机械设计教程-二、平面连杆机构-工程

合集下载

机械设计基础 第2版(机械工业出版社)ppt课件

机械设计基础 第2版(机械工业出版社)ppt课件

精选课件
35
第三节 平面四杆机构的设计
图2-30 按K设计曲柄摇杆机构
1)由公式θ=-1/+1×180°计算出极位夹角θ。
精选课件
36
第三节 平面四杆机构的设计
1)由公式θ=-1/+1×180°计算出极位夹角θ。 2)选定转动副D的位置,选择比例尺μl,按给定的摇杆长度及摆角ψ, 绘出摇杆的两个极限位置C1D和C2D。 3)由C1、C2作∠C1C2O=∠C2C1O=90°-θ,得交点O。 4)以O点为圆心、OC1为半径作圆m,则弧所对的圆周角为θ。 5)连接C1A和C2A,则C1A和C2A分别为曲柄与连杆共线的两个位置, 故AC1=B1C1-AB1=lBC-lAB,AC2=B2C2+AB2=lBC+lAB。
图2-4 双曲柄机构 a)惯性筛机构 b)平行双曲柄机构 c)反向双曲柄机构
图2-5 平行双曲柄机构
精选课件
7
第一节 平面连杆机构的类型和演化
(3)双摇杆机构 两连架杆均为摇杆的四杆机构称为双摇杆机构,其 主要功用是实现摆动与摆动的互相转换。
图2-6 鹤式起重机
精选课件
8
第一节 平面连杆机构的类型和演化
16
第一节 平面连杆机构的类型和演化
5)偏心圆盘机构。
图2-15 偏心圆盘机构
(2)双滑块四杆机构的基本形式 1)正弦机构。 2)正切机构。 3)椭圆仪机构 图2-18为双滑块机构。
精选课件
17
第一节 平面连杆机构的类型和演化
图2-16 正弦机构
精选课件
18
第一节 平面连杆机构的类型和演化
图2-17 正切机构
精选课件
23
第二节 铰链四杆机构的基本特性

机械设计基础第二章--常用机构介绍

机械设计基础第二章--常用机构介绍

4—机架 1,3—连架杆→定轴转动 2—连杆→平面运动 整转副:二构件相对运动为
整周转动。
摆动副:二构件相对运动不 为整周转动。
曲柄:作整周转动的连架杆
摇杆:非整周转动的连架杆
C
2
B
3
1
A
D
4
二、平面四杆机构的常用形式
1、曲柄摇杆机构
(构件4为机架、构件2为机架)
2、双曲柄机构
}全回转副四杆机构
(二)曲柄为最短杆。 ▲铰链四杆机构存在曲柄的条件是:
(一)最短杆与最长杆长度之和小于或等于其 余两杆长度之和。
(二)机架或连架杆为最短杆。
4、曲柄滑块机构 二、平面四杆机构的内部演化:
第二节 凸轮机构
一、凸轮机构的组成与分类: 运动方式:将主动凸轮的连续转动或
移动转换成为从动件的移动或摆动。 分类:1、形状
①盘形凸轮机构——平面凸轮 机构
②移动凸轮机构——平面凸轮 机构
③圆柱凸轮机构——空间凸轮 机构
2、运动形式
按从动件的运动型式:
①尖底从动件:用于 低速;
②滚子从动件:应用 最普遍;
③平底从动件:用于 高速
O
r0
1 2 3
4
5
6 7 8
二、从动件的常用运动规律
从动件的运动规律——从动件在工作过程中, 其位移(角位移)、速度(角速度)和加 速度(角加速度)随时间(或凸轮转角) 变化的规律。
长 几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律; ②设计复杂;
③只用于速度较低的场合。
由转动副联接四个构
件而形成的机构,称为铰 链四杆机构,如图所示。 图中固定不动的构件是机 架;与机架相连的构件称 为连架杆;不与机架直接 相连的构件称为连杆。连 架杆中,能作整周回转的 称为曲柄,只能作往复摆 动的称为摇杆。根据两连 架杆中曲柄(或摇杆)的数 目,铰链四杆机构可分为 曲柄摇杆机构、双曲柄机 构和双摇杆机构。

机械设计基础平面连杆机构

机械设计基础平面连杆机构

机械设计基础平面连杆机构1. 介绍平面连杆机构是机械设计中常见的一种机械结构,由若干杆件组成并通过铰链连接。

这种机构广泛应用于各种机械装置和系统中,如发动机、机械手等。

平面连杆机构的设计目标是通过合理配置连杆的长度和铰链位置来实现特定的运动,使它能够完成所需的工作。

在设计过程中,需要考虑机构的稳定性、刚度、运动路径等因素,以确保机构能够正常运行并满足设计要求。

本文将介绍平面连杆机构的基本原理、设计要点和常见应用实例。

2. 基本原理平面连杆机构的基本原理是利用杆件的长度和铰链的位置,通过特定的连杆结构来实现机构的运动。

2.1 连杆连杆是平面连杆机构中的主要组成部分,通常由刚性材料制成。

连杆通过铰链连接在一起,形成一个闭合的结构。

连杆的长度和形状对机构的运动特性有重要影响。

常见的连杆形状有直杆、曲杆和弧杆等。

在设计时,需要根据具体的运动要求和空间限制选择适当的连杆形状和长度。

2.2 铰链铰链是连杆机构中的连接件,用于连接连杆并允许相对运动。

铰链通常由轴和轴承组成,能够实现转动或滑动运动。

铰链的位置对机构的运动轨迹和运动范围有决定性影响。

在设计时,需要合理选择铰链的位置和类型,以满足设计要求。

3. 设计要点3.1 运动要求在设计平面连杆机构时,首先需要明确机构的运动要求。

例如,需要确定机构的运动类型(旋转、直线、滑动等)、运动范围、速度和加速度等。

这些要求将指导后续的连杆和铰链的设计。

3.2 连杆长度连杆的长度直接决定机构的运动幅度和工作空间。

在设计时,需要根据运动要求和空间限制选择合适的连杆长度。

较短的连杆长度可提高机构的刚度和稳定性,但限制了运动范围;较长的连杆长度可以实现更大的运动幅度,但可能会导致机构不稳定。

3.3 铰链位置铰链的位置是机构设计中的关键因素之一,它直接影响机构的运动轨迹和运动范围。

在选择铰链位置时,需要考虑到机构的运动要求、连杆长度以及其他约束条件,以实现所需的运动轨迹。

3.4 负载和刚度在设计平面连杆机构时,需要考虑机构受到的负载和所需的刚度。

第2章 平面连杆机构

第2章 平面连杆机构

起重机 材料学院
受电弓
15
材料加工机械设计
2.3Байду номын сангаас铰链四杆机构的力学特性
2.3.1 铰链四杆机构曲柄存在条件 2.3.2 急回运动 2.3.3 压力角和传动角 2.3.4 死点位置
16
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
通过对铰链四杆机构的三种基本形式的分析可以 看到,三种基本形式的区别在于有无曲柄和有几个曲 柄。观察铰链四杆机构四个杆相对长度对机构类型的 影响的动画,可以观察到,铰链四杆机构的三种基本 形式与机构中四个杆相对长度有关系。那么,铰链四 杆机构在什么情况下有曲柄呢?
个曲柄、两个曲柄或没有曲柄,还需根据取何杆
为机架来判断。
24
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
观看动画
进入演示
25
材料学院
材料加工机械设计
2.3.2 急回运动
首先我们看一看曲柄摇杆机构急回特性 在曲柄摇杆机构,AB为曲柄是原动件等角速度转
动,BC为连杆,CD为摇杆,当CD杆处于C1D位置为 初始位置,C2D终止位置,摇杆在两极限位置之间所 夹角度称为, 摇杆的摆角,用 表示。当摇杆CD由C1D摆 动到C2D位置时,所需时间为t1,平均速度为
23
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
如果铰链四杆机构中的最短杆与最长杆长度之
和大于其余两杆长度之和,则该机构中不可
能存在曲柄,无论取哪个构件作为机架,都只
能得到双摇杆机构。
由上述分析可知,最短杆和最长杆长度之和小
于或等于其余两杆长度之和是铰链四杆机构曲柄

