数值计算方法复习题

合集下载

《数值计算办法》试题集及参考答案

《数值计算办法》试题集及参考答案

精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。

答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。

16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。

22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题集和答案

数值计算方法试题集和答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为 199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法试题及答案

数值计算方法试题及答案
(1) (1)试用余项估计其误差。
(2)用n8的复化梯形公式(或复化Simpson公式)计算出该积分的近似值。
e
2
x
数值试题
四、1、(15分)方程x3x10在x不同的等价形式(1)x3对应迭代格式
xn1
1xn
1.5附近有根,把方程写成三种
x1对应迭代格式xn1xn1;(2)
x1
1x
;(3)x
3
x1对应迭代格式xn1xn1。判
六、(下列2题任选一题,4分)1、1、数值积分公式形如
0xf(x)dxS(x)Af(0)Bf(1)Cf(0)Df(1)(1)(1)试确定参数A,B,C,D使公式代数精度尽量高;(2)
1
2、
设f(x)C[0,1],推导余项公式
误差。2、用二步法
4
R(x)
1
xf(x)dxS(x)
,并估计
yn10yn1yn1h[f(xn,yn)(1)f(xn1,yn1)]
4
数值试题
AX
1
__________,cond(A)
1
__________。
f(x0)f(x1)
具有最高的代
f(x)dx
5、为使两点的数值求积公式:1
x2__________。数精确度,则其求积基点应为x1__________,
6、设ARnn,ATA,则(A)(谱半径)__________
填小于、大于、等于)
1A2
147、设
012
A
2
。(此处
,则k__________。
三、简答题:(9分)1、1、方程x42x在区间1,2使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术?
x

数值计算方法试题库及答案解析

数值计算方法试题库及答案解析

y 2y, y(0) 1,试问为保证该公式绝对稳定,步长 h 的取值范围为(
)。
(1) 0 h 2 , (2) 0 h 2 , (3) 0 h 2 , (4) 0 h 2
三、1、(8 分)用最小二乘法求形如 y a bx2 的经验公式拟合以下数据:
2
是否为插值型求积公式?为什么?其
代数精度是多少?
七、(9 分)设线性代数方程组 AX b 中系数矩阵 A 非奇异, X 为精确解, b 0 ,若向
~
~
量 X 是 AX b 的 一 个 近 似 解 , 残 向 量 r b A X , 证 明 估 计 式 :
~
X X
r cond ( A)
五、(8 分)已知求 a (a 0) 的迭代公式为:
1
a
xk1 2 (xk xk )
x0 0 k 0,1,2
证明:对一切 k 1,2,, xk a ,且序列xk 是单调递减的,
从而迭代过程收敛。
3 f (x)dx 3 [ f (1) f (2)]
六、(9 分)数值求积公式 0
六、(下列 2 题任选一题,4 分) 1、 1、 数值积分公式形如
1
0 xf (x)dx S(x) Af (0) Bf (1) Cf (0) Df (1)
(1) (1) 试确定参数 A, B,C, D 使公式代数精度尽量高;(2)设
1
f (x) C 4[0,1] ,推导余项公式 R(x) 0 xf (x)dx S(x) ,并估计误差。
i 1
的高斯(Gauss)型求积公式具有最高代数精确度的次
数为 2n 1。 (

数值计算试题及答案

数值计算试题及答案

数值计算试题及答案一、单项选择题(每题3分,共30分)1. 在数值计算中,下列哪种方法用于求解线性方程组?A. 牛顿法B. 牛顿-拉弗森方法C. 高斯消元法D. 蒙特卡洛方法答案:C2. 以下哪个不是数值分析中常用的插值方法?A. 拉格朗日插值B. 牛顿插值C. 多项式插值D. 傅里叶变换答案:D3. 在数值积分中,梯形规则的误差项与下列哪个因素有关?A. 积分区间的长度B. 被积函数的二阶导数C. 被积函数的一阶导数D. 被积函数的三阶导数答案:B4. 下列哪种方法不是数值微分的方法?A. 前向差分法B. 中心差分法C. 牛顿迭代法D. 后向差分法答案:C5. 以下哪个算法不是用于求解非线性方程的?A. 牛顿法B. 弦截法C. 牛顿-拉弗森方法D. 欧拉法答案:D6. 在数值分析中,下列哪个概念与误差分析无关?A. 截断误差B. 舍入误差C. 条件数D. 插值多项式的阶答案:D7. 以下哪种方法不是数值解常微分方程的方法?A. 欧拉法B. 龙格-库塔法C. 牛顿法D. