点评】本题考查解直角三角形的应用,解题的关键是掌握其知识的灵活运用.17.【分析】(1)连接OF,OD,分别根据圆周角定理、切线的性质及垂直定义得到∠DGF=∠OFG=∠DOF=90°,证得四边形OFGD是矩形,则∠ODG=90°,根据切线的判定可得结论;(2)连接OE,过E作EH⊥AB于H,证明四边形EHFO是正方形得到,利用正切定义求得,进而可求解.【解答】(1)证明:连接OF,OD,∵CF平分∠ACB,∠ACB=90°,∴,则∠DOF=2∠BCF=90°,∵AB与⊙O相切于点F,∴∠OFG=∠OFA=90°,∵DG⊥AB,∴∠DGF=90°,则∠DGF=∠OFG=∠DOF=90°,∴四边形OFGD是矩形,∴∠ODG=90°,即OF⊥AB,∵OF是⊙O的半径,∴DG是⊙O的切线;(2)解:连接OE,过E作EH⊥AB于H,则∠EHF=∠EHA=90°,∵∠EOF=2∠ACF=90°,∴∠EOF=∠EHF=∠OFH=90°,∴四边形EHFO是矩形,∵OE=OF,∴四边形EHFO是正方形,∴,∵,∴,∴.【点评】本题考查切线的判定与性质、矩形的判定与性质、正方形的判定与性质、圆周角定理、角平分线的定义、锐角三角函数等知识,综合性强,熟练掌握相关知识的联系与运用是解答的关键.18.【分析】(1)先把(﹣3,0)代入y=3x+b求出一次函数解析式,再求出交点C(1,a),最后代入反比例函数解析式即可.=2S△BDE,表示出D、E (2)当△DCE的面积等于△DBC面积的2倍时即可得到S△CDE坐标,再计算即可;(3)表示出D、E、P坐标,根据△DPE与△AOB相似计算即可,注意分情况讨论:△AOB∽△PED;△AOB∽△DEP;△AOB∽△PDE;△AOB∽△EDP;△AOB∽△EPD;△AOB∽△DPE等情况分别解答即可.【解答】解:(1)一次函数y=3x+b的图象与坐标轴交于点A,B,其中点A的坐标为(﹣3,0).代入得:0=3×(﹣3)+b,解得b=9,∴y=3x+9,∴B(0,9);一次函数y=3x+9的图象与反比例函数的图象交于点C(1,a),代入得:a=3+9=12,∴C(1,12),把C(1,12)代入y=(x>0)得:12=,解得:k=12,∴y=(x>0),∴反比例函数的表达式为y=(x>0);(2)如图1,D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,连接CD、BD,∴DE∥x轴,∴设D(m,),把纵坐标代入一次函数y=3x+9得:∴y=3x+9=,解得x=﹣3,∴点E的坐标为(﹣3,),=2S△BDE,∵S△CDE∴(12﹣)•DE=2×(9﹣)•DE,解得m=2,∴点E的坐标为(﹣1,6);(3)设P(n,0),由(2)可得,,其中m>0,P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,分以下几种情况:当△AOB∽△PED时,当PE⊥x轴时,如图2,点E、P的横坐标相等,故点P的坐标为,∴PE=,DE=m﹣(﹣3),∴==,当==时,△AOB∽△PED,∴=,解得m1=﹣8,m2=5,∴m=5,∴,当==3时,△AOB∽△DEP,∴=3,解得m=,∴m=,∴,同理,当PD⊥x轴时,如图3,点P的横坐标与点D的横坐标相等,故点P的坐标为P (m,0),∴,,∴==,当==时,△AOB∽△PDE,∴点D的坐标为,当==3时,△AOB∽△EDP,∴点D的坐标为,当PD⊥PE时,作EM⊥x于M,DN⊥x于N,则△EPM∽△PDN,∴==,此时EM=DN=,DE=MN=PM+PN=m﹣+3,当△AOB∽△EPD时,==,∴===,∴PN=3EM=,PM=DN=,∴=,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),同理当△AOB∽△DPE时,==3,∴====3,∴,,∴,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),综上所述,当△DPE与△AOB相似时,求点D的纵坐标为,,.【点评】本题考查反比例函数与一次函数综合,相似三角形的判定与性质,解答本题的关键是分类讨论思想的运用.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】先根据分式的混合计算法则化简所求式子,再根据已知条件式得到a+3b=﹣2ab,据此代值计算即可.【解答】解:===,∵a+3b+2ab=0,∴a+3b=﹣2ab,∴原式=,故答案为:﹣2.【点评】本题主要考查了分式的化简求值,掌握约分是关键.20.【分析】将根为代入方程即可得到答案.【解答】解:将代入一元二次方程x2﹣6x+m=0,得,解得m=6,故答案为:6.【点评】本题主要考查一元二次方程的解,明确方程的解一定适合方程是解题的关键.21.【分析】连接OB,由切线的性质得∠PAO=∠PBO=90°,求出∠AOB=130°,然后利用弧长公式求解即可.【解答】解:连接OB.∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∴∠AOB=180°﹣∠P=130°,劣弧AB的长为:;故答案为:.【点评】本题考查由三视图,切线的性质,弧长公式,解题的关键是掌握切线的性质,属于中考常考题型.22.【分析】利用a=3,b=4,c=5的直角三角形来研究,对三边同时扩大1,2,3,⋯倍数来计算,看是否满足题意即可求解.【解答】解:设直角三角形的边长分别为a,b,c,其中a,b为直角边,且a<b,由题意知:,利用特殊的勾三股四直角三角形来研究,当a=3,b=4,c=5,周长=12,面积=6,k=,上式不成立,依次将a=3,b=4,c=5扩大相同的倍数,当都扩大2倍时:a=6,b=8,c=10,周长=24,面积=24,k=1,等式不成立,当都扩大3倍时:a=9,b=12,c=15,周长=36,面积=54,k=1.5,等式不成立,当都扩大4倍时:a=12,b=16,c=20,周长=48,面积=96,k=2,等式成立,故此时满足条件的“完美勾股三角形”的周长为:48;当a=10,b=24,c=26,周长=60,面积=120,k=2,等式成立,当0<k≤1时,当a=3,b=4,c=5时,,当a=6,b=8,c=10时,,故答案为:48;或1.【点评】本题考查了勾股定理,关键是注意都是各边长都是整数.23.【分析】构造等腰直角△DOM,即可证明△MDE∽△ODC′,得到,,再证明△MON≌△ODC,得到MN=OC=3,ON=CD=6,求出,最后根据CE≥CM﹣AE得到CE的最小值.【解答】解:连接OD,过O作OD⊥OM,取OD=OM,连接MD,ME,过M作MN ⊥CN,∵OD⊥OM,OD=OM,∴,∠MDO=45°,∵△C′DE为等腰直角三角形,∴,∠EDC′=45°,∴,∠ODC′=∠MDE=45°﹣∠ODE,∴△MDE∽△ODC′,∴,∵正方形ABCD中,O是BC的中点,正方形ABCD的边长为6,∴OC=3,CD=BC=6,∵将△OCP沿OP翻折得△OC′P,∴OC=OC′=3,∴,∵MN⊥CN,∴∠MNO=∠DCO=90°,∵∠MON=∠ODC=90°﹣∠COD,OD=OM,∴△MON≌△ODC,∴MN=OC=3,ON=CD=6,∴CN=9,∴,∴,∴当C、M、E三点共线时CE有最小值,最小值为,故答案为:.【点评】本题考查相似三角形的判定与性质,全等三角形的判定与性质,正确记忆相关知识点是任解题关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,直接根据题意列方程组求解即可;(2)根据(1)中单价,由费用=单价×数量列函数关系式,利用一次函数性质求解即可.【解答】解:(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,根据题意,得,解得,答:甲种盆栽的单价为4元,乙种盆栽的单价为5元;(2)根据题意,得W=4(1000﹣m)+5m=m+4000,∵1>0,500≤m≤700,∴W随m的增大而增大,∴当m=500时,W有最小值,最小值为W=500+4000=4500,1000﹣m=1000﹣500=500(盆),答:当购买甲种盆栽和乙种盆栽各500盆时,总花费最少,最少费用为4500元.【点评】本题考查二元一次方程组的应用、一次函数的应用,理解题意,正确列出方程以及函数关系式是解答的关键.25.【分析】(1)利用待定系数法求解即可;(2)首先将G(2,0)代入直线解析式得到y=kx﹣2k,然后与抛物线联立得到x2﹣(4k+4)x+8k=0,求出x B和x C,然后根据题意得到,代入x B和x C得到,进而求解即可;(3)由(2)求出,,然后根据题意得到BD,CE,然后代入整理求解即可.【解答】解:(1)∵抛物线顶点坐标为(2,﹣1),∴设抛物线解析式为y=a(x﹣2)2﹣1,∵抛物线经过原点,∴将(0,0)代入得,0=a(0﹣2)2﹣1,解得,∴;(2)∵直线y=kx+b(k≠0)过点G(2,0),∴0=2k+b,∴b=﹣2k,∴直线y=kx﹣2k,联立,整理得,x2﹣(4k+4)x+8k=0,解得,,∴x B+x C=4k+4,∵△ABG的面积与△ACG的面积之比为1:2,∴,∴,∴,整理得x C+2x B=6,将,代入x C+2x B=6,整理得,∴9k2=k2+1,∴8k2=1,∴或(舍去),∴直线的函数表达式为;(3)由(2)得,,,∴,,∵有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,∴,,∴=======1.【点评】此题考查了二次函数和一次函数综合题,待定系数法求解析式,面积综合题,解一元二次方程等知识,解题的关键是正确表示出点B和点C的坐标.26.【分析】(1)证明△ABD≌△BCE(SAS)得出∠BAD=∠EBC,根据三角形的外角的性质,即可求解;(2)如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,则△ABF≌△ACN,进而证明△BFG≌△CNE(SAS)得出B,E,N三点共线,△AFN是等边三角形,过点E作EM∥NC,根据平行线分线段成比例和相似三角形的性质得出,可得EM=GF,进而证明△EHM≌△GHF,根据全等三角形的性质,即可得证;(3)过点E作ET⊥AG于点T,设TF=x,则,,证明△ENC∽△EFA,得出,解,进而即可求解.【解答】(1)解:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠BCE=60°,又∵BD=EC,∴△ABD≌△BCE(SAS),∴∠BAD=∠EBC,∴∠AFE=∠BAD+∠ABF=∠EBC+∠ABF=∠ABC=60°;(2)证明:如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,连接EN,∴△ABF≌△ACN,∴BF=CN,AF=AN,∠AFB=∠ANC,设∠BAG=α,则∠EBC=∠BAG=α,∵BD=BG,∴∠BDG=∠BGD=∠ABD+∠BAD=60°+α,∵∠AFE=60°,∴∠BFG=60°,∴∠FBG=180°﹣60°﹣(60°+α)=60°﹣α=∠ABF=∠ACN,在△BFG和△CNE中,,∴△BFG≌△CNE(SAS),∴∠BFG=∠CNE=60°,∠BGF=∠CEN=60°+α,∵∠AEB=∠CBE+∠ACB=60°+α,∴∠AEB=∠CEN,∴B,E,N三点共线,∵AF=AN,∠AFE=60°,∴△AFN是等边三角形,∴∠ANF=60°,∵∠AFB=∠ANC=120°,∴∠ENC=60°=∠AFE,∴FG∥CN,过点E作EM∥NC,交CF于点M,∴AG∥EM∥NC,∴△CEM∽△CAF,∴,∴EM=GF,∵EM∥FG,∴∠HEM=∠HGF,在△EHM和△GHF中,,∴△EHM≌△GHF(AAS),∴GH=HE,即H是GE的中点;(3)解:如图所示,过点E作ET⊥AG于点T,∵∠AFE=60°,∴EF=2TF,设TF=x,则,∴AT=AF﹣TF=6﹣x,∴,∵NC∥AG,∴△ENC∽△EFA,∴,∵EC=BG=BD=4,FN=AF=6,EN=6﹣2x,即,∴,,∴,整理得:(x2+9)2﹣9(x2+9)x+14x2=0,即(x2+9﹣7x)(x2+9﹣2x)=0,解得:(舍去)或,∴,∴.【点评】本题是三角形综合题,考查了旋转的性质,相似三角形的性质与判定,等边三角形的性质与判定,勾股定理,平行线分线段成比例,含30度角的直角三角形的性质,熟练掌握旋转的性质是解题的关键。
(四川成都卷)中考数学模拟考试(含答案)

中考数学模拟考试(四川成都卷)(本卷共26小题,满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.5-的相反数是()A.5B.5-C.0.2D.0.2-2.如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.3.据海外网消息,根据Worldometer实时统计数据,截至北京时间2021年3月16日6时30分左右,数据“12000万”用科学记数法表示为( ) A .1.2×107B .12×107C .1.2×108D .1.2×1094.下列运算中,正确的是( ) A .2a 3﹣a 3=2 B .(a 3)2=a 9 C .2a 2•3a 3=6a 6 D .a 7÷a 5=a 25.在函数12x y x +=-中,自变量x 的取值范围是( ) A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠6.若关于x 的一元二次方程x 2-2x +a =0有实数根,则a 应满足( ) A .a ≥1B .a ≤1C .a ≤-1D .a ≠07.ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若20B ∠=︒,则C ∠的大小等于( )A .50︒B .25︒C .40︒D .20︒8.已知二次函数2(0)y ax bx c a =++≠的图象如图,分析下列四个结论: ①0abc <;①240b ac ->;①30a c +>;①22()a c b +<, 其中正确的结论有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.分解因式:3a a-=__.10.若M(12-,1y),N(14-,2y),P(12,3y)三点都在函数(0)ky kx=<的图象上y1,y2,y3的大小关系是______.11.如图,在等腰①ABD中,AB=AD,①A=32°,取大于12AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,则①EBD的度数为______.12.如图,在菱形ABCD中,AC与BD交于点E,F是BC的中点,如果EF=3,那么菱形ABCD的周长是_____.13.若关于x的分式方程2m有增根,则m的值为三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)计算:212017223tan603-⎛⎫-+--︒ ⎪⎝⎭;(2)解方程组148x yx y+=⎧⎨+=-⎩.15.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.16.一辆小汽车在某城市道路上自西向东行驶,某“玩转数学”活动小组在距路边20米的点C处放置了“检测仪器”,测得该车从北偏西60°方向的点A行驶到东北方向的点B,所用时间为6秒.(1)求AB的长;(2)求该车的速度约为多少米/秒?(精确到0.1,参考数据:2≈1.414,3≈1.732)17.如图,AB 为①O 的直径,AC 为弦,①BCD =①A ,OD 交①O 于点E . (1)求证:CD 是①O 的切线;(2)若CD =4,AC =2.7,cos①BCD =920,求DE 的长度.18.如图,一次函数12y x b =-+的图象分别交x 轴,y 轴于D ,C 两点,交反比例函数2ky x=,图象于()1,6A -,(),2B m -两点.(1)求k ,b 的值;(2)点E 是y 轴上点C 下方一点,若132AEB S =△,求E 点的坐标;(3)当12y y >时,x 的取值范围是_______.B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.