第二章 平面连杆机构

第二章 平面连杆机构
条件二:连架杆或机架中最少有一根是最短杆。
2.铰链四杆机构基本类型的判别准则
(1)满足条件一但不满足条件二的是双摇杆机构;
(2)满足条件一而且以最短杆作机架的是双曲柄机构;
(3)满足条件一而且最短杆为连架杆的是曲柄摇杆机构;
(4)不满足条件一是双摇杆机构。
【实训例2-1】 铰链四杆机构ABCD如图2-10所示。请根据基本类型判别准则,说明机构分别以AB、BC、CD、AD各杆为机架时属于何种机构。
四杆机构是否存在止点,取决于从动件是否与连杆共线。例如上述图2-20a)所示的曲柄摇杆机构,如果改摇杆主动为曲柄主动,则摇杆为从动件,因连杆BC与摇杆CD不存在共线的位置,故不存在止点。又例如前述图2-20b)所示的曲柄滑块机构,如果改曲柄为主动,就不存在止点。
(2)双曲柄机构。在铰链四杆机构中,两个连架杆均能做整周的运动,则该机构称为双曲柄机构。如图2-4所示惯性筛的工作机构原理,是双曲柄机构的应用实例。由于从动曲柄3与主动曲柄1的长度不同,故当主动曲柄1匀速回转一周时,从动曲柄3作变速回转一周,机构利用这一特点使筛子6作加速往复运动,提高了工作性能。当两曲柄的长度相等且平行布置时,成了平行双曲柄机构,如图2-5a)所示为正平行双曲柄机构,其特点是两曲柄转向相同和转速相等及连杆作平动,因而应用广泛。火车驱动轮联动机构利用了同向等速的特点;路灯检修车的载人升斗利用了平动的特点,如图2-6a、b)所示。如图2-5b)为逆平行双曲柄机构, 具有两曲柄反向不等速的特点,车 门的启闭机构利用了两曲柄反向转动的特点,如图2-6c)所示。
应该指出,滑块的运动轨迹不仅局限于圆弧和直线,还可以是任意曲线,甚至可以是多种曲线的组合,这就远远超出了铰链四杆机构简单演化的范畴,也使曲柄滑块机构的应用更加灵活、广泛。

机械设计基础第二章

机械设计基础第二章

第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。

在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。

(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。

且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。

(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。

另外可实现远距离传动。

平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。

(2)运动时产生的惯性力难以平衡,不适用于高速的场合。

(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。

所以不能用于高速精密的场合。

平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。

如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。

图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。

机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。

能作整周转动的连架杆,称为曲柄。

仅能在某一角度摆动的连架杆,称为摇杆。

按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

机械设计基础(专科)第2章平面连杆机构

机械设计基础(专科)第2章平面连杆机构

缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3

2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。

机械原理-第02章 平面连杆机构及其设计 - 平面连杆机构的力分析

机械原理-第02章 平面连杆机构及其设计 - 平面连杆机构的力分析

件惯性力对机械性能的影响。
G′
2020年4月23日星期四
5
§2-5 平面连杆机构的力分析
WHUT
3、机构力分析的方法
静力分析和动态静力分析。
由于最初设计时,各构件的结构尺寸、形状、材料、质量及 转动惯量未知,因而惯性力(矩)无法确定。此时,一般先 对机构作静强度计算,初步确定各构件尺寸,然后再对构件 进行动态静力分析及强度计算,并以此为依据对各构件作必 要的修正。一般不考虑摩擦力的影响。
(2) 绕定轴转动的构件
a. 回转轴线通过构件质心
S
Pi = 0 Mi = -Js ε ( ε = 0 或 ε ≠0 ) b. 回转轴线不通过质心
Pi = -mas Mi = - Jsε
其中:h=Mi/Pi
2020年4月23日星期四
WHUT
Pi' Pi
h S
Mεi
8
§2-5 平面连杆机构的力分析
(3) 作平面复合运动的构件
2020年4月23日星期四
21
WHUT
(2) 判定构件间的相对转向
F
R12
R12
ω21
v
1
2
R23ω23
3Q
ω14
4
R41
R32R32
R43
(3) 判定作用力在摩擦圆上切点位置
Q R23
R21
F
R43 R41
(4) 依据力平衡条件求解
对构件3:Q + R23 + R43 = 0 对构件1:R21 + R41+ F = 0
2020年4月23日星期四
3
§2-5 平面连杆机构的力分析
2、机构力分析的任务和目的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计教程-二、平面连杆机构-工程
第二章平面连杆机构
一、定义:
若干构件通过低副(转动副或移动副)联接所组成的机构称作连杆机构,。

动副)联接所组成的机构称作连杆机构。

连杆机构中各构件的相对运动是平面运动还是空间运动,连杆机构又可以分为平面连杆机构和空间连杆机构。

平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。

§2.1平面四杆机构的类型及应用
2.1平面四杆机构的类型及应用
在此机构中,AD固定不动,称为机架;AB、CD两构件与机架组成转动副,称为连架杆;BC称为连杆。

