第二章平面连杆机构
机械原理第二章连杆机构(杨家军版)

3、平面连杆机构的应用
机械手
汽车中那些部位用到连杆机构
起重装置
§3-2 平面四杆机构的基本类型及应用
一、平面四杆机构的基本形式 1. 构件及运动副名称 构件名称:
连架杆——与机架连接的构件 曲柄——作整周回转的连架杆 摇杆——作来回摆动的连架杆 连杆——未与机架连接的构件 机架——固定不动的构件
α1 180° +θ t1 V2 ω = α = = = 180° -θ V1 2 t2 ω
连杆机构输出件具有急回特性的条件: 1)原动件等角速整周转动; 2)输出件具有正、反行程的往复运动; 3)极位夹角θ >0。
分析: 180° +θ K= 180° -θ
K≥1,K=1时无急回特性
设计具有急回特性的机构时,一般先根据使用要求给 定K值,则有 (K-1) θ=180° (K+1) θ= 0 θ≠0 θ↑,K↑,急回运动越明显,一般取K<2
●导杆机构(曲柄为主动件) ●导杆机构(摇杆为主动件)
α B2 ≡0°
3 2 1 3 A B VB2 D 4 FB2 1 2 FB3 B D VB2 FB2 FB1
机构压力角:在不计摩擦力、惯性力和重力的条件下, 机构中驱使输出件运动的力的方向线与输出件上受 力点的速度方向间所夹的锐角,称为机构压力角, 通常用α 表示。P50
传动角:压力角的余角。 通常用γ 表示.
F2 C
B
A
δ
D
γ F α
F1
vc
机构的传动角和压力角作出如下规定: γ min≥[γ ];[γ ]= 3060°; α max≤[α ]。 [γ ]、[α ]分别为许用传动角和许用压力角。
C
(2) 推广到导杆机构 结论:有急回特性,且极位夹角等于摆杆摆角,即
第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)
机械设计基础(专科)第2章平面连杆机构

缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3
2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。
机械原理-第02章 平面连杆机构及其设计 - 平面连杆机构的力分析

件惯性力对机械性能的影响。
G′
2020年4月23日星期四
5
§2-5 平面连杆机构的力分析
WHUT
3、机构力分析的方法
静力分析和动态静力分析。
由于最初设计时,各构件的结构尺寸、形状、材料、质量及 转动惯量未知,因而惯性力(矩)无法确定。此时,一般先 对机构作静强度计算,初步确定各构件尺寸,然后再对构件 进行动态静力分析及强度计算,并以此为依据对各构件作必 要的修正。一般不考虑摩擦力的影响。
(2) 绕定轴转动的构件
a. 回转轴线通过构件质心
S
Pi = 0 Mi = -Js ε ( ε = 0 或 ε ≠0 ) b. 回转轴线不通过质心
Pi = -mas Mi = - Jsε
其中:h=Mi/Pi
2020年4月23日星期四
WHUT
Pi' Pi
h S
Mεi
8
§2-5 平面连杆机构的力分析
(3) 作平面复合运动的构件
2020年4月23日星期四
21
WHUT
(2) 判定构件间的相对转向
F
R12
R12
ω21
v
1
2
R23ω23
3Q
ω14
4
R41
R32R32
R43
(3) 判定作用力在摩擦圆上切点位置
Q R23
R21
F
R43 R41
(4) 依据力平衡条件求解
对构件3:Q + R23 + R43 = 0 对构件1:R21 + R41+ F = 0
2020年4月23日星期四
3
§2-5 平面连杆机构的力分析
2、机构力分析的任务和目的
《机械设计基础》第2章_平面连杆机构解析