已知关于x 、y 的方程组2128x y ax y a +=-⎧⎨+=+⎩,则代数式2x +y =___.20.关于x 的不等式组1(25)131(3)2x x x x a ⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a 的取值范围是 _____.21.已知1a 为实数,规定运算:2111a a =-,3211a a =-,4311a a =-,……,111n n a a =--.按以上算法计算:当14a =时,2022a 的值等于______. 22.如图,已知双曲线y =12x(x <0)和y =k x (x >0),12y x =与直线交于点A ,将直线OA 向下平移与双曲线y =12x,与y 轴分别交于点,B P ,与双曲线y =kx 交于点C ,S △ABC =6,BP :CP =2:1,则k 的值为____.23.如图,ABCD 为正方形,①CAB 的角平分线交BC 于点E ,过点C 作CF ①AE 交AE 的延长线于点G ,CF 与AB 的延长线交于点F ,连接BG 、DG 、与AC 相交于点H ,则下列结论:①①ABE ①①CBF ;①GF =CG ;①BG ①DG ;①DH =21)AE ,其中正确的是______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.我市某苗木种植基地尝试用单价随天数而变化的销售模式销售某种果苗,利用30天时间销售一种成本为10元/株的果苗,售后经过统计得到此果苗,单日销售量n (株)与第x 天(x 为整数)满足关系式:n =-x +50,销售单价m (元/株)与x 之间的函数关系为m =()()1201202420102130x x x x⎧+≤≤⎪⎪⎨⎪+≤≤⎪⎩ (1)求该基地销售这种果苗30天里单日所获利润y (元)与x (天)的函数关系式;(2)为回馈本地居民,基地负责人决定将这30天中,其中获利最多的那天的利润全部捐出进行“精准扶贫”.试问:基地负责人这次为“精准扶贫”捐赠多少钱?25.如图,抛物线y =ax 2+bx +8(a ≠0)与x 轴交于点A (﹣2,0)和点B (8,0),顶点为D ,连接AC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC△PBC=35S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.26.如图,在四边形ABCD中,①A=①ADC=90°,AB=AD=10,CD=15,点E,F分别为线段AB,CD 上的动点,连接EF,过点D作DG①直线EF,垂足为G.点E从点B向点A以每秒2个单位的速度运动,同时点F从点D向点C以每秒3个单位的速度运动,当点E运动到点A时,E,F同时停止运动,设点E 的运动时间为t秒.(1)求BC的长;(2)当GE=GD时,求AE的长;(3)当t为何值时,CG取最小值?请说明理由.数学·参考答案A 卷一、选择题1 2 3 4 5 6 7 8 AACDCBAB二、填空题9. (1)(1)a a a +- 10. y 2>y 1>y 3 11.42°12.24 13.23三、解答题14.【解析】(1)原式912323=-+63=;(2)148x y x y +=⎧⎨+=-⎩①②,①-①得:39x =-, 解得:3x =-,把3x =-代入①得:31y -+=, 解得:4y =,则方程组的解为34x y =-⎧⎨=⎩.15. 【解析】(1)解:根据题意可列表或树状图如下: 第一次第二次12341 (1,2) (1,3) (1,4)2 (2,1) (2,3) (2,4)3 (3,1) (3,2) (3,4)4 (4,1) (4,2) (4,3)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,①P (和为奇数)23=;(2)不公平.①小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,2133≠,①不公平.16. 【解析】(1)由题意可知,CD =20m ,①ACD =60°,①BCD =45°,在Rt ①ACD 中,①ACD =60°,CD =20m ,①tan 203AD ACD CD =∠=(m ),在Rt ①BCD 中,①BCD =45°,CD =20m ,①BD =CD =20m ,①(20203)AB AD BD =+=+m ,答:AB 的长度为(20203)+m ;(2)该车的速度为(20203)69.1+÷≈(米/秒),则该车的速度约为9.1米/秒.17. 【解析】(1)证明:如图,连接OC .①AB 为①O 的直径,AC 为弦,①①ACB =90°,即①OCB +①ACO =90°.①OA =OC ,①①ACO =①A .①①BCD =①A ,①①ACO =①BCD .①①OCB +①BCD =90°,即①OCD =90°.①CD ①OC .①OC 为①O 的半径,①CD 是①O 的切线.(2)解:①①BCD =①A ,cos①BCD =920, ①cos A =cos①BCD =920. 在Rt △ABC 中, ①cos AC A AB= ①AB =cos AC A =2.7920=2.720=69⨯. ①OC =OE =12AB =3. 在Rt △ODC 中,①222OD OC DC =+, ①2222345OD OC DC +=+.①DE =OD ﹣OE =5﹣3=2.18. 【解析】(1)①点A (-1,6)在一次函数12y x b =-+上,①-2⨯(-1)+b =6.解得,4b =.①点A (-1,6)在反比例函数2k y x=上,①166k =-⨯=-. (2)设()0E a ,.①点()2B m -,在函数26y x=-上,①-2m =-6.解得,3m =.①B (3,-2). ①132AEB S =△,①()11322B A CE x x -=.①()1133122CE +=. ①134CE =.①4-a=134,解得,a=34.①304E ⎛⎫ ⎪⎝⎭,. (3)观察图象:①反比例函数26y x=-的两个分支在第二、四象限, 一次函数124y x =-+的图象经过第三、一、四象限,①在第二象限内,当12y y >时,有x <-1;在第一、四象限内,当12y y >时,有0<x <3.故答案为:1x <-或03x <<.B 卷一、填空题19. 8 20.732a ≤<21.13- 22.﹣3. 23.①①① 二、解答题24.【解析】(1)分两种情况,①当1≤x ≤20时,()()1102010502y m n x x ⎛⎫=-=+--+ ⎪⎝⎭ 21155002x x =-++, ①当21≤x ≤30时,()()42010101050y m n x x ⎛⎫=-=+--+ ⎪⎝⎭21000420x =-,综上:()()21155001202{210004202130x x x y x x-++≤≤=-≤≤; (2)①当1≤x ≤20时,()221112251550015222y x x x =-++=--+, ①102a =-<,①当x =15时,y 最大=1225=612.52, ①21≤x ≤30时,由21000420y x=-知,y 随x 的增大而减小, ①当x =21时,y 最大=2100042058021-=, ①580<612.5,①基地负责人向“精准扶贫”捐了612.5元.25. 【解析】(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (﹣2,0)和点B (8,0),∴428064880a b a b -+=⎧⎨++=⎩,解得123a b ⎧=-⎪⎨⎪=⎩. ∴抛物线解析式为:21382y x x =++; (2)当x =0时,y =8,∴C (0,8),∵B (8,0),设直线BC 解析式为y kx b =+',则880b k b '=⎧⎨+'=⎩,解得81b k '=⎧⎨=-⎩∴直线BC 解析式为:y =﹣x +8, ∵111084022ABC S AB OC ∆=⋅⋅=⨯⨯=, ∴3245PBC ABC S S ∆∆==, 过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设21(,38)2P t t t -++,∴F (t ,﹣t +8),∴2142PF t t =-+, ∴1242PBC S PF OB ∆=⋅=, 即211(4)82422t t ⨯-+⨯=,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)存在,∵C (0,8),B (8,0),∠COB =90°,∴△OBC 为等腰直角三角形,抛物线21382y x x =++的对称轴为33122()2b x a =-==⨯-,∴点E 的横坐标为3, 又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E (3,5),设21(3,),(,38)2M m N n n n ++, ①当MN =EM ,∠EMN =90°,△NME ∽△COB ,则2531382m n n n m -=-⎧⎪⎨-++=⎪⎩,解得68n m =⎧⎨=⎩或20n m =-⎧⎨=⎩(舍去), ∴此时点M 的坐标为(3,8),①当ME =EN ,当∠MEN =90°时, 则25313852m n n n -=-⎧⎪⎨-++=⎪⎩, 解得:515315m n ⎧=+⎪⎨=+⎪⎩或515315m n ⎧=-⎪⎨=-⎪⎩(舍去), ∴此时点M 的坐标为(3,515)+;①当MN =EN ,∠MNE =90°时,此时△MNE 与△COB 相似,此时的点M 与点E 关于①的结果(3,8)对称,设M (3,m ),则m ﹣8=8﹣5,解得m =11,∴M (3,11);此时点M 的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8)或(3,515)+或(3,11).26. 【解析】(1)如图1,过点B作BH①CD于点H,则四边形ADHB是矩形,①AB=10,CD=15,①CH=5,又①BH=AD=10,①BC2222++10555BH CH(2)过点G作MN①AB,如图2,①AB CD∥,①MN①CD,①DG①EF,①①EMG=①GND=90°,①①MEG+①MGE=90°,①①EGM+①DGN=90°,①①GEM=①DGN,①EG=DG,①①EMG①①GND(AAS),①MG=DN,设DN=a,GN=b,则MG=a,ME=b,①点E从点B向点A以每秒2个单位的速度运动,同时点F从点D向点C以每秒3个单位的速度运动,①BE=2t,AE=10﹣2t,DF=3t,CF=15﹣3t,①AM=DN,AD=MN,①a+b=10,a﹣b=10﹣2t,解得a=10﹣t,b=t,①DG①EF,GN①DF,①①DNG=①FNG=90°,①①GDN+①DFG=①GDN+①DGN=90°,①①DFG=①DGN,①①DGN①①GFN,①GN NF DN GN=,①GN2=DN•NF,①NF=2210GN tDN t=-,又①DF=DN+NF,①3t=10﹣t+210tt-,解得t=55±,又①0≤t≤5,①t=5﹣5,①AE=10﹣2t=25.(3)如图3,连接BD,交EF于点K,①BE DF∥,①①BEK①①DFK,①2233 BK BE tDK DF t===,又①AB=AD=10,①BD2AB=2①DK=362 5BD=取DK的中点,连接OG,①DG①EF,①①DGK为直角三角形,①OG=132 2DK=①点G在以O为圆心,r=2的圆弧上运动,连接OC,OG,由图可知CG≥OC﹣OG,当点G在线段OC上时取等号,①AD=AB,①A=90°,①①ADB=45°,①①ODC=45°,过点O作OH①DC于点H,又①OD=2CD=15,①OH=DH=3,①CH=12,①OC22317OH CH+=则CG的最小值为3172,当O,G,C三点共线时,过点O作直线OR①DG交CD于点S,①OD=OG,①R为DG的中点,又DG①GF,①OS①GF,①点S是DF的中点,OC SC OG SF=,①DS=SF=32t,SC=15﹣32t,31531723322tt-=,①t2344-,即当t 2344-时,CG取得最小值为31732。
2024年中考数学第一次模拟考试(四川成都卷)(全解全析)

2024年中考第一次模拟考试(成都卷)数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
A卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).【答案】B【分析】本题考查了相反数的定义,根据只有符号不同的两个数互为相反数进行解答即可得.−,故选:B.【详解】解:2024的相反数是20242.杭州亚运会已闭幕,中国代表团共收获201金、111银、71铜,总计383枚奖牌,创历史.图①是2023年10月2日乒乓球男单颁奖现场.图②是领奖台的示意图,则此领奖台主视图是()A.B.C.D.【答案】B【分析】本题考查了组合体的主视图.熟练掌握从正面看到的是主视图是解题的关键.根据从正面看到的是主视图进行判断作答即可.【详解】解:由题意知,是主视图,故选:B .3.俄罗斯和乌克兰的战争从去年2月24日开始到现在还在持续,战争持续的主要原因是:以美国为首的北约在不断拱火,据不完全统计仅美国就先后向乌克兰提供军火价值275.8亿美元,275.8亿用科学记数法如何表示( ) A .82.75810⨯ B .92.75810⨯ C .102.75810⨯ D .11275810.⨯【答案】C【分析】根据科学记数法的表示方法求解即可.【详解】解:275.8亿用科学记数法表示为102.75810⨯.故选:C .【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10na ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4.若关于x 的方程230x mx −+=的一个根是11x =,则另一个根2x 及m 的值分别是( ) A .234x m ==−, B .214x m ==, C .224x m ==−, D .234x m ==,【答案】D【分析】本题考查了一元二次方程的解,把11x =代入方程先求出m 的值,从而确定出方程,再解方程即可求出2x ,理解方程的解并准确计算是解题的关键.【详解】解:∵11x =是方程230x mx −+=的一个根,∴130m −+=,∴4m =,∴方程为2430x x −+=,解得11x =,23x =,∴另一个根2x 为3,m 的值为4,故选:D .【答案】D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:A 、方程两边同乘以()2x −,得:()1122x x −=−−−,故本选项不符合题意;B 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项不符合题意;C 、方程两边同乘以()2x −,得:()1122x x −=−−,故本选项不符合题意;D 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项符合题意;故选:D . 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.C . 302⎛⎫− ⎪⎝⎭, 【答案】A【分析】本题考查的是位似图形的概念、相似三角形的性质,根据位似图形的概念得出EF OC ∥,DE OP ∥是解题的关键.根据位似图形的概念得到EF OC ∥,DE OP ∥,进而证明CED CPO POD PAB ∽,∽,根据相似三角形的性质求出OP ,得到答案. 【详解】解:∵四边形OABC 为矩形,()23B ,,∴32AB OC OA ===,,∵矩形OABC 与矩形ODEF 是位似图形,∴EF OC ∥,DE OP ∥,∴CED CPO POD PAB ∽,∽∴CD DE CO OP =,PO ODPA AB = ∴31323OD OP OD OP OP −==+,,解得:2OP =,32OD =∴点P 的坐标为()20−,,故选:A .根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为()A.A B.B C.C D.D【答案】B【分析】先计算出最后一道单选题参考人数得分的平均分,再分别测算,进行比较即可.【详解】解:题目难度系数=该题参考人数得分的平均分÷该题的满分,∴最后一道单选题参考人数得分的平均分=题目难度系数⨯该题的满分0.345 1.7=⨯=,如果正确答案应为A,则参考人数得分的平均分为:36.21%5 1.8⨯≈,如果正确答案应为B,则参考人数得分的平均分为:33.85%5 1.7⨯≈,如果正确答案应为C,则参考人数得分的平均分为:17.7%50.9⨯≈,如果正确答案应为D,则参考人数得分的平均分为:11.96%50.6⨯≈,故选:B.【点睛】本题考查了统计表、新概念“题目难度系数”等知识,熟练掌握新概念“题目难度系数”,由统计表的数据计算出参考人数得分的平均分是解题的关键.下列说法中正确的是()A.开口向下B.当0x>时,y随x的增大而增大C.对称轴为直线1x=D.函数的最小值是5−【答案】C【分析】本题主要考查了求二次函数解析式以及二次函数的性质,把二次函数化简成顶点式即可解题.【详解】解:把()1,2−−,()0,5−,()3,2−代入2y ax bx c=++,得:25932a b cca b c−+=−⎧⎪=−⎨⎪++=−⎩,解得∶125abc=⎧⎪=−⎨⎪=−⎩,∴()222516y x x x=−−=−−,∴10a =>抛物线开口向上,对称轴为直线1x =,顶点坐标为()1,6−,即当1x =时,函数取最小值6−,当1x >时,y 随x 的增大而增大, 故A ,B ,D 错误,C 正确,故选:C .第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 倍.【答案】1.2【分析】设被称物的重量为a ,砝码的重量为1,根据图中可图列出方程即可求解. 【详解】解:设被称物的重量为a ,砝码的重量为1,依题意得,2.531a =⨯,解得 1.2a =,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.【答案】1−(答案不唯一)【分析】本题考查了一元二次方程根的情况求参数.根据题意得()2=24110k ∆−⨯⨯−+<,进行计算即可得.【详解】解:∵一元二次方程2210x x k +−+=没有实数根,∴()2=24110k ∆−⨯⨯−+<,∴0k <,∴k 的值可能是1−(答案不唯一),故答案为:1−(答案不唯一).11.如图所示是地球截面图,其中AB ,EF 分别表示南回归线和北回归线,CD 表示赤道,点P 表示太原市的位置.现已知地球南回归线的纬度是南纬()23262326BOD ''︒∠=︒,太原市的纬度是北纬()37323732POD ''︒∠=︒,而冬至正午时,太阳光直射南回归线(光线MB 的延长线经过地心O ),则太原市冬至正午时,太阳光线与地面水平线PQ 的夹角α的度数是 .【答案】292'︒【分析】设PQ 与OM 交于点K ,先由三角形内角和定理求出.292OKP '∠=︒,再根据平行线的性质求解即可.【详解】如图,设PQ 与OM 交于点K ,∵2326BOD '∠=︒,3732POD '∠=︒,∴6058POM POD BOD '∠=∠+∠=︒, 在OPK 中,180POK OPK OKP ∠+∠+∠=︒,90OPK ∠=︒,∴292OKP '∠=︒, ∵PN OM ∥,∴292OKP α'∠=∠=︒,故答案为:292'︒.【点睛】本题考查了三角形内角和定理,平行线的性质,读懂题意并熟练掌握知识点是解题的关键.【答案】<【分析】直接利用反比例函数的增减性分析得出答案. 【详解】∵11(,)M x y ,22(,)N x y 两点都在反比例函数5y x −=的图象上,50k =−<,且120x x >>,∴该图象在第二、四象限上,且每个分支上y 随x 的增大而增大,12,00y y <>,∴12y y <.故答案为:<.【点睛】本题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题的关键.GB【答案】5【分析】本题考查了基本作图,掌握相似三角形的判定定理和性质定理是解题的关键.先根据作图得出AE 平分ABC∠,MN垂直平分AE,再根据平行四边形的性质和相似三角形的性质求解.【详解】解:四边形ABCD是平行四边形,4AB CD DE∴==,AD BC∥,AD BC=,AEB CBE∴∠=∠,由作图得:AE平分ABC∠,MN垂直平分AE,ABE CBE∴∠=∠,AF EF=,AEB ABE∴∠=∠,4AB AE CD ED∴===,2EF DE∴=,5BC AD DE∴==,AD BC,EFG BCG∴∽,∴25EG EFGB BC==,故答案为:25.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)【答案】(1)1+;(2)1x≤−【分析】(1)先代入三角函数值、计算负整数指数幂、化简二次根式,再去绝对值符号、计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找大大小小找不到确定不等式组的解集;【详解】(1)112cos301sin453−⎛⎫︒−︒⎪⎝⎭)2133=+−(4分)133=+−+(5分)1=+;(6分)(2)将()332x x+>−去括号得:336x x+>−(7分)解得:92x<;(8分)将15126x x+−≤−去分母得:()()3165x x+≤−−(9分)去括号得:3365x x+≤−+(10分)解得:1x≤−;(11分)故方程组的解集为:1x≤−.(12分)【点睛】本题主要考查解一元一次不等式组、实数的运算,特殊角三角函数,解题的关键是掌握实数的混合运算顺序和运算法则.15.(满分8分)中国城市基础设施的现代化程度显著提高,新技术、新手段得到广泛应用,基础设施的功能日益增加,承载能力、系统性和效率都有了显著的提升.城市经济发展了,居民生活条件改善了,如5G基础进设、新能源汽车充电桩、人工智能等,其中,随着人们对新能源汽车的认可,公共充电桩的需求量逐渐增大.根据巾商情报网信息:某月“特来电”“星星充电”“国家电网”“云快充”等企业投放公共充电桩的数量及市场份额的统计图如图所示请根据图中信息,解答下列问题:(1)①将统计图中“国家电网”的公共充电桩数量和市场份额补充完整;②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是万台.(2)小辉收集到下列四个企业的图标,并将其制成编号分别为A,B,C,D的四张卡片(除编号和内容外,其余部分完全相同),将四张卡片背面朝上洗匀,放在桌面上,从中任意抽取一张,不放回,再抽取一张.请你用列表或画树状图的方法,求抽取到的两张卡片恰好是“A”和“D“的概率.【答案】(1)①见解析;②2 (2)1【分析】本题考查的是从统计图中获取信息,求解中位数,利用画树状图求解随机事件的概率,掌握以上基础的统计知识是解本题的关键;(1)①由星星充电10万台充电桩占比20%求解总的充电桩的数量,再求解国家电网的充电桩的数量与占比即可;②根据11家企业的充电桩是数量按照从大到小顺序排列后,排在第6的数据是中位数,从而可得答案;(2)先画树状图得到所有的等可能的结果数,再得到符合条件的结果数,结合概率公式可得答案.【详解】(1)解:①公共充电桩的总数为1020%50÷=(万台),∴“国家电网”的公共充电桩数量为5015105222 1.510.538−−−−−−−−−−=(万台),“国家电网”的公共充电桩的市场份额为8100%=16% 50⨯;如图,(2分)②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是2万台.(4分) (2)画树状图为:(6分)共有12种等可能的结果,其中抽取到的两张卡片恰好是“A”和“D“的结果数为2,(7分) 所以抽取到的两张卡片恰好是“A”和“D“的概率21126==.(8分)【答案】要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远【分析】本题考查了解直角三角形的应用-坡度坡角问题,过点E 作EH CF ⊥,垂足为点H ,根据EF 的坡度为1:0.75,设4m EH x =,则3m FH x =,求得3x =,进而求得1,,L H H 的长,根据该楼的日照间距系数不低于1.25,列出不等式141.2536.3 1.1CF +≥−,解不等式即可.【详解】解:过点E 作EH CF ⊥,垂足为点H (1分)90H ∴∠=︒,在Rt EFH △中,EF 的坡度为1:0.75,43EH FH ∴=,(2分)设4m EH x =,则3m FH x =,5mEF x ∴===,(3分)15m EF =Q ,515m x ∴=,3x =,39m FH x ∴==,412m EH x ==.(4分) 9514L CF FH EA CF CF ∴=++=++=+,(5分) 24.31236.3H AB EH =+=+=,1 1.1H =,(6分)由题意得:141.2536.3 1.1CF +≥− 解得:30CF ≥(7分)答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远 (8分)是O 的一条弦,是O 的切线.是O 的直径.【答案】(1)见解析(2)3AG =【分析】(1)本题考查等腰三角形的性质和判定和切线的性质,连接OB ,利用切线性质和等角的余角相等,再结合题干的条件证明HBE HEB ∠=∠,即可解题.(2)本题考查等腰三角形性质、勾股定理和相似三角形的性质和判定,作HM BE ⊥于点M ,利用等腰三角形性质、勾股定理和题干的条件,求得HM 、BM 、EM 、AE ,再证明AGE HME ∽△△,利用相似比,即可解题. 【详解】(1)解:连接OB ,如图所示:BC 是O 的切线.90OBH ∴∠=︒,90HBE OBA ∴∠+∠=︒,(1分)直线EF AD ⊥于点G ,有90A GEA ∠+∠=︒,(2分)GEA HED ∠=∠,90A HEB ∴∠+∠=︒,(3分)OA OB =,A OBA ∴∠=∠,HBEHEB ∴∠=∠,BH EH ∴=.(4分)(2)解:作HM BE ⊥于点M ,如图所示:90HMB HME ∴∠=∠=︒,(5分)BH EH =,BM EM ∴=,(6分)E 是AB 的中点,8AB =,4AE BE ∴==,2BM EM ∴==,(7分)103BH =,83HM ∴==,(8分)90AGE HME ∠=∠=︒,则AEG HEM ∠=∠,AGE HME ∴∽△△,(9分)AE AG ME HM ∴=,有4823AG=,解得163AG =.(10分):2:1OBCOBQSS=则当ODE【答案】(1)8y x =;(2)存在,点Q 的横坐标为3732+或3732−+,理由见解析;(3)5412−+或10.【分析】(1)过F 作FH x ⊥轴于H ,由矩形的性质得90BCO FHO ∠=∠=︒,根据相似三角形的判定和性质得4OH =2FH =,求得()4,2F ,代入即可;(2)分情况①当Q 在OB 下方时,②当Q 在OB 上方时讨论即可得解;(3)分45DOE ∠=︒和45OED ∠=︒两种情况讨论,构造全等三角形,然后根据交点坐标及直线解析式求出k 的值即可. 【详解】(1)如图,过F 作FH x ⊥轴于H ,∵四边形OABC 是矩形,∴90BCO FHO ∠=∠=︒,∴FH BC ∥, ∴OHF OCB ∽,∴OF OHOB OC =,(1分)∵2OF BF =,点()6,E m ,∴6OC =,∴263OH =,∴4OH =,∵1tan 2FH BOC OH ∠==,∴2FH =,∴()4,2F ,∴428k =⨯=,∴反比例函数解析式为8y x =;(2分)(2)存在,理由:①当Q 在OB 下方时,满足:2:1OBCOBQSS=,则需平行OB 且过OC 中点的直线,找OC 中点P ,过1PQ OB 交反比例函数图象于点1Q ,由(1)得:()4,2F ,∴直线OB 解析式为:12y x =,∵()6,B m ,∴()6,0C ,则点()3,0P ,∴设直线1PQ 为12y x a =+,∴1032a =⨯+,解得:32a =−,∴直线1PQ 为1322y x =−,(3分)联立13228y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点1Q的横坐标为;(4分)②当Q 在OB 上方时,满足:2:1OBCOBQSS=,则需平行OB 且过OA 中点的直线,找OA 中点M ,过2MQ OB∥交反比例函数图象于点2Q ,同(1)理:直线OB 解析式为:12y x =,∵()6,B m ,∴3m =,∴点()0,3A ,∴30,2M ⎛⎫ ⎪⎝⎭,则直线2MQ 为1322y x =+,(5分)联立13228y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点2Q的横坐标为,综上可知:点Q的横坐标为或;(6分)(3)∵()2,1B ,(),1D k ,2,2k E ⎛⎫⎪⎝⎭,①如图,当45DOE ∠=︒时,作EM OE ⊥,交OD 延长线于点M ,作MN BC ⊥,交CB 延长线于N∴OEM △是等腰直角三角形,∴=OE EM ,∵90OEC EOC ∠+∠=︒,90OEC ∠+=︒,∴EOC MEN ∠=∠,又∵90OCE ENM ∠=∠=︒∴()AAS OCE ENM ≌,∴EN OC =,MN EC =,(7分)∴2,222k k M ⎛⎫−+ ⎪⎝⎭,设直线OD 的解析式为y gx =,∴1kg =,解得:1g k =, ∴直线OD 的解析式为xy k =,∴12222k k k ⎛⎫−=+⎪⎝⎭,解得:k =或k =(负值舍去),(8分)②当45OED ∠=︒,作OG OE ⊥,交ED 延长线于点G ,过点G 作GH x ⊥轴于点H ,同理①可证:GHO OCE ≌,∴OH EC =,GH OC =,∴,22k G ⎛⎫− ⎪⎝⎭,(9分)设直线DE 的解析式为y sx t =+,∴62122k s t ks t k s t ⎧−+=⎪⎪+=⎨⎪⎪+=⎩,解得:10124k s t =⎧⎪⎪=⎨⎪=⎪⎩或43734k s t ⎧=−⎪⎪⎪=−⎨⎪=⎪⎪⎩(不合题意,舍去) 综上,符合条件的k的值为52−或10.(10分)【点睛】本题主要考查了反比例函数,熟练掌握反比例函数的图象和性质,一次函数的性质,等腰直角三角形的性质,相似三角形的判定与性质,全等三角形的判定和性质等知识是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)【答案】2/0.5【分析】先算括号里,再算括号外,然后把2a 3a +的值代入化简后的式子进行计算即可解答.【详解】解:22313()93a a a a−+⋅−+2333(3)(3)a a a a a +−−=⋅+−23(3)(3)a a a a a −=⋅+−1(3)a a=+213a a =+, 2320a a +−=,232a a ∴+=,∴原式12=,故答案为:12.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.【答案】()()()2111a a a a a −+−+− ()()211a a a −++【分析】把图2可有两种计算方法:①三个长方体相加;②大正方体减去小正方体,按要求列出式子,即可解答.【详解】解:将图2看作三个长方体相加时,可得式子:()()()()()()2111111111a a a a a a a a a a a ⨯⨯−+⨯⨯⨯−−−+⨯=+−+−;原式两边提取1a −,可得原式()()211a a a =−++. 故答案为:()()()2111a a a a a −+−+−;()()211a a a −++.【点睛】本题考查了整式的乘法,因式分解,观察图形的体积如何计算是解题的关键.【答案】1【分析】本题考查了几何概率及频率估计概率,根据落在三个区域的豆子数比等于各部分面积比,用各个区域面积比估计概率计算即可.