在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度范围内摆动的构件称为摇杆。

一、铰链四杆机构基本类型
根据机构中有无曲柄和有几个曲柄,铰链四杆机构又有三种基本形式:
1.曲柄摇杆机构
:两连架杆中一个为曲柄而另一个为摇杆的机构。

雷达调整机构
缝纫机踏板机构
当曲柄为原动件时,可将曲柄的连续转动转变为摇杆的往复摆动,如图中的雷达天线机构;反之,当摇杆为原动件时,可将摇杆的往复摆动转变为曲柄的整周转动,如图所示的缝纫机踏板。

2.双曲柄机构
:两连架杆均为曲柄的四杆机构。

可将原动曲柄的等速转动转换成从动曲柄的等速或变速转动,如图所示的惯性筛驱动机构;
构的相对两杆平行且相等时,则成为平行四边形机构,如图所示。

注意:平行四边形机构在运动过程中,当两曲柄与机架共线时,在原动件转向不变、转速恒定的条件下,从动曲柄会出现运动不确定现象。

可以在机构中添加飞轮或使用两组相同机构错位排列。

3.双摇杆机构
.双摇杆机构
:两连架杆都是摇杆的机构,如图所示的鹤式起重机构,保证货物水平移动。

二、机构的演化
机构的演化方法有三种:
1)通过改变构件的形状和相对尺寸进行演化,如图2—8的演化;
2)通过改变运动副尺寸进行演化;
3)通过选用不同构件作为机架进行演化。

1.滑块机构
如图所示,当构件1能整周回转成为曲柄时,该机构称为曲柄滑块机构;否则该机构称为摆杆滑块机构。

2.导杆机构
在图a所示的对心曲柄滑块机构中,若改取构件1为机架,则机构演化为导杆机构。

图b。

3.曲柄摇块与曲柄转块机构
.曲柄摇块与曲柄转块机构
在图a中若改取构件2为机架,当l1< l2时,随构件1的转动,滑块3只在一定角度范围内摆动,该构件称为曲柄摇块机构;当l1> l2时,则滑块3可作整周转动,我们称为曲柄转块机构。

4.移动导杆机构
.移动导杆机构
在图a中,如取滑块3为机架,则该机构演化成移动导杆机构
§2.3四杆机构特性
四杆机构特性一、四杆机构存在曲柄的条件
铰链四杆机构的三种基本型式的区别在于它的连架杆是否为曲柄。

而且一般原动件为曲柄。

而在四杆机构中是否存在曲柄,取决于机构中各构件间的相对尺寸关系。

设a’和AB”。

由图可见,为使AB杆能转至位置AB’,各杆长度应满足:
第二章平面连杆机构
一、定义:
若干构件通过低副(转动副或移动副)联接所组成的机构称作连杆机构。

动副)联接所组成的机构称作连杆机构。

连杆机构中各构件的相对运动是平面运动还是空间运动,连杆机构又可以分为平面连杆机构和空间连杆机构。

平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。

§2.1平面四杆机构的类型及应用
2.1平面四杆机构的类型及应用
在此机构中,AD固定不动,称为机架;AB、CD两构件与机架组成转动副,称为连架杆;BC称为连杆。

在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度范围内摆动的构件称为摇杆。

一、铰链四杆机构基本类型
根据机构中有无曲柄和有几个曲柄,铰链四杆机构又有三种基本形式:
1.曲柄摇杆机构
:两连架杆中一个为曲柄而另一个为摇杆的机构。

雷达调整机构
缝纫机踏板机构
当曲柄为原动件时,可将曲柄的连续转动转变为摇杆的往复摆动,如图中的雷达天线机构;反之,当摇杆为原动件时,可将摇杆的往复摆动转变为曲柄的整周转动,如图所示的缝纫机踏板。

2.双曲柄机构
:两连架杆均为曲柄的四杆机构。

可将原动曲柄的等速转动转换成从动曲柄的等速或变速转动,如图所示的惯性筛驱动机构;
构的相对两杆平行且相等时,则成为平行四边形机构,如图所示。

注意:平行四边形机构在运动过程中,当两曲柄与机架共线时,在原动件转向不变、转速恒定的条件下,从动曲柄会出现运动不确定现象。

可以在机构中添加飞轮或使用两组相同机构错位排列。

3.双摇杆机构
.双摇杆机构
:两连架杆都是摇杆的机构,如图所示的鹤式起重机构,保证货物水平移动,
工程
《机械设计教程-二、平面连杆机构》(https://www.)。

二、机构的演化
机构的演化方法有三种:
1)通过改变构件的形状和相对尺寸进行演化,如图2—8的演化;
2)通过改变运动副尺寸进行演化;
3)通过选用不同构件作为机架进行演化。