由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:
0 第2章 (1-6) 平面连杆机构

平面四杆机构的基本特性 3. 度过死点位置的方法
采用错位排列地方式顺利地通过死点位置
增大从动件的质量、利用惯性度过死点位置
平面多杆机构简介
前面我们学了基本机构 ,可以根据基本机构的功能, 进行组合以及机构的演化及变异原理创新设计出丰富多彩 的多杆机构。 1. 扩大从动件的行程 冷床运输机就是一个六 杆机构。它用于把热轧 钢料在运输过程中冷却, 因此要求增大行程,该 机构由曲柄摇杆机构 ABCD和杆EF、滑块6所 组成。显然滑块6的行程 S比曲柄摇杆机构ABCD 中C点的行程要大的多。
铰链四杆机构的基本形式及其演化
2. 取不同的构件为机架
当以不同的构件作为机 架时,将得到不同类型 的机构。
以构件1为机架时, 为曲柄滑块机构。
以构件2为机架时, 为回转导杆机构。
以构件3为机架时, 为摇块机构。
以构件4为机架时, 为移动导杆机构。
铰链四杆机构的基本形式及其演化 手摇唧筒
铰链四杆机构的基本形式及其演化
➢ 本章主要介绍平面四杆机构的类型及应用、特性、设 计方法。
铰链四杆机构的基本形式及其演化
一、四杆机构的基本型式
根据连架杆运动形式的不同,可分为三种基本形式:
1. 曲柄摇杆机构—在两连架杆中,一个为曲柄,另一个为
摇杆。
➢ 运动特点:
一般曲柄主动,将连 续转动转换为摇杆的 摆动,也可摇杆主动, 曲柄从动。
铰链四杆机构的基本形式及其演化 平行双曲柄机构
应用:应用于从动件需要和主动件保持同步的场合。 举例:机车车轮的联动机构
机车车轮联动机构
铰链四杆机构的基本形式及其演化 3. 双摇杆机构—两连杆架均为摇杆的四杆机构
第二章 平面连杆机构习题

一、选择题1.如图所示,平面铰链四杆机构CD段属于:____B.曲柄C.摇杆D.导杆2.A. 等速B. 不等速C. 等加速D. 等减速3. 当铰链四杆机构的最短杆与最长杆长度之小于或等于其余两杆长度之和,并以与最短杆邻杆为架时,该铰链四杆机构为____。
A. 曲柄摇杆机构B. 双曲柄机构C. 双摇杆机构D. 导杆机构4. 连杆作平动运动的机构为____机构。
A. 曲柄摇杆B.平行双曲柄C. 双摇杆D. 双曲柄5. 对心曲柄滑块机构中,设连杆长度为L, 曲柄长度为e,则滑块位移S为____。
A. 2eB. 2LC. LD. L+ e6. 在偏心轮机构中,设连杆长度为L, 偏心距为e,则滑块位移S为____。
A. 2eB. 2LC. LD. L+ e7. 在曲柄摇杆机构中,当____为主动件时,会出现死点位置。
A. 曲柄B. 滑块C. 连杆D. 摇杆8. 平面铰链四杆机构中,能做整周旋转的连架杆称为____,只能作往复摆动的连架杆称为____。
A. 曲柄/连杆B. 曲柄/摇杆C. 摇杆/曲柄D. 曲柄/导杆9. 铰链四杆机构的三种基本形式是:____机构、____机构和双摇杆机构。
A. 曲柄摇杆/曲柄滑块B. 曲柄摇杆/双曲柄C. 双曲柄/双连杆D. 曲柄摇杆/双连杆10. 当铰链四杆机构的最短杆与最长杆长度之小于或等于其余两杆长度之和,并以与最短杆为机架时,该铰链四杆机构为____。
A. 曲柄摇杆机构B. 双曲柄机构C. 双摇杆机构D. 摇快机构11. 当铰链四杆机构的最短杆与最长杆长度之小于或等于其余两杆长度之和,并以最短杆相对的杆为机架时,该铰链四杆机构为____。
A. 曲柄摇杆机构B. 双曲柄机构C. 双摇杆机构D. 滑块机构12. 当铰链四杆机构的最短杆与最长杆长度之大于或等于其余两杆长度之和,该铰链四杆机构为____。
A. 曲柄摇杆机构B. 双曲柄机构C. 双摇杆机构D. 滑块机构13. 在____机构中,主动曲柄的角速度与从动曲柄的角速度始终相等。
第二章 平面连杆机构及其设计

