二叉排序树的查找

合集下载

二叉排序树

二叉排序树

9
第9章
第三节
二、二叉排序树(插入)

查找
动态查找表
二叉排序树是一种动态查找表


当树中不存在查找的结点时,作插入操作
新插入的结点一定是叶子结点(只需改动一个 结点的指针) 该叶子结点是查找不成功时路径上访问的最后 一个结点的左孩子或右孩子(新结点值小于或 大于该结点值) 10

第9章
第三节
查找
19
在二叉排序树中查找关 键字值等于37,88,94
3
第9章
第三节
查找
动态查找表
二、二叉排序树(查找函数)中结点结构定义 二叉排序树通常采用二叉链表的形式进行存 储,其结点结构定义如下:
typedef struct BiNode { int data; BiNode *lChild, *rChild; }BiNode,*BitTree;
4
第9章
第三节
查找
动态查找表
2、二叉排序树的定义 定义二叉排序树所有用到的变量 BitTree root; int
//查找是否成功(1--成功,0--不成功) //查找位置(表示在BisCount层中的第几个位置
BisSuccess;
int
int
BisPos;
BisCount;
//查找次数(相当于树的层数)
7
第9章
第三节
查找
动态查找表
二、二叉排序树(查找函数)
else { BisSuccess = 0; root=GetNode(k);//查找不成功,插入新的结点}
} BiNode * GetNode(int k) { BiNode *s; s = new BiNode; s->data = k; s->lChild = NULL; s->rChild = NULL; return(s);}

数据结构-动态查找表

数据结构-动态查找表

数据结构-动态查找表⼀、动态查找的概念:动态查找表:表结构在查找过程中动态⽣成。

要求:对于给定值key, 若表中存在其关键字等于key的记录,则查找成功返回(或者删除之);否则插⼊关键字等于key 的记录。

⼆、动态查找表1. 1. ⼆叉排序树的定义⼆叉排序树的定义(Binary Sort Tree或Binary Search Tree):⼆叉排序树或者是⼀棵空树,或者是满⾜下列性质的⼆叉树:(1)若左⼦树不为空,则左⼦树上的所有结点的值(关键字)都⼩于根节点的值;(2)若右⼦树不为空,则右⼦树上的所有结点的值(关键字)都⼤于根节点的值;(3)左、右⼦树都分别为⼆叉排序树。

如下图15-1所⽰,该图中的树就是⼀棵⼆叉排序树。

任何⼀个⾮叶⼦结点的左⼦树上的结点值都⼩于根结点,右⼦树上的结点值都⼤于根结点的值。

图1中,⼆叉树的结点值中序遍历的结果为:3,12,24,37,45,53,61,78,90,100。

结论:若按中序遍历⼀棵⼆叉排序树,所得到的结点序列是⼀个递增序列。

1. 1. ⼆叉排序树(BST树)的查找思想BST树的查找思想:(1)⾸先将给定的K值与⼆叉排序树的根节点的关键字进⾏⽐较:若相等,则查找成功;(2)若给定的K值⼩于BST树的根节点的关键字:继续在该节点的左⼦树上进⾏查找;(3)若给定的K值⼤于BST树的根节点的关键字:继续在该节点的右⼦树上进⾏查找。

1. 2. ⼆叉排序树总结(1)查找过程与顺序结构有序表中的折半查找相似,查找效率⾼;(2)中序遍历此⼆叉树,将会得到⼀个关键字的有序序列(即实现了排序运算);(3)如果查找不成功,能够⽅便地将被查元素插⼊到⼆叉树的叶⼦结点上,⽽且插⼊或删除时只需修改指针⽽不需移动元素。

三、红⿊树1. 1. 红⿊树的定义红⿊树(Red Black Tree)是⼀种⾃平衡⼆叉查找树,是在计算机科学中⽤到的⼀种数据结构,典型的⽤途是实现关联数组。

它是在1972年由Rudolf Bayer发明的,当时被称为平衡⼆叉B树(symmetric binary B-trees)。

二叉排序树

二叉排序树

②若*p结点只有左子树,或只有右子树,则可将*p的左子 树或右子树直接改为其双亲结点*f的左子树,即: f->1child=p->1child(或f->1child=p->rchild); free(p); *f
F *p P P1
*f
F
*f
F *p P
*f
F
Pr
P1
Pr
③若*p既有左子树,又有右子树。则:
-1 0
47
-1
47
47
0
31 69
69
25
0
47
0
25
0
47
-1 0
31
0
69
0
40
69
40
69
0
25 76
40
76
(a)
AL、BL、BR 都是空树
(b) AL、BL、BR 都是非空树
LR型调整操作示意图
2
A
-1
0
C
AR C BL CL CR AR
0 0
B BL CL S
B
A
CR
(a) 插入结点*s后失去平衡
31
0 0 -1
31
0 1
28
0
25
0 0
47
0
25
-1
47
0
25
0
31
0
16 0
28
16
28
0
16 30
30
47
(c) LR(R)型调整
RL型调整操作示意图
A B C A BR CR B BR
AL
C
AL
CL CR

数据结构 二叉排序树

数据结构 二叉排序树

9.6.2 哈希函数的构造方法
构造哈希函数的目标:
哈希地址尽可能均匀分布在表空间上——均 匀性好; 哈希地址计算尽量简单。
考虑因素:
函数的复杂度; 关键字长度与表长的关系; 关键字分布情况; 元素的查找频率。
一、直接地址法 取关键字或关键字的某个线性函数值为哈希地址 即: H(key) = key 或: H(key) = a* key + b 其中,a, b为常数。 例:1949年后出生的人口调查表,关键字是年份 年份 1949 1950 1951 … 人数 … … … …
9.4 二叉排序树
1.定义:
二叉排序树(二叉搜索树或二叉查找树) 或者是一棵空树;或者是具有如下特性的二叉树
(1) 若它的左子树不空,则左子树上所有结点的 值均小于根结点的值;
(2) 若它的右子树不空,则右子树上所有结点 的值均大于等于根结点的值; (3) 它的左、右子树也都分别是二叉排序树。
例如:
H(key)
通常设定一个一维数组空间存储记录集合,则 H(key)指示数组中的下标。
称这个一维数组为哈希(Hash)表或散列表。 称映射函数 H 为哈希函数。 H(key)为哈希地址
例:假定一个线性表为: A = (18,75,60,43,54,90,46) 假定选取的哈希函数为
hash3(key) = key % 13
H(key) = key + (-1948) 此法仅适合于: 地址集合的大小 = = 关键字集合的大小
二、数字分析法
假设关键字集合中的每个关键字都是由 s 位数 字组成 (u1, u2, …, us),分析关键字集中的全体, 并从中提取分布均匀的若干位或它们的组合作为 地址。 例如:有若干记录,关键字为 8 位十进制数, 假设哈希表的表长为100, 对关键字进行分析, 取随机性较好的两位十进制数作为哈希地址。

二叉排序树

二叉排序树

二叉排序树1.二叉排序树定义二叉排序树(Binary Sort Tree)或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于根结点的值;若右子树不空,则右子树上所有结点的值均大于根结点的值。

(2)左右子树也都是二叉排序树,如图6-2所示。

2.二叉排序树的查找过程由其定义可见,二叉排序树的查找过程为:(1)若查找树为空,查找失败。

(2)查找树非空,将给定值key与查找树的根结点关键码比较。

(3)若相等,查找成功,结束查找过程,否则:①当给值key小于根结点关键码,查找将在以左孩子为根的子树上继续进行,转(1)。

②当给值key大于根结点关键码,查找将在以右孩子为根的子树上继续进行,转(1)。

3.二叉排序树插入操作和构造一棵二叉排序树向二叉排序树中插入一个结点的过程:设待插入结点的关键码为key,为将其插入,先要在二叉排序树中进行查找,若查找成功,按二叉排序树定义,该插入结点已存在,不用插入;查找不成功时,则插入之。

因此,新插入结点一定是作为叶子结点添加上去的。

构造一棵二叉排序树则是逐个插入结点的过程。

对于关键码序列为:{63,90,70,55,67,42,98,83,10,45,58},则构造一棵二叉排序树的过程如图6-3所示。

4.二叉排序树删除操作从二叉排序树中删除一个结点之后,要求其仍能保持二叉排序树的特性。

设待删结点为*p(p为指向待删结点的指针),其双亲结点为*f,删除可以分三种情况,如图6-4所示。

(1)*p结点为叶结点,由于删去叶结点后不影响整棵树的特性,所以,只需将被删结点的双亲结点相应指针域改为空指针,如图6-4(a)所示。

(2)*p结点只有右子树或只有左子树,此时,只需将或替换*f结点的*p子树即可,如图6-4(b)、(c)所示。

(3)*p结点既有左子树又有右子树,可按中序遍历保持有序地进行调整,如图6-4(d)、(e)所示。

设删除*p结点前,中序遍历序列为:① P为F的左子女时有:…,Pi子树,P,Pj,S子树,Pk,Sk子树,…,P2,S2子树,P1,S1子树,F,…。

二叉排序树

二叉排序树

就维护表的有序性而言,二叉排序树无须移 动结点,只需修改指针即可完成插入和删 除操作,且其平均的执行时间均为O(lgn), 因此更有效。二分查找所涉及的有序表是 一个向量,若有插入和删除结点的操作, 则维护表的有序性所花的代价是O(n)。当 有序表是静态查找表时,宜用向量作为其 存储结构,而采用二分查找实现其查找操 作;若有序表里动态查找表,则应选择二 叉排序树作为其存储结构。
if(q->lchild) //*q的左子树非空,找*q的左子 树的最右节点r. {for(q=q->lchild;q->rchild;q=q->rchild); q->rchild=p->rchild; } if(parent->lchild==p)parent->lchild=p>lchild; else parent->rchild=p->lchild; free(p); /释放*p占用的空间 } //DelBSTNode
下图(a)所示的树,是按如下插入次序构成的: 45,24,55,12,37,53,60,28,40,70 下图(b)所示的树,是按如下插入次序构成的: 12,24,28,37,40,45,53,55,60,70
在二叉排序树上进行查找时的平均查找长度和二叉树的形态 有关: ①在最坏情况下,二叉排序树是通过把一个有序表的n 个结点依次插入而生成的,此时所得的二叉排序树蜕化为 棵深度为n的单支树,它的平均查找长度和单链表上的顺 序查找相同,亦是(n+1)/2。 ②在最好情况下,二叉排序树在生成的过程中,树的形 态比较匀称,最终得到的是一棵形态与二分查找的判定树 相似的二叉排序树,此时它的平均查找长度大约是lgn。 ③插入、删除和查找算法的时间复杂度均为O(lgn)。 (3)二叉排序树和二分查找的比较 就平均时间性能而言,二叉排序树上的查找和二分查找 差不多。

数据结构二叉排序树

数据结构二叉排序树

05
13
19
21
37
56
64
75
80
88
92
low mid high 因为r[mid].key<k,所以向右找,令low:=mid+1=4 (3) low=4;high=5;mid=(4+5) div 2=4
05
13
19
low
21
37
56
64
75
80
88
92
mid high
因为r[mid].key=k,查找成功,所查元素在表中的序号为mid 的值
平均查找长度:为确定某元素在表中某位置所进行的比 较次数的期望值。 在长度为n的表中找某一元素,查找成功的平均查找长度:
ASL=∑PiCi
Pi :为查找表中第i个元素的概率 Ci :为查到表中第i个元素时已经进行的比较次数
在顺序查找时, Ci取决于所查元素在表中的位置, Ci =i,设每个元素的查找概率相等,即Pi=1/n,则:
RL型的第一次旋转(顺时针) 以 53 为轴心,把 37 从 53 的左上转到 53 的左下,使得 53 的左 是 37 ;右是 90 ,原 53 的左变成了 37 的右。 RL型的第二次旋转(逆时针)
一般情况下,假设由于二叉排序树上插入结点而失去 平衡的最小子树的根结点指针为a(即a是离插入结点最 近,且平衡因子绝对值超过1的祖先结点),则失去平衡 后进行调整的规律可归纳为下列四种情况: ⒈RR型平衡旋转: a -2 b -1 h-1 a1
2.查找关键字k=85 的情况 (1) low=1;high=11;mid=(1+11) / 2=6
05
13
19
21

数据结构:第9章 查找2-二叉树和平衡二叉树

数据结构:第9章 查找2-二叉树和平衡二叉树
NODE *t; char x; {if(t==NULL)
return(NULL); else
{if(t->data==x) return(t);
if(x<(t->data) return(search(t->lchild,x));
else return(search(t->lchild,x)); } }
——这种既查找又插入的过程称为动态查找。 二叉排序树既有类似于折半查找的特性,又采用了链表存储, 它是动态查找表的一种适宜表示。
注:若数据元素的输入顺序不同,则得到的二叉排序树形态 也不同!
讨论1:二叉排序树的插入和查找操作 例:输入待查找的关键字序列=(45,24,53,45,12,24,90)
二叉排序树的建立 对于已给定一待排序的数据序列,通常采用逐步插入结点的方 法来构造二叉排序树,即只要反复调用二叉排序树的插入算法 即可,算法描述为: BiTree *Creat (int n) //建立含有n个结点的二叉排序树 { BiTree *BST= NULL;
for ( int i=1; i<=n; i++) { scanf(“%d”,&x); //输入关键字序列
– 法2:令*s代替*p
将S的左子树成为S的双亲Q的右子树,用S取代p 。 若C无右子树,用C取代p。
例:请从下面的二叉排序树中删除结点P。
F P
法1:
F
P
C
PR
C
PR
CL Q
CL QL
Q SL
S PR
QL S
SL
法2:
F
PS
C
PR
CL Q
QL SL S SL
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#define INFMT "%d"
#define OUTFMT "%d "
/* #define NULL 0L */
#define BOOL int
#define TRUE 1
#define FALSE 0
#define LEN 10000
typedef int ElemType;
typedef struct BSTNode
{
ElemType data;
struct BSTNode *lchild, *rchild;
} BSTNode, *BSTree;
/* 插入新节点*/
void Insert(BSTree *tree, ElemType item)
{
BSTree node = (BSTree)malloc(sizeof(BSTNode)); node->data = item;
node->lchild = node->rchild = NULL;
if (!*tree)
*tree = node;
else
{
BSTree cursor = *tree;
while (1)
{
if (item < cursor->data)
{
if (NULL == cursor->lchild)
{
cursor->lchild = node;
}
cursor = cursor->lchild;
}
else
{
if (NULL == cursor->rchild)
{
cursor->rchild = node;
break;
}
cursor = cursor->rchild;
}
}
}
return;
}
/* 查找指定值*/
BSTree Search(BSTree tree, ElemType item) {
BSTree cursor = tree;
while (cursor)
{
if (item == cursor->data)
return cursor;
else if ( item < cursor->data)
cursor = cursor->lchild;
else
cursor = cursor->rchild;
}
return NULL;
}
void Inorder(BSTree tree)
{
BSTree cursor = tree;
if (cursor)
{
Inorder(cursor->lchild);
printf(OUTFMT, cursor->data); Inorder(cursor->rchild);
}
}
/* 回收资源*/
void Cleanup(BSTree tree)
{
BSTree cursor = tree, temp = NULL;
if (cursor)
{
Cleanup(cursor->lchild);
Cleanup(cursor->rchild);
free(cursor);
}
}
/* 产生一组随机数*/
void randnum(int *a, int s)
{
int i, j, mod = s * 10;
srand(time(NULL));
for (i = 0; i < s; ++i)
{
a[i] = rand() % mod + 1;
for (j = 0; j < i; ++j)
{
if (a[i] == a[j])
{
a[i] = rand() % mod + 1;
j = -1;
continue;
}
}
}
}
void main()
{
ElemType item;
char choice;
BSTree root = NULL, ret; /* 必须赋予NULL值,否则出错*/ BOOL finish = FALSE;
printf("***欢迎使用二叉排序树演示程序***\n\n");
printf("请选择创建树的方式:\n");
printf("1. 手动输入数据创建二叉排序树\n");
printf("2. 自动产生数据创建二叉排序树\n");
do
{
scanf("%c", &choice);
getchar();
if (choice == '1' || choice == '2')
finish = TRUE;
} while (FALSE == finish);
switch (choice)
{
case '1':
{
printf("请输入数据(-10000结束):\n");
while (1)
{
scanf(INFMT, &item);
if (-10000 != item)
Insert(&root, item);
else
break;
}
break;
}
case '2':
{
int ia[LEN], i = 0, loop = LEN; randnum(ia, LEN);
while (loop--)
{
Insert(&root, ia[i++]);
}
break;
}
}
printf("\n\n创建完成...\n"); Inorder(root);
printf("\n\n");
/* 二叉排序树的查找测试*/
do
{
printf("\n请输入查找数据:"); scanf("%d", &item);
getchar();
printf("Searching...\n");
ret = Search(root, item);
if (NULL == ret)
printf("查找失败!");
else
printf("查找成功!");
printf("\n继续测试按y,退出按其它键。

\n"); choice = getchar();
} while (choice=='y'||choice=='Y');
Cleanup(root);
}。

相关文档
最新文档