【详解】解:A 区域面积为22π24πcm ´=,B 区域面积为()22π224π=12πcm ´+-,C 区域面积为()()()2222π22π22=8ππcm a a a ´++-´++,又落在这三个区域中的豆子数依次为m ,n ,34n m−, 4π112π3m n \==,即3n m =,238ππ44πn m a a m -+\=,解得:121,9a a ==-(不合题意,舍去),故答案为:1. 为平面内任意一点,将ACD 绕点【答案】533,28⎛⎫−− ⎪⎝⎭或()2,3−【分析】根据题意,分别求出点,A C 的坐标,设(,)M m n ,根据旋转的性质,可用含,m n 的式子表示出对应点,,A C D '''的坐标,分类讨论,①当点,A C ''在抛物线213222y x x =−−上时;②当点,A D ''在抛物线213222y x x =−−上时;③当点,C D ''在抛物线213222y x x =−−上时;列二元一次方程组并求解即可.【详解】解:抛物线213222y x x =−−与x 轴交于,A B 两点,令0y =,∴2132022x x −−=,解得,11x =−,24x =,∴(1,0)A −,(4,0)B , ∵点C 的横坐标为5,∴213552322y =⨯−⨯−=,即(5,3)C ,∵将ACD 绕点M 旋转180︒得到对应的A C D '''△(点,,A C D 的对应点分别为A ',C ',D ¢),且(1,0)A −,(5,3)C ,()3,0D ,∴设(,)M m n ,根据旋转的性质,则点A 与点A '关于点M 中心对称,点C 与点C '关于点M 中心对称,点D 与点D ¢关于点M 中心对称, ∴()21,2A m n '+,()25,23C m n '−−,(23,2)D m n '−,①当点,A C ''在抛物线213222y x x =−−上时,如图所示,()()()()22132121222213252522322m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=−⎪⎩,解方程组得,232m n =⎧⎪⎨=⎪⎩, ∴点32,2M ⎛⎫⎪⎝⎭,则C '的坐标为(1,0)−,与点A 重合,不符合题意;②当点,A D ''在抛物线213222y x x =−−上时,如图所示,()()()()2213212122221323232222m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,54916m n ⎧=⎪⎪⎨⎪=−⎪⎩, ∴点59,416M ⎛⎫− ⎪⎝⎭,则C '的坐标为533,28⎛⎫−− ⎪⎝⎭,符合题意;③当点,C D ''在抛物线213222y x x =−−上时,如图所示,()()()()22132525223221323232222m m n m m n⎧−−−−=−⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,720m n ⎧=⎪⎨⎪=⎩, ∴点7,02M ⎛⎫⎪⎝⎭,则C '的坐标为()2,3−,符合题意;综上所示,点C '的坐标为533,28⎛⎫−− ⎪⎝⎭或()2,3−, 故答案为:533,28⎛⎫−− ⎪⎝⎭或()2,3−.【点睛】本题主要考查二次函数图形与几何图形的综合,掌握二次函数图像的性质,旋转的性质求点坐标,解二元方程组是解题的关键.,将ABE 沿BE【答案】①②④⑤【分析】①正确.由正方形ABCD 的性质可证明SAS BCP DCP ≌(),可得结论;②正确.证明CFB EFB ∠=∠,推出90CBF CFB ∠∠=︒+,推出22180CBF CFB ∠∠=︒+,由2180EFD CFB ∠∠=︒+,可得结论;③错误.可以证明PQ PA CQ <+;④正确.利用相似三角形的性质证明90BPF ∠=︒,可得结论;⑤正确.求出BD ,BH ,根据DH BD BH ≥−,可得结论.【详解】解:∵四边形ABCD 是正方形,∴CB CD =,190452BCP DCP ∠=∠=⨯︒=︒,在BCP 和DCP 中CB CD BCP DCPCP CP =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCP DCP ≌△△,∴PB PD =,故①正确;∵ABE 沿BE 翻折,点A 落在点H 处,直线EH 交CD 于点F ,∴ABE BHE ≌,则BH AB BC ==,90BHF BCF ∠=∠=︒,∵BF BF =,∴()HL BHF BCF ≌,则HBF CBF ∠=∠,∵ABE HBE ∠=∠,∴190452EBF HBE HBF ∠=∠+∠=⨯︒=︒,∵45QCF EBF ∠=∠=︒,PQB FQC ∠=∠,∴PQB FQC ∽,则BQ PQ CQ FQ =,BPQ CFQ ∠=∠,∴BQ CQ PQ FQ =, ∵PQF BQC ∠=∠,∴PQF BQC ∽,则QPF QBC ∠=∠,∵90QBC CFQ ∠+∠=︒,∴90BPF BPQ QPF ∠=∠+∠=︒,∴45PBF PFB ∠=∠=︒,∴PB PF =,则BPF △为等腰直角三角形,故④正确;∵90BPF BPQ QPF ∠=∠+∠=︒,∴90EPF ∠=︒,∵90EDF ∠=︒,∴P ,E ,D ,F 四点共圆,∴PEF PDF ∠=∠,∵PB PD PF ==,∴PDF PFD ∠=∠, ∵180AEB DEP ∠∠=︒+,180DEP DFP ∠∠=︒+,∴AEB DFP ∠=∠,∴AEB BEH ∠=∠,∵BH EF ⊥,∴90BAE BHE ∠=∠=︒,∵BE BE =,∴()AAS BEA BEH ≌,∴AB BH BC ==,∵90BHF BCF ∠∠=︒,BF BF =,∴()Rt Rt HL BFH BFC ≌,∴BFC BFH ∠=∠,∵90CBF BFC ∠∠=︒+,∴22180CBF CFB ∠∠=︒+,∵2180EFD CFH EFD CFB ∠∠=∠∠=︒++,∴2EFD CBF ∠=∠,故②正确,将ABP 绕点B 顺时针旋转90︒得到BCT ,连接QT ,∴ABP CBT ∠=∠,∴90PBT ABC ∠=∠=︒,∴45PBQ TBQ ∠=∠=︒,∵BQ BQ =,BP BT =,∴()SAS BQP BQT ≌,∴PQ QT =,∵QT CQ CT CQ AP <=++,∴PQ AP CQ <+,故③错误,连接BD ,DH ,∵BD ==,4BH AB ==,∴4DH BD BH ≥−=,∴DH 的最小值为4,故⑤正确.故答案为:①②④⑤.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 24.(满分8分)(1)【阅读理解】倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司采购一批包含A 、B 两款不同型号的垃圾分拣机器人.已知1台A 型机器人和1台B 型机器人同时工作10小时,可处理垃圾5吨;若1台B 型机器人先工作5小时后,再加入1台A 型机器人同时工作,则还需工作8小时才能处理完5吨垃圾.问1台A 型机器人和1台B 型机器若垃圾处理厂采购的这批机器人(A、B两款机器人的总台数不超过80台)每小时共能处理垃圾20吨,请利用(2)中的数据回答:如何采购才能使总费用最省?最少费用是多少万元?【答案】(1)1台A型81台B型13小时的垃圾处理量(2)1台A型机器人和1台B型机器人每小时分别处理垃圾0.3吨和0.2吨(3)当采购A型机器人66台,B型机器人1台时,采购费用最低,为1334万元【分析】(1)根据第二个线段图可以得到解答;(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,由题意得到关于x、y的二元一次方程组并解方程组即可;(3)设采购A型机器人t台,由题意可以用t表示B型机器人的台数,并求得t的取值范围.然后用t表示出采购费用,根据一次函数的增减性即可得解.【详解】解:(1)根据第二个线段图可得:1台A型8小时的垃圾处理量1+台B型13小时的垃圾处理量5=吨;故答案为:1台A型8小时的垃圾处理量,1台B型13小时的垃圾处理量;(2分)(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,则:101058135x y x y +=⎧⎨+=⎩,解之可得:0.30.2x y =⎧⎨=⎩,(3分)经检验,0.30.2x y =⎧⎨=⎩是原方程组的解,且符合题意,答:1台A 型机器人和1台B 型机器人每小时分别处理垃圾0.3吨和0.2吨;(4分)(3)设采购A 型机器人t 台,则采购B 型机器人200.3100 1.50.2t t −=−(台),则:()100 1.5800.3200.2100 1.520t t t t ⎧−+≤⎪≤⎨⎪−≤⎩,解之可得:4066t ≤≤(t 为整数),(5分)由题意可知,采购费用为:()2014100 1.51400w t t t =+−=−+,(6分)∵10−<,∴w 随t 的增大而减小,∴当66t =时,采购费用最低,为1400661334−=(万元),(7分)此时100 1.51t −=台,即采购A 型机器人66台,B 型机器人1台,答:当采购A 型机器人66台,B 型机器人1台时,采购费用最低,为1334万元.(8分)【点睛】本题考查一次函数的综合应用,熟练掌握二元一次方程组的应用、一元一次不等式组的应用及一次函数的增减性是解题关键.(1)求抛物线的解析式;(2)若点D 在抛物线上,E 在抛物线的对称轴上,以A B D E ,,,为顶点的四边形是平行四边形,且平行四边形的一条边,求点D 的坐标;(3)抛物线的对称轴交x 轴于点G F ,在对称轴上,且在第二象限,2FG BC =,不平行于y 轴的直线l 分别交线段BF CF ,(不含端点)于M N ,两点,直线l 与抛物线只有一个公共点,求证:MF NF +的值是个定值.【答案】(1)223y x x =−−+(2)D 的坐标为()4,5−−或()2,5−;(3)证明见解析 【分析】(1)先求解A 的坐标,再求解B ,C 的坐标,再利用待定系数法求解解析式即可;(2)设()1,E t −,()2,23D n n n −−+,而AB DE ∥,分两种情况讨论: 当平行四边形为平行四边形ABDE ,当平行四边形为平行四边形ABED ,再结合平行四边形的性质可得答案;(3)先求解()1,8F −,直线FB 为412y x =+,直线FC 为44y x =−+,设直线MN 为y kx e =+,由()2230x k x e +++−=有两个相等的实数根,可得()21234e k =++,求解直线MN 为()21234y kx k =+++,再求解M ,N 的坐标,结合勾股定理进行计算即可.【详解】(1)解:∵抛物线23y ax bx =++,当0x =时,3y =,即3OA =,()0,3A ,∵3OA OB OC ==,∴1OC =,3OB =,∴()3,0B −,()1,0C ,(1分)∴933030a b a b −+=⎧⎨++=⎩,解得:12a b =−⎧⎨=−⎩,∴抛物线为:223y x x =−−+;(2分)(2)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,设()1,E t −,()2,23D n n n −−+,而AB DE ∥,()0,3A ,()3,0B −,(3分)由平行四边形ABDE 的性质可得:2013233n t n n +=−−⎧⎨=−−++⎩,解得:42n t =−⎧⎨=−⎩,∴()4,5D −−,(4分)由平行四边形ABED 的性质可得:231323n t n n −=−⎧⎨+=−−+⎩,解得:28n t =⎧⎨=−⎩,∴()2,5D −;综上:D 的坐标为()4,5−−或()2,5−;(5分)(3)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,∵4BC =,2FG BC =,∴8FG =,即()1,8F −,设直线FB 为y mx n =+,∴308m n m n −+=⎧⎨−+=⎩,解得:412m n =⎧⎨=⎩,∴直线FB 为412y x =+,(6分)同理可得:直线FC 为44y x =−+,设直线MN 为y kx e =+,∴223y kx e y x x =+⎧⎨=−−+⎩,∴结合题意可得:223x x kx e −−+=+即()2230x k x e +++−=有两个相等的实数根, ∴()21234e k =++,∴直线MN 为()21234y kx k =+++,(7分) ∴()24121234y x y kx k =+⎧⎪⎨=+++⎪⎩,解得:844k x y k +⎧=−⎪⎨⎪=−+⎩,即8,44k M k +⎛⎫−−+ ⎪⎝⎭,同理可得:,44k N k ⎛⎫−+ ⎪⎝⎭, ∴()()22228171484416k MF k k +⎛⎫=−++−+−=+ ⎪⎝⎭,()()2222171484416k NF k k ⎛⎫=−+++−=− ⎪⎝⎭,(8分) 当直线MN 从左往右上升时,04k <<,∴)4MF k +,)4NF k =−,∴MF NF +=(9分) 当直线MN 从左往右下降时,40k −<<,)4MF k +,)4NF k =−,∴MF NF +=∴MF NF +为定值.(10分) 【点睛】本题考查的是利用待定系数法求解一次函数与二次函数的解析式,二次函数与一次函数的交点坐标问题,一次函数的交点坐标,勾股定理的应用,平行四边形的性质,本题难度大,计算量大,属于中考压轴题. 26.(满分12分)已知Rt ABC △,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,AD AE =.(1)如图1,若60EAD ∠=︒,取BD 的中点F ,连接EF ,2AD =,求EF 的长度;(2)如图2,连接BE ,点G 在线段BE 上,且GE CD =,连接CG 、AG ,若90AGC GCB ∠+∠=︒,H 为BG 中点,证明:CH BH CD =+;(3)如图3,在(2)的条件下,将AEG △绕点A 逆时针旋转得APQ △,连接BQ ,点R 是BQ 中点,连接CR ,若5AC =,在APQ △旋转过程中,当2CR BR −最大时,直线CR 与直线AB 交于点T ,请直接写出BQT △的面积.【答案】(1)EF =见详解(3)【分析】(1)解2,5,AEF AE AF EAF ==∠V ,60=︒,进而求得结果;(2)连接CE ,作AT CE ⊥于T ,不妨设AD AE =2=,可证得AEG ADC V V ≌,从而AEG A ∠=∠90DC =︒,进而得出点A 、C 、B 、E 共圆,从而30,60AEC ABC CEB CAB ∠=∠=︒∠=∠=︒,从而求得,AT ET 的值,进而得出EH CE ==,从而得出CEH △是等边三角形,进一步得出结论;(3)取AB 的中点O ,连接OR ,在AB 上截取OT 54=,可推出点R 在以O 为圆心,52为半径的圆上运动,可证得ROT BOR V V ∽,从而得出12RT =BR ,进而推出22CR BR CT −≤,从而当C 、T 、R 共线时,2CR BR −最大;作OS CR ⊥于S ,作RV AB ⊥于V ,解Rt CRT 求得4CT =,根据TOS TCD V V ∽求得OS ST ==,解Rt ROS 求得SR =,从而得出RT =,根据RTV CTD V V ∽求得RV =【详解】(1)解:如图1,作EG AB ⊥于G ,90,AGE EGF ∴∠=∠=︒30,90,ABC ACB ∠=︒∠=︒Q 60,BAC ∴∠=︒(1分)90,ADC ∠=︒Q 24,AC AD ∴==28,AB AC ∴==6,BD AB AD ∴=−=∵F 是BD 的中点,13,2DF BD ∴==5,AF AD DF ∴=+=(2分)在Rt AEG 中,2,60AE AD EAD ==∠=︒,2cos 601,2sin 60AG EG ∴=︒==︒=4,FG AF AG ∴=−=EF ∴=(3分)(2)证明:如图2,连接CE ,作AT CE ⊥于T ,不妨设2AD AE ==,90,ACB ∠=︒90,ACG GCB ∴∠+∠=︒90,AGC GCB ∠+∠=︒Q ,AGC ACG ∴∠=∠,AG AC ∴=,,AE AD GE CD ==Q (),AEG ADC SSS ∴≌(4分)90,AEG ADC ∴∠=∠=︒180,AEG ACB ∴∠+∠=︒A C B E ∴、、、四点共圆,30,60,AEC ABC CEB CAB ∴∠=∠=︒∠=∠=︒11,2AT AE ET AE ∴====(5分)CT ==Q CE ET CT ∴=+=2,90,60,AD ADC CAD =∠=︒∠=︒2tan 60EG CD ∴==︒=2,8,AE AD AB ===Q EB ∴=BG BE EG ∴=−=(6分)H 是BG 中点,12BH GH GB ∴===EH EB BH ∴=−= ,EH CE ∴=CEH ∴是等边三角形,;CH EH EG GH CD BH ∴==+=+(7分)(3)解:如图3,取AB 的中点O ,连接OR ,在AB 上截取54OT =, ∵R 是BQ 的中点,115,222OR AQ AC ∴=== ∴点R 在以O 为圆心,52为半径的圆上运动,1,,2OT OR ROT BOR OR OB ==∠=∠Q ∴ROT BOR V V ∽,(8分)1,2RT OT BR OR ∴==1,2RT BR ∴=,CR RT CT ∴−≤ 222,CR RT CT ∴−≤22,CR BR CT ∴−≤∴当C 、T 、R 共线时,2CR BR −最大,(9分)作OS CR ⊥于S ,作RV AB ⊥于V ,在Rt CRT 中,5524CD DT OD OT ==+=+15,4=CT ∴== 由TOS TCD V V ∽得,,OS ST OT CD DT CT ==5154ST =(10分)OS ST ∴===在Rt ROS中,14SR =RT SR ST ∴=−=(11分) 由RTV CTD V V ∽得,,RV RT CD CT=RV ∴=154BQT S BT RV ∴=⋅==V (12分)【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,确定圆的条件,解直角三角形,等边三角形的判定和性质等知识,解决问题的关键是较强的计算能力.。