搅拌机
抓片机构
输送机
10/49
§2—1 铰链四杆机构的基本型式和特性
2)摇杆为原动件,曲柄为从动件时: 摇杆的往复摆动 曲柄的连续转动。 3 2
如图所示的缝纫机踏板机构。
3 2 1 4 摇杆主动
4 1
缝纫机踏板机构
11/49
§2—1 铰链四杆机构的基本型式和特性
二、双曲柄机构
双曲柄机构:两个连架杆都是曲柄。 传动特点: 主动曲柄连续等速转动时,从动 曲柄一般作变速转动。
冲床机构
如图所示的旋转式水泵和如上图所示的冲床机构。
A
1 D C 3 A B 2 4 D
1 B
2 C 3
旋转式叶片泵
振动筛机构
12/49
§2—1 铰链四杆机构的基本型式和特性
三、双摇杆机构
两个连架杆都是摇杆,则称为双摇杆机构。 其运动特性是:两摇杆都作摆动,但两 摇杆的摆角大小不同。 应用实例: 图2-6所示的工件夹紧机构、图2-11的飞机起落架机 构 ;
优 点:
图c
图d
3/49
2、缺点:
1)低副中存在间隙,会引起运动误差,使效率降低;
2)动平衡较困难,所以一般不宜用于高速传动;
3)设计比较复杂,不易精确地实现复杂的运动规律。
应 用:
连杆机构广泛地应用在各种机械和仪器中。 如雷 达调整机构(图2-3)、缝纫机踏板机构(图2-5) 、 鹤式起重机、机车驱动轮联动机构(图2-10)、牛头刨 床、椭圆仪(图2-22) 、机器人等。
1、在满足杆长条件下,即Lmin+Lmax≤Li+Lj : 1)取Lmin为机架时,机架上有两个整转副,该机构为 双曲柄机构(2个曲柄)。 2)取Lmin为连架杆(即最短杆的邻边为机架)时,机 架上只有一个整转副,该机构为曲柄摇杆机构(1 个曲柄)。 3)取Lmin为连杆(即最短杆的对边为机架)时,机架 上没有整转副,该机构为双摇杆机构(无曲柄)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4—机架 1,3—连架杆 →定轴转动 2—连杆 →平面运动 整转副: 二构件相对运动为整周转动。 摆动副: 二构件相对运动不为整周转动。
曲 柄:作整周转动的连架杆 摇 杆:非整周转动的连架杆
曲柄存在的条件
(若1能绕A整周相对转动,
则存在两个特殊位置)
a+d≤b+c
(1)
b ≤ c+(d-a)即a+b≤c+d (2) c ≤ b+(d-a)即a+c≤b+d (3)
平面连杆机构主要是由转动副和移动副组成
二、平面连杆机构的特点:
1、能实现多种运动形式。如:转动,摆动,移动,平面运动 2、运动副为低副:
面接触: ①承载能力大;②便于润滑。寿命长 几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律;
低副连接存在间隙,运动链会产生积累误差。 ②设计复杂; ③只用于速度较低的场合。
曲柄滑块机构有曲柄的条件:
B1
Aa
B2
b
E
C1
C2
e
△ AC1E:b-a>e △ AC2E:a+b>e
即:有曲柄的条件:b>a+e e=0, b>a
3、演化方式三:转动副转化成移动副 (双滑块机构)
双滑块机构
4、导杆机构
导杆机构
摆动导杆机构
§2-3 四连杆机构的设计及传动特性
平面连杆机构设计的基本问题:实现已知的运动规律和轨迹。 图解法:按给定的原动件和从动件转角间的关系设计四杆
1、曲柄摇杆机构 主动杆AB转动j角的同时,从动杆转动了角,则放大倍数为/ j
2、双曲柄机构
双曲柄机构及其应用
1-中间圆盘;2-工作圆; 3-直角尺;4-图板
3、双摇杆机构
双摇杆机构
1、3-摇杆架;2-连杆;4-机架; 5-蜗轮;6-蜗杆;7-风扇
三、铰链四杆机构的演化及应用
1、演化方法一 :扩大转动副
主要功能是: 1.变换运动方式,可使移动、转动相互变换; 2.同时经过传动放大,将主动杆的小转角(或位移)放大为从
动杆的大转角(或位移)。或相反也可以缩小。
天线俯仰装置中的曲柄摇杆机构
§2-2 四杆机构的基本型式及其演化
铰链四杆机构所有运动副均为转动副的平面四杆机构
一、曲柄存在的条件
b B
a
c