1.滑块机构
如图所示,当构件1能整周回转成为曲柄时,该机构称为曲柄滑块机构;否则该机构称为摆杆滑块机构。

2.导杆机构
在图a所示的对心曲柄滑块机构中,若改取构件1为机架,则机构演化为导杆机构。

图b。

3.曲柄摇块与曲柄转块机构
.曲柄摇块与曲柄转块机构
在图a中若改取构件2为机架,当l1< l2时,随构件1的转动,滑块3只在一定角度范围内摆动,该构件称为曲柄摇块机构;当
l1> l2时,则滑块3可作整周转动,我们称为曲柄转块机构。

4.移动导杆机构
.移动导杆机构
在图a中,如取滑块3为机架,则该机构演化成移动导杆机构
§2.3四杆机构特性
四杆机构特性一、四杆机构存在曲柄的条件
铰链四杆机构的三种基本型式的区别在于它的连架杆是否为曲柄。

而且一般原动件为曲柄。

而在四杆机构中是否存在曲柄,取决于机构中各构件间的相对尺寸关系。

设a’和AB”。

由图可见,为使AB杆能转至位置AB’,各杆长度应满足:
a+d ≤ b+c ①
而为使AB杆能转至AB”,各杆长度关系应满足b ≤ (d-a)+c c ≤ (d-a)+b
可得: a+b ≤ d+c ②
a+c ≤d+b③
由①②③可以得出铰链四杆机构曲柄存在条件为:
1)连架杆和机架中必有一杆是最短杆;
2)最短杆与最长杆长度之和小于或等于其它两杆长度之和。

(称为杆长条件)
上述两个条件必须同时满足,否则机构不存在曲柄。

二、急回特性和行程速比系数
1)当主动件曲柄等速转动时,从动件摇杆摆回的平均速度大于摆出的平均速度,摇杆的这种运动特性称为急回特性
2)行程速比系数K
K=v2/v1=(180°+θ)/(180° -θ)
当机构存在极位夹角θ时,机构便具有急回运动特性。

且θ角越大,K值越大,机构的急回性质也越显著
牛头刨床机构
三、压力角与传动角
连杆BC与从动件CD之间所夹的锐角γ称为四杆机构在此位置的传动角。

显然γ越大,有效分力Pt越大,Pn越小,对机构的传动就越有利。

所以,在连杆机构中也常用传动角的大小及变化情况来描述机构传动性能的优劣。

为了保证机构传力性能良好,应使γmin≥ 40 ~50°
最小传动角的确定:对于曲柄摇杆机构,γmin出现在主动件曲柄与机架共线的两位置之一。

三、死点
如图:当以摇杆CD为主动件,则当连杆与从动件曲柄共线时,机构的传动角γ=0°,这时主动件CD通过连杆作用于从动件AB上的力恰好通过其回转中心,出现了不能使构件AB转动的“顶死”现象,机构的这种位置称为“死点”。

上的力恰好通过其回转中心,出现了不能使构件AB转动的“顶死”现象,机构的这种位置称为“死点”。

在工程上,为了使机构能够顺利通过死点而正常运转,必须采用适当的措施,如发动机上安装飞轮加大惯性力,或利用机构的组合错开死点位置,例如机车车轮的联动装置。

但是,也应注意到,在工程上也长有利用死点来实现一定工作要求的,例如飞机起落架、各类夹具中,如下图
§2.4四杆机构设计
2.4四杆机构设计连杆机构的设计方法有
:作图法、实验法及解析法。

图解法和实验法比较直观易懂,但设计精度要低。

解析法精度高,但计算要复杂,有时利用手工几乎无法完成。

一、按连杆预定位置设计四杆机构
二、按给行程速比系数K
K 设计四杆机构
如图2-21所示,已知摇杆CD长度及摆角,行程速比系数K。

要求设计曲柄摇杆机构。

步骤如下:
1)由公式,求出极位夹角θ。

2)任选固定铰D的位置,并作出摇杆两极限位置C1D和C2D,夹角为。

3)连接C1C2,作∠C1C2O=∠C2C1O= 90˚-θ,得交点O,以O 为圆心,OC1为半径作圆。

4)在圆上任取一点A为固定铰。

5)连接AC1、 AC2,则AC1、 AC2分别为曲柄与连杆重迭拉直共线位置,即:
AC1=BC-AB AC2=BC+AB
可分别求得AB与BC。

相关文档
最新文档