2024年四川省成都市数学中考模拟卷B试题

2024年四川省成都市数学中考模拟卷B 试题一、单选题1.6-的绝对值是( ) A .6B .16C .6-D .16-2.下列计算正确的是( ) A .336x y xy += B .()()22224x y x y x y +-=-C .()222x y x xy y -=-+D .()2266x y x y -=-3.如图是甲、乙两人10次射击成绩(环)的条形统计图,则( )A .甲的平均成绩比乙好B .乙的平均成绩比甲好C .甲、乙两人的平均成绩一样D .无法确定谁的平均成绩好4.若关于x 的一元二次方程()23443k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且3k ≠C .0.6k ≥且3k ≠D .0.6k >且3k ≠5.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x 尺,木长y 尺,所列方程组正确的是( ) A . 4.521x y x y-=⎧⎨+=⎩B . 4.5112x y x y -=⎧⎪⎨+=⎪⎩C . 4.521y x x y-=⎧⎨-=⎩D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩6.如图,AB 是O e 的直径,弦CD 交AB 于点E ,连接AC AD ,.若28BAC ∠=︒,则D ∠=( )A .56︒B .52︒C .62︒D .76︒7.下列命题中,不正确的是( )A .对角线互相垂直的四边形是平行四边形B .有一组邻边相等的平行四边形是菱形C .有一个角是直角的平行四边形是矩形D .两组对边相等的四边形是平行四边形8.函数()220,40y ax bx c a b ac =++>->的图象是由函数()220,40y ax bx c a b ac =++>->的图象x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①20a b += ;②3c =; ③0abc >;④将图象向上平移1个单位后与直线5y =有3个交点.A .①②B .①③C .②③④D .①③④二、填空题9.分解因式()()2228m m n m n m ---=.10.华为一部分Mate40手机将会搭载麒麟9000处理器,这是手机行业首批采用5nm工艺制式的芯片,1nm=0.000000001m ,其中5nm 用科学记数法表示为m . 11.如图,直线1y k b =+与双曲线2k y x=相交于()(),2,2,1A m B --两点.当0x >时,不等式21k k b x+>的解集为.12.若方程()22140x a x a -+++=的两根满足12111x x +=,则a 的值为. 13.如图,在ABC V 中,AB AC =.在AB 、AC 上分别截取AP 、AQ ,使AP AQ =.再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在BAC ∠内交于点R ,作射线AR ,交BC 于点D .已知5BC =,6AD =.若点M 、N 分别是线段AD 和线段AB 上的动点,则BM MN +的最小值为.三、解答题 14.(1)化简 2211()323294mnm n m n m n -÷-+-;(2)解不等式组:31052(5)315x x x x x +>--⎧⎪+⎨>-⎪⎩.15.九(1)班体育课代表小明对本班同学进行了一次关于“我最喜爱的体育项目”调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)m 的值为______,“乒乓球”部分所对应的圆心角的度数为______. (2)补全条形统计图.(3)学校将举办运动会,九(1)班推选出2名男同学(A ,B )和2名女同学(C ,D )参加乒乓球比赛,现从中随机选取2名同学组成双打组合,用画树状图或列表法求恰好选出一男一女组成混合双打的概率.16.如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为51:12i =, 且26AB =米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53︒时,可确保山体不滑坡.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.33︒≈,cot530.75︒≈).(1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)17.如图,在Rt ABC △中,90C ∠=︒,以AC 为直径的O e 交AB 于点D ,点Q 为CA 延长线上一点,延长QD 交BC 于点P ,连接OD ,12ADQ DOQ ∠=∠.(1)求证:PD 是O e 的切线;(2)连接OP ,若,6AQ AC AD ==,求OP 的长.18.如图,在平面直角坐标系中,一次函数1y kx b =+的图像与反比例函数()20ky k x=>的图像交于点B ,与x 轴交于点A ,与y 轴交于点C .(1)已知点B 的坐标为()2,6,求:①一次函数1y 和反比例函数2y 的解析式;②在y 轴上取一点P ,当BCP V 的面积为5时,求点P 的坐标;(2)过点B 作BD x ⊥轴于点D ,点E 为AB 中点,线段DE 交y 轴于点F ,连结AF .若AFD △的面积为11,求k 的值.四、填空题19.已知2023x m =,2023y n =,且2023mn =,则x yyx +的值是. 20.如图,在矩形纸片ABCD 中,6AB =,10BC =.点E 在CD 上,将BCE V 沿BE 折叠,点C 恰落在边AD 上的点F 处,若BG 平分ABF ∠交AD 于G ,则点G 到直线BE 的距离为.21.如图,在ABC V 中,AB =1BC =,2AC =,将ABC V 绕点B 顺时针方向旋转45︒后得到BA C ''△,点A 经过的路径为弧AA ',点C 经过的路径为弧CC ',则图中阴影部分的面积为.(结果保留π)22.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看做抛物线.如图是其中一个桥拱的示意图,拱跨60m AB =,以AB 的中点O 为坐标原点,AB 所在直线为x 轴,过点O 垂直于AB 的直线为y 轴建立平面直角坐标系,通过测量得2m AE =,DE AB ⊥且 1.16m DE =,则桥拱最高点到桥面的距离OC 为m .23.如图,在菱形ABCD 中,点P 为对角线AC 上的动点(不与端点重合).过点P 作PM AB ⊥于点M ,PN BC ⊥于点N ,连接PD ,已知5tan 12BAC ∠=,24AC =,则PD PM PN ++的最小值等于 .五、解答题24.为了缓解大气污染,贵阳市公交公司决定将某一条线路上的柴油公交车替换为新能源公交车,计划购买A 型和B 型两种新能源公交车共10辆.若购买A 型公交车3辆,B 型公交车 2辆,共需180万元;若购买A 型公交车2辆,B 型公交车3辆,共需195 万元. (1)求购买A 型和B 型公交车每辆各需多少万元;(2)预计在该线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100 万人次,若该公司购买A 型和B 型公交车的总费用不超过 360万元,且确保这10辆公交车在该线路的年均载客总和不少于 680 万人次,则该公司有哪几种购车方案,哪种购车方案总费用最少?最少总费用是多少25.综合与探究如图,二次函数2y ax bx c =++的图象与x 轴相交于点A ,B 4,0 ,与y 轴交于点()0,2C ,对称轴是直线32x =,交x 轴于点D .(1)求该二次函数及BC 所在直线的解析式;(2)如图1,在线段BC 上是否存在一点Q ,使得以Q ,D ,B 为顶点的三角形与ABC V 相似,若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图2,P 是该二次函数图象上位于第一象限上的一动点,连接PA 分别交BC ,y 轴于点E ,F ,连接BP .若PEB △和CEF △的面积分别为1S ,2S ,请直接写出12S S -的最大值.26.ABC V 的,,A B C ∠∠∠所对边分别是a ,b ,c ,若满足22252a b c +=,则称ABC V 为类勾股三角形,边c 称为该三角形的勾股边.【特例感知】如图1,若ABC V 是类勾股三角形,AB 为勾股边,且,6CA CB AB ==,CM 是中线,求CM 的长;【深入探究】如图2,CM 是ABC V 的中线,若ABC V 是以AB 为勾股边的类勾股三角形,①分别过A ,B 作CM 的垂线,垂足分别为E ,F ,求证AEM BFM V V ≌ ②试判断CM 与AB 的数量关系并证明;【结论应用】如图3,在四边形ABCD 中,10,BC AD ABC ==△与DBC △都是以BC 为,的中点,求线段MN的长.勾股边的类勾股三角形,M,N分别为BC AD。
四川省成都市2024年中考数学模拟卷四含解析

2024年四川省成都市中考数学模拟卷A 卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.(2024·山东中考真题)2-的相反数是( ) A .22- B .22 C .2- D .2【答案】D【解析】-2的相反数是2,故选D .【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.2.(2024·辽宁中考模拟)如图所示的几何体的俯视图是( )A .B .C .D .【答案】D【解析】从上往下看,该几何体的俯视图与选项D 所示视图一样.故选D .【点睛】本题考查了简洁组合体三视图的学问,俯视图是从物体的上面看得到的视图.3.(2024·上海中考模拟)电影《流浪地球》从2月5日上映以来,凭借其气概磅礴的特效场面与动人的父子情获得大众的宠爱与支持,截止3月底,中国电影票房高达4559000000元.数据4559000000用科学记数法表示为( )A .845.5910⨯;B .945.5910⨯;C .94.55910⨯;D .104.55910⨯.【答案】C【解析】4559000000=4.559×109,故选C.【点睛】本题考查了科学记数法表示较大的数,正确移动小数点位数是解题的关键.4.(2024·广东中考模拟)下列运算正确的是().A.B.C.D.【答案】C【解析】依据合并同类项法则,可知,故本选项错误;依据同底数幂相乘法则,可知,故本选项错误;依据同底数幂相除法则,可知,故本选项正确;依据二次根式运算法则,故本选项错误.故选:【点睛】本题考查了合并同类项、同底数幂的相乘和相除法则、二次根式的四则运算法则,熟知这些运算法则是解题关键.5.(2024·广东中考模拟)下列数学符号中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解析】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;A是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.6.(2024·湖北中考模拟)如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A.x=-3 B.x=4 C.x=43-D.x=34-【答案】A【解析】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,故选A.【点睛】本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.7.(2024·上海中考模拟)如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )A.∠ABC=90°B.∠BCD=90°C.AB=CD D.AB∥CD【答案】C【解析】A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;故选:C.【点睛】此题主要考查了矩形的判定,关键是娴熟驾驭矩形的判定定理.8.(2024·湖南中考模拟)在“我的中国梦”演讲竞赛中,有5名学生参与决赛,他们决赛的最终成果各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成果,还要了解这5名学生成果的()A.中位数B.众数C.平均数D.方差【答案】A【解析】解:因为5位进入决赛者的分数确定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选A.【点睛】考查统计的有关学问,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.(2024·辽宁中考模拟)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.3D.5【答案】D【解析】∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=12CD=4,连接OC,则OC=OA=5,在Rt△OCE 中,OE=222254OC CE -=-=3,∴AE=AO+OE=8,则AC=22224845CE AE +=+=,故选D . 【点睛】本题考查了垂径定理、切线的性质,解题的关键是驾驭切线的性质:圆的切线垂直于经过切点的半径.10.(2024·山东中考模拟)已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc<0;②b 2﹣4ac >0;③3a+c>0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 ①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再依据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+<故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.