d
机构;根据连杆的若干位置来设计四杆机构;按给定的行程速度 变化系数设计四杆机构。
一、图解法设计四杆机构
1、机构的急回运动特性:
原动件作匀速转动,从动件作往复运动的机构,从动件正行 程和反行程的平均速度不相等。
2、行程速度变化系数
K
从动件快行程平均速度 从动件慢行程平均速度
1
j1 j2
180
180
j1
j2
2
j1 t1,j2 t2
从动件慢行程 快行程
∴ 180 K 1
K 1
K 2 1
t2
t1 t2
j1 j2
180 180
t1
3、极位夹角θ∠C2AC1)
(其值与构件尺寸有关,可能 <90°,>90°)
压力角和传动角
1、压力角α 从动件上某点的受力方向
与从动件上该点速度方向的所 夹的锐角。
二、四杆机构的基本形式
铰链四杆机构分为两大类:
(1)最短构件与最长构件的长度之和大于其他两构件长度之 和,所有运动副均为摆动副,构成双摇杆机构。 (2)最短构件与最长构件的长度之和小于等于其他两构件 长度之和,最短构件上两个转动副均为整转副。
对于第二类又可以分为下面三种基本形式: 取最短构件为机架(一般)(平行四边形特例)-双曲柄机构 取最短构件任一相邻构件为机架(一般)----曲柄摇杆机构 取最短构件对面的构件为机架---------双摇杆机构
第二 章 平面连杆机构
§2-1 概述
一、连杆机构:
是由低副将若干构件连接而成的。又称低副机构。
连杆机构的分类: 1.平面连杆机构和空间连杆机构(运动平面分法) 2.四杆机构和多杆机构(五杆及其以上)(构件个数分法)
平面连杆机构:由若干杆状构件通过运动副连接而成的平面机构。 各构件在相互平行的平面内运动,又称平面低副机构 设计关键点:实现已知的运动规律
Pt P cos Pn P sin
2、传动角γ,P与Pn夹角, 90
(经常用γ衡量机构的传动质量)
3、许用压力角
一般: 40 ~ 50
4、传动角的计算
90,
90, 180
死点位置:
前提:摇杆作为主动件, 曲柄作为从动件。
0, 90
B1 A
B2
机构停在死点位置,不能起
可以看出作为曲柄的杆其长度与其它任一杆
长之和不大于其余两杆长度之和
----杆长之和的条件
(1)+(2)得2a+b+d≤2c+b+d即a≤c (1)+(3)得 a ≤b (2)+(3)得 a ≤d 可见曲柄的长度最短--长度最短条件
由此可见:两构件作整周相对转动的条件:(整转副存在的条件) (1)此两构件中必有一构件为运动链中的最短构件。 (2)最短构件与最长构件的长度之和小于等于其它两构件长度之 和。(杆长之和的条件) (3)以最短构件的相邻构件为机架,则最短构件为曲柄。
BC 2 DC 2 DB2 2DC DB cos2
cos
2
a2 b2 2c a2
c2 d 2 2ad cosj d 2 2ad cosj
arctan a sin j arccos a2 b2 c2 d 2 2ad cosj
d a cosj
2c a2 d 2 2ad cosj
2C
2C
B
3
B
3
1 A
4
D
1 A
4
D
2C
B
3
A1
D
4
偏心轮,偏心距, 偏心轮机构
2、演化方法二:转动副转化成移动副(曲柄滑块机构)
2 B
1 A
4
C
Kc3B21DA3C
Kc
4
D
B2 1 A
3 C
4
e
B
2
1 A4
C3
曲柄滑块机构(偏距e) e≠0,偏置曲柄滑块机构 e=0, 正轴曲柄滑块机构(对心)
曲柄滑块机构
2
d
dt
1a a2 b2 2ab cosj
d cosj a
d sin j(a2 b2 c2 d 2 2ad cosj)
4b2c2 (a2 b2 c2 d 2 2ad cosj)2
P
动。即机构自锁。运转时,靠惯
性冲过死点。(通常用飞轮的惯性 C1
冲过死点)
D
C2
二、四杆机构的传动特性
四连杆机构的传动特性: 是指机构实现从动件
与主动件之间的运动方程 式。实现主动件与从动件 之间的对应关系
(j)
1.传动特性
E
tan 1
EB ED
EB AD AE
d
a sin j a cosj