(2024·江苏中考模拟)4的算术平方根是 .【答案】2.【解析】∵224=,∴4算术平方根为2.故答案为2.12.(2024·江苏中考模拟)如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .假如35DE BC =,CE =16,那么AE 的长为_______【答案】6【解析】∵DE∥BC,∴DE EA BC AC =. ∵35DE BC =,CE=16, ∴3 165AE AE -=,解得AE=6. 故答案为6.【点睛】本题主要考查相像三角形的判定和性质,正确写出比例式是解题的关键.13.(2024·上海中考模拟)假如正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __.【答案】k>3【解析】因为正比例函数y=(k-3)x 的图象经过第一、三象限,所以k-3>0,解得:k >3,故答案为:k >3.【点睛】此题考查一次函数问题,关键是依据正比例函数y=(k-3)x 的图象经过第一、三象限解答.14.(2024·浙江中考模拟)一个不透亮的袋中只装有1个红球和2个白球,它们除颜色外其余均相同. 现随机从袋中摸出两个球,颜色是一红一白的概率是____.【答案】23【解析】画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一白的有4种状况,∴颜色是一红一白的概率为4263=, 故答案是:23. 【点睛】考查的是用列表法或画树状图法求概率.留意列表法或画树状图法可以不重复不遗漏的列出全部可能的结果,列表法适合于两步完成的事务,树状图法适合两步或两步以上完成的事务.用到的学问点为:概率=所求状况数与总状况数之比.三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)(2024·江苏中考模拟)计算:2011)4sin 603-︒⎛⎫+- ⎪⎝⎭【答案】【解析】解:原式=9+1-42⨯. 【点睛】此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.(2)(2024·江苏中考模拟)解方程:22161242x x x x +-=--+ 【答案】5x =-【解析】 ()22162x x +-=-23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-【点睛】考查分式方程的解法,驾驭分式方程的解题的步骤是解题的关键.留意检验.16.(2024·山东中考模拟)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 【答案】213(m 3m)+.13-.【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可. 试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-.17.(2024·湖北中考模拟)学校实施新课程改革以来,学生的学习实力有了很大提高.王老师为进一步了解本班学生自主学习、合作沟通的现状,对该班部分学生进行调查,把调查结果分成四类(A :特殊好,B :好,C :一般,D :较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请依据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】(1)20;(2)作图见试题解析;(3)12. 【解析】(1)依据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C 类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .18.(2024·山东中考模拟)如图1,探讨发觉,科学运用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学运用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请推断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,全部结果精确到个位)【答案】(1)55;(2)不符合要求.【解析】解:(1)∵Rt△ABC中,tanA=,∴AB===55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.考点:解直角三角形的应用19.(2024·山东中考模拟)如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.【答案】(1)4yx=;(2)25【解析】解:(1)∵CD∥y轴,CD=43,∴点D的坐标为:(m+2,43),∵A,D在反比例函数y=kx(x>0)的图象上,∴4m=43(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=4x;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.∴PA+PB=PF+PB=BF2222AB AF4225+=+=【点睛】此题考查了待定系数法求反比例函数的解析式以及轴对称的性质.留意精确表示出点D的坐标和利用轴对称正确找到点P的位置是关键.20.(2024·河北中考模拟)已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=12 DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.【答案】(1)见解析;(2)见解析;(3)215.【解析】()1BD为O的直径,90BAD∴∠=,90D ABD∴∠+∠=,FB是O的切线,90FBD∴∠=,90FBA ABD∴∠+∠=,FBA D∴∠=∠,AB AC=,C ABC∴∠=∠,C D∠=∠,()2如图2,连接OC ,90OHC HCA ∠=∠=,//AC OH ∴,ACO COH ∴∠=∠,OB OC =,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=,ABD ∴∽HOC ,2AD BD CH OC∴==, 12CH DA ∴=; ()3由()2知,ABC ∽HOC , 2AB BD OH OC∴==, 6OH =,O 的半径为10,212AB OH ∴==,20BD =,2216AD BD AB ∴=-=,在ABF 与ABE 中,90AB AB BAF BAE ⎪=⎨⎪∠=∠=⎩, ABF ∴≌ABE ,BF BE ∴=,AF AE =,90FBD BAD ∠=∠=,2AB AF AD ∴=⋅,212916AF ∴==, 9AE AF ∴==,7DE ∴=,2215BE AB AE =+=,AD ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. 【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相像三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.(2024·黄石市河口中学中考模拟)如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34. 【解析】依据从C 、D 、E 、F 四个点中随意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34;故答案为34.22.(2024·河南中考模拟)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=(1)1(1) a aa≥-⎧⎨--⎩<,依据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为_____.【答案】29 32x≤≤【解析】∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴533 263xx-≤⎧⎨-≤⎩,∴29 32x≤≤,故答案为29 32x≤≤.【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,依据题意得到不等式去求解,考查综合应用实力.23.(2024·内蒙古中考模拟)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置改变,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=2HM;③无论点M运动到何处,∠CHM确定大于135°.其中正确结论的序号为_____.【答案】①②③【解析】由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确,故答案为:①②③.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定与性质的综合运用,驾驭正方形的性质、全等三角形的判定定理和性质定理是解题的关键.24.(2024·浙江中考模拟)如图,点A是射线y═54x(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=kx交CD边于点E,则DEEC的值为_____.【答案】5 4【解析】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=54x得:y=54m,则点A的坐标为:(m,54m),线段AB的长度为54m,点D的纵坐标为54m,∵点A在反比例函数y=kx上,∴k=54m2,即反比例函数的解析式为:y=254mx,∵四边形ABCD为正方形,∴四边形的边长为54 m,点C,点D和点E的横坐标为m+54m=94m,把x=94m代入y=254mx得:y=59 m,即点E的纵坐标为59 m,则EC=59m,DE=54m﹣59m=2536m,∴54DE EC故答案为:5 4【点睛】本题考查了反比例函数图象上的点的坐标特征和正方形的性质,正确驾驭代入法和正方形的性质是解题的关键.25.(2024·浙江中考模拟)婷婷在发觉一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC 的中点O为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=123cm,则该圆的半径为_____cm.【答案】36+【解析】连接OB,OP,∵AB=BC,O为AC的中点,∴OB⊥AC,∵AQ是⊙O的切线,∴OP⊥AQ,设该圆的半径为r,∴OB=OP=r,∵∠ABC=120°,∴∠BAO=30°,∴AB=BC=CD=2r,AO3r,∴AC=3r,∴sin∠PAO=OPAO3r3==过Q作QG⊥AC于G,过D作DH⊥QG于H,则四边形DHGC是矩形,∴HG=CD,DH=CG,∠HDC=90°,∴sin∠PAO =Q QG 1A 1233G Q ==,∠QDH =120°﹣90°=30°, ∴QG =12, ∴AG =22AQ QG 122-=,∴QH =12﹣2r ,DH =23122r -,∴tan∠QDH =tan30°=1223323122QH r DH r -==-, 解得r =36+,∴该圆的半径为36+cm ,故答案为36+.【点睛】本题考查了正多边形与圆,切线的性质,等腰三角形的性质,矩形的判定和性质,解直角三角形,正确的作出协助线是解题的关键.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.(2024·河北中考模拟)红星公司生产的某种时令商品每件成本为20元,经过市场调研发觉,这种商品在将来40天内的 日销售量(件)与时间(天)的关系如下表:时间(天)1 3 6 10 36 … 日销售量(件) 94 90 84 76 24 … 将来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来探讨 这种商品的有关问题.(1)仔细分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的学问确定一个满意这些数据之间的函数关系式;(2)请预料将来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司确定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发觉,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.点睛:解答本题的关键是要分析题意依据实际意义精确的求出解析式,并会依据图示得出所须要的信息.同时留意要依据实际意义精确的找到不等关系,利用不等式组求解.27.(2024·山东中考模拟)已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满意的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【答案】(1)见解析;(2)EF2=BE2+DF2;理由见解析;(3)2【解析】(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG,∴AF=AG,DF=BG,∠DAF=∠BAG,∵正方形ABCD,∴∠D=∠BAD=∠ABE=90°,AB=AD,∴∠ABG=∠D=90°,即G、B、C在同始终线上,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,即∠EAG=∠EAF,∴△EAG≌△EAF(SAS),∴EG=EF,∵BE+DF=BE+BG=EG,∴EF=BE+DF.(2)结论:EF2=BE2+DF2,理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH,∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,即∠EAH=∠EAF,∴△EAH≌△EAF(SAS),∴EH=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴∠ABE=∠MDN,∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,∴EH2=BE2+BH2,∴EF2=BE2+DF2,(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=2,∴CM=12CF=1,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形∴EN=CM=1,∵∠EBN=45°,∴BE EN.【点睛】本题考查了正方形的性质,旋转,全等三角形的判定和性质,平行四边形的判定和性质,勾股定理,圆周角定理,等腰三角形性质,其中(1)(2)里运用转化思想是解题关键,为半角模型的常规题型.第(3)问作为填空题可用特殊位置得到答案,证明过程关键条件是正方形对角线,利用两个45°角联想到四点共圆,再利用圆周角定理得到△AEF为等腰直角三角形.28.(2024·河南中考模拟)如图,抛物线y=﹣34x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=34x+3经过点A、C.(1)求抛物线的解析式;(2)P是抛物线上一动点,过P作PM∥y轴交直线AC于点M,设点P的横坐标为t.①若以点C 、O 、M 、P 为顶点的四边形是平行四边形,求t 的值.②当射线MP ,AC ,MO 中一条射线平分另外两条射线的夹角时,干脆写出t 的值.【答案】(1)239344y x x =--+;(2)①满意条件的t 的值为2或﹣2或﹣2﹣2;②综合以上可得t 的值为72122,,255--- 【解析】(1)在y =34x+3中,令x =0,y =3;令y =0,x =﹣4,得A (﹣4,0),C (0,3), 代入抛物线y=-34x 2+bx+c 解析式得:943b c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式239344y x x =--+; (2)设P (t ,239344x x --+), ∵四边形OCMP 为平行四边形,∴PM=OC =3,PM∥OC,∴M 点的坐标可表示为(t ,34t+3), ∴PM=2334t t --, ∴|2334t t --=3, 当﹣34t 2﹣3t =3,解得t =2, 当﹣34t 2﹣3t =﹣3,解得t 1=﹣2t 2=﹣2﹣2,综上所述,满意条件的t 的值为2或﹣2+22或﹣2﹣22;(3)如图1,若当MP 平分AC 、MO 的夹角,则∠AMN=∠OMN,∵PN⊥OA,∴AN=ON ,∴t 的值为﹣2;如图2,若AC 平分MP 、MO 的夹角,过点C 作CH⊥OA,CG⊥MP,则CG =CH ,∵1122ACO S OM CH OC CG =⋅=⋅, ∴OM=OC =3,∵点M 在直线AC 上,∴M(t ,34t+3), ∴MN 2+ON 2=OM 2,可得,223(3)94t ++=,解得t =﹣7225,如图3,若MO平分AC、MP的夹角,则可得∠NMO=∠OMC,过点O作OK⊥AC,∴OK=ON,∵∠AKO=∠AOC=90°,∠OAK=OAC,∴△AOK∽△ACO,∴AO OK AC OC=,∴453OK =,∴OK=125,∴t=﹣125,综合以上可得t的值为7212 2,,255---.【点睛】本题考查了二次函数的学问,其中涉及了平行四边形的判定,角平分线的性质定理、等腰三角形的判定等学问.。
2024届四川省成都市新都区中考数学最后冲刺模拟试卷含解析

2024届四川省成都市新都区中考数学最后冲刺模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =(k≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .23.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC ≌DEF 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC4.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >335.如图,在矩形 ABCD 中,AB =2a ,AD =a ,矩形边上一动点 P 沿 A →B →C →D 的路径移动.设点 P 经过的路径长为 x ,PD 2=y ,则下列能大致反映 y 与 x 的函数关系的图象是( )A .B .C .D .6.按如下方法,将△ABC 的三边缩小的原来的12,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .47.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12 13 14 15 人数(个) 2 4 6 8根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A .13、15、14B .14、15、14C .13.5、15、14D .15、15、158.二次函数y =ax 2+bx +c (a ≠0)的图象如图,下列结论正确的是( )A .a <0B .b 2-4ac <0C .当-1<x <3时,y >0D .-2b a=1 9.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3 10.-5的倒数是A .15B .5C .-15D .-5二、填空题(共7小题,每小题3分,满分21分)11.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲ (结果保留π).12.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)13.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.14.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.15.计算xx x111的结果是__________.16.抛物线y=3x2﹣6x+a 与x 轴只有一个公共点,则 a 的值为_____.17.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.三、解答题(共7小题,满分69分)18.(10分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.19.(5分)解不等式313212xx+->-,并把解集在数轴上表示出来.20.(8分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.21.(10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.22.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)23.(12分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.24.(14分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.2、A【解题分析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.3、B【解题分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【题目详解】A.添加E ABC ∠∠=,根据AAS 能证明ABC ≌DEF ,故A 选项不符合题意.B.添加DE AB =与原条件满足SSA ,不能证明ABC ≌DEF ,故B 选项符合题意;C.添加AB//DE ,可得E ABC ∠∠=,根据AAS 能证明ABC ≌DEF ,故C 选项不符合题意;D.添加DF//AC ,可得DFE ACB ∠∠=,根据AAS 能证明ABC ≌DEF ,故D 选项不符合题意,故选B .【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、B【解题分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A 、不等式两边都减3,不等号的方向不变,正确;B 、乘以一个负数,不等号的方向改变,错误;C 、不等式两边都加3,不等号的方向不变,正确;D 、不等式两边都除以一个正数,不等号的方向不变,正确.故选B .5、D【解题分析】解:(1)当0≤t ≤2a 时,∵222PD AD AP =+,AP =x ,∴22y x a =+;(2)当2a <t ≤3a 时,CP =2a +a ﹣x =3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t ≤5a 时,PD =2a +a +2a ﹣x =5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D .6、C【解题分析】根据位似图形的性质,得出①△ABC 与△DEF 是位似图形进而根据位似图形一定是相似图形得出 ②△ABC 与△DEF 是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【题目详解】解:根据位似性质得出①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形,∵将△ABC 的三边缩小的原来的12, ∴△ABC 与△DEF 的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC 与△DEF 的面积比为4:1.故选C .【题目点拨】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7、B【解题分析】根据加权平均数、众数、中位数的计算方法求解即可.【题目详解】122134146158=142468x ⨯+⨯+⨯+⨯=+++, 15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【题目点拨】本题考查了平均数、众数与中位数的意义.数据x 1、x 2、……、x n 的加权平均数:112212............n n n w x w x w x x w w w +++=+++(其中w 1、w 2、……、w n 分别为x 1、x 2、……、x n 的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数. 8、D【解题分析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,∴0a>∴A选项错误,∵抛物线与x轴有两个交点,∴240b ac->∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为1x=即-=1,∴D选项正确,故选D.9、A【解题分析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【题目详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【题目点拨】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10、C【解题分析】若两个数的乘积是1,我们就称这两个数互为倒数.【题目详解】解:5的倒数是15 -.故选C.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】过D点作DF⊥AB于点F.∵AD=1,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=1.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=.故答案为:.12、(3a﹣b)【解题分析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.1326,10+2.【解题分析】当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM 的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【题目详解】当点P旋转至CA的延长线上时,如图2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP2222CP BC102226+=+=,∵BP的中点是F,∴CF=12BP26.取AB的中点M,连接MF和CM,如图2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB22AC BC=+=210.∵M为AB中点,∴CM=12AB=10,∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=12AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=10+2.故答案为26,10+2.【题目点拨】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.14、65°或25°【解题分析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【题目详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ∠,∵AD∥BC,∴∠AEB=∠DAE=12DAB∠,∠DAB=∠ABC,∵∠ABC=50°,∴∠AEB= 12×50°=25°.故答案为:65°或25°.【题目点拨】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、1【解题分析】分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.详解:原式111.111x xx x x-=-== ---故答案为:1.点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.16、3【解题分析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解.【题目详解】∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,∴判别式Δ=36-12a=0,解得:a=3,【题目点拨】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.17、4 5 .【解题分析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为4 5 .【题目点拨】本题考查概率公式,掌握图形特点是解题关键,难度不大.三、解答题(共7小题,满分69分)18、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=92.【解题分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【题目详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∴OC ⊥CD ,∵OC 为半径,∴CD 与圆O 的位置关系是相切;(2)连接BC ,∵AB 是⊙O 的直径,∴∠BCA=90°,∵圆O 的半径为3,∴AB=6,∵∠CAB=30°, ∴133332BC AB AC BC ====,, ∵∠BCA=∠CDA=90°,∠CAB=∠CAD ,∴△CAB ∽△DAC , ∴,AC AB AD AC= ∴3333AD = ∴92AD =. 【题目点拨】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.19、见解析【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.【题目详解】解:去分母,得 3x +1-6>4x -2,移项,得:3x -4x >-2+5,合并同类项,得-x >3,系数化为1,得 x <-3,不等式的解集在数轴上表示如下:【题目点拨】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.20、证明见解析.【解题分析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM ,可证△BDM ≌△CEM ,可得MD=ME ,即可解题. 试题解析:证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM.∵M 是BC 的中点,∴BM=CM.在△BDM 和△CEM 中,∵{BD CEDBM ECM BM CM=∠=∠=,∴△BDM ≌△CEM (SAS ).∴MD=ME .考点:1.等腰三角形的性质;2.全等三角形的判定与性质.21、(1)见解析;(2)4924;(1)DE 的长分别为92或1. 【解题分析】 (1)由比例中项知AM AE AE AN=,据此可证△AME ∽△AEN 得∠AEM =∠ANE ,再证∠AEM =∠DCE 可得答案; (2)先证∠ANE =∠EAC ,结合∠ANE =∠DCE 得∠DCE =∠EAC ,从而知DE DC DC AD =,据此求得AE =8﹣92=72,由(1)得∠AEM =∠DCE ,据此知AM DE AE DC =,求得AM =218,由求得AM AE AE AN =MN =4924; (1)分∠ENM =∠EAC 和∠ENM =∠ECA 两种情况分别求解可得.【题目详解】解:(1)∵AE 是AM 和AN 的比例中项∴AM AE AE AN=, ∵∠A =∠A ,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴DE DC DC AD=,∵DC=AB=6,AD=8,∴DE=92,∴AE=8﹣92=72,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴AM DE AE DC=,∴AM=218,∵AM AE AE AN=,∴AN=143,∴MN=49 24;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=92;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=68 EH DCAH AD==,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为92或1.【题目点拨】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.22、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是4.4 米.【解题分析】(1)直接利用锐角三角函数关系得出cos∠FHE=12HEHF=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【题目详解】(1 )由题意可得:cos∠FHE=12HEHF=,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过 A 作AG⊥FM 于G,在Rt△ABC 中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=FG AF,∴sin60°=2.5FG3∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是4.4 米.【题目点拨】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.23、证明见解析.【解题分析】由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.【题目详解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【题目点拨】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.24、操作平台C离地面的高度为7.6m.【解题分析】分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=CF AC,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.。
2024年四川省成都市中考模拟数学试卷(一)

2024年四川省成都市中考模拟数学试卷(一)一、单选题1.在数轴上,下列四个数的对应点中,离原点最近的是( ). A .2-B .1.3C .0.4-D .0.62.农业农村部消息称,今年全国新建高标准农田80000000亩,优质稻谷、大豆种植面积持续增加,粮食丰收已成定局.将数据80000000用科学记数法表示为( ) A .68010⨯B .80.810⨯C .7810⨯D .8810⨯3.下列计算正确的是( ) A .m n mn +=B .22()mn m n =C .2224() 24m n m n mn +=++D .24()4)(4m m m +-=-4.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴,某班同学分小组到以上五个地方进行研学旅行,人数分别为:10,9,11,10,8(单位:人),这组数据的众数和中位数分别是( ) A .10人,9人B .10人,10人C .10人,11人D .8人,11人5.如图,菱形ABCD 中,E F 、分别是AB AC 、的中点,若3EF =,则菱形ABCD 的周长为( )A .24B .18C .12D .96.“无偿献血,让你我血脉相连”,会宁县某中学有5名教师自愿献血,其中3人血型为O 型,2人血型为A 型,现从他们当中随机挑选2人参与献血,抽到的两人均为O 型血的概率为( ) A .310B .38C .25D .377.《九章算术》中记载这样一个问题:“今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当下禾五秉.”翻译后的大致意思:5捆上等稻子少结1斗1升稻谷,相当于7捆下等稻子结的稻谷;7捆上等稻子少结2斗5升稻谷,相当于5捆下等稻子结的稻谷,问上等稻子和下等稻子1捆分别能结多少稻谷(1斗=10升)?设上等稻子和下等稻子1捆分别能结稻谷x 升和y 升,则可列方程组为( ) A .51177255x y x y +=⎧⎨+=⎩ B .51177255y x y x -=⎧⎨-=⎩C .51177255x yx y -=⎧⎨-=⎩D .57117525y x y x =-⎧⎨=-⎩8.如图,抛物线2(0)y ax bx c a =++≠过点(1,0)和点(0,2)-,且顶点在第三象限,则下列判断错误的是( )A .2a b +=B .方程230ax bx c ++-=有两个不相等的实数根C .02b <<D .10a b c -<-+<二、填空题9.因式分解:25a a -=.10.若点()13,A y -,()22,B y -,()31,C y 都在函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是(用“>”连接).11.如图,123l l l ∥∥,2cm BC =,3DFEF=,则AB 的长为.12.如图,已知AB CF ∥,E 为DF 的中点,若9,4AB BD ==,则CF =.13.如图,在Rt ABC △中,90BAC ∠=︒,按以下步骤作图:分别以点A 和点C 为圆心,以大于12AC 长为半径作弧,两弧相交于M ,N 两点,直线MN 交BC 边于点D .连接AD .若8AC =,5AD =,则AB 的长为.三、解答题14.(1)计算:()23112tan 603-⎛⎫-⨯--︒ ⎪⎝⎭;(2)求不等式组()2532,1321,2x x x x ⎧+≤+⎪⎨+-<⎪⎩①②的解集,并写出不等式组的非负整数解...... 15.某同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取名学生,m 的值是,并根据题中信息补全条形统计图;(2)扇形统计图中,“数学”所对应的圆心角度数是;(3)若该校九年级共有320名学生,根据抽样调查的结果,请估计该校九年级学生中有多少名学生对数学感兴趣.16.张老师家的洗手盆上装有一种抬启式水龙头(如图①),完全开启后,把手AM 与水平线的夹角为37︒,此时把手端点A 、出水口点B 和落水点C 在同一直线上,洗手盆及水龙头示意图如图②,其相关数据为10cm 6cm 22cm AM MD DE ===,,,求EC 的长.(结果精确到0.1cm ,参考数据: 3sin 375︒=, 4cos375︒=, 3tan 374︒= 1.73≈)17.如图,AB 是O e 的直径,点D 在AB 的延长线上,C 是O e 上的一点,BCD CAB ∠=∠.(1)求证:CD 是O e 的切线; (2)若2tan 3CAB ∠=,4BD =,求O e 的半径. 18.如图,在平面直角坐标系xOy 中,一次函数24y x =+的图象与反比例函数ky x=的图象相交于(),2A a -,B 两点.(1)求反比例函数的表达式;(2)点C 是反比例函数第一象限图象上一点,且ABC V 的面积是AOB V 面积的一半,求点C 的横坐标;(3)将AOB V 在平面内沿某个方向平移得到(DEF △其中点A 、O 、B 的对应点分别是D 、E 、)F ,若D 、F 同时在反比例函数ky x=的图象上,求点E 的坐标.四、填空题 19.已知11233a b -=,则3234a b ab b a ab---+的值为. 20.如图是某圆锥的主视图和左视图,则该圆锥的表面积是.21.学校花园边墙上有一宽()BC为的矩形门ABCD ,量得门框对角线AC 长为4m ,为美化校园,现准备打掉地面BC 上方的部分墙体,使其变为以AC 为直径的圆弧形门,则要打掉墙体(阴影部分)的面积是 2m .22.如图,在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,分别在AB ,AC 上取点E ,F ,将AEF △沿直线EF 翻折得到A EF '△.使得点A 的对应点A '恰好落在CB 延长线上.当60EA B ∠'=︒时,AE 的长为.23.观察按一定规律排列的一组数:2,12,27,…,其中第1n +个数记为1n a +,第2n +个数记为2n a +,且满足21121n n n a a a ++=+,则4a ;2024a .五、解答题24.某企业为开启网络直播带货的新篇章,计划购买A ,B 两种型号直播设备.已知A 型设备价格是B 型设备价格的1.2倍,用4800元购买A 型设备的数量比用3000元购买B 型设备的数量多5台.(1)求A ,B 型设备单价分别是多少元;(2)该企业计划购买两种设备共60台,要求A 型设备数量不少于B 型设备数量的一半,设购买A 型设备a 台,购买总费用为w 元,求w 与a 的函数关系式,并求出最少购买费用.25.已知如图,抛物线()20y ax bx c a =++≠与坐标轴分别交于点()0,3A ,()3,0B -,()1,0C .(1)求抛物线解析式;(2)点P 是抛物线第三象限部分上的一点,若满足PCB ABC ∠=∠,求点P 的坐标; (3)若D 是x 轴上一点,在抛物线上是否存在点E ,使得以点A 、B 、D 、E 为顶点的四边形是平行四边形,若存在,请写出E 点的坐标,若不存在,请说明理由;26.从特殊到一般再到特殊是数学学习的重要模式,某数学兴趣小组拟做以下探究学习. 在Rt ABC △中,90ACB ∠=︒,AC BC =,将线段BC 绕点C 顺时针旋转α(0180α︒<<︒)得到线段DC ,取AD 中点H ,直线CH 与直线BD 交于点E ,连接AE .(1)【感知特殊】如图1,当30α=︒时,小组探究得出:AED △为等腰直角三角形,请写出证明过程; (2)【探究一般】①如图2,当090α︒<<︒时,试探究线段EA ,EC ,EB 之间的数量关系并证明; ②当90180α︒<<︒时,直接写出线段EA ,EC ,EB 之间的数量关系.(3)【应用迁移】AE=时,求线段EC的长.已知AC=DC的旋转过程中,当3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市中考数学模拟卷
数学
A卷(共100分)
第I卷(选择题,共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.
其中只有一项符合题目要求,答案涂在答题卡上)
1.﹣3的相反数是()
A.﹣B.C.3 D. 3
2.如图,下列水平放置的几何体中,主视图是三角形的是()
A.B.C.D.
3、分式方程的解是()
A.x=﹣2 B.x=1 C.x=2 D. x=3 4、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()
A.165°B.120°C.150°D. 135°
5.下列各式计算正确的是( )
A.(a+1)2=a2+1 B.a2+a3=a5 C.a8÷a2=a6 D.3a2-2a2=1
6、国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.0000001m,则病毒直径0.0000001m用科学记数法表示为()(保留两位有效数字).
A. 6
0.1010-⨯m B. 7
110-⨯m C. 7
1.010-⨯m
D. 6
0.110-⨯m
7顺次连接等腰梯形四边中点所得的四边形一定是( ) A .矩形 B .正方形 C .菱形 D .直角梯形
8、下面四条直线,其中直线上每个点的坐标都是二元一次方程x –2y =2的解的是
A B C D
9. 方程x (x-2)+x-2=0的解是( )
(A )2 (B )-2,1 (C )-1 (D )2,-1
10 如图,点A 、B 、C 在⊙O 上,∠ACB=30°,则sin ∠AOB 的值是【 】
A .
B .
C .
D .
二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.不等式2x+9≥3(x+2)的正整数解是_________________. 12、若3,a ,4,5的众数是4,则这组数据的平均数是 .
13、如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为 .
14、河堤横断面如图所示,堤高BC=6米,迎水坡AB 的坡比为1:,则AB 的长为 .
三.解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)
(1)计算:(﹣20)×(﹣1
2
)+.
(2)解方程组:.
16.(本小题满分6分)
(1).
(2)先通分,然后再进行分子的加减运算,最后化简即可.
17.(本小题满分8分)
如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;
(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)
某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).
(Ⅰ)求这个函数的解析式;
(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.
20.(本小题满分10分)
如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.
(1)试说明AE2+CF2的值是一个常数;
(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.
B 卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)
21、如图函数2y x =和4y ax =+的图象相交于A (m ,3),则不等式24x ax <+的解集为 .
22、有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为
23、M (1,a )是一次函数y=3x+2与反比例函数
图象的公共点,若将一次函数y=3x+2
的图象向下平移4个单位,则它与反比例函数图象的交点坐标为 .
24.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的是 .
①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.
25. 已知线段AB=6,C .D 是AB 上两点,且AC=DB=1,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为 .
二、解答题(本小题共三个小题,共30分.答案写在答题卡上)
26.(本小题满分8分)
大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示. (1)求y与x的函数关系式.
(2)设王强每月获得的利润为p(元),求p与x之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?
如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)OC=CP,AB=6,求CD的长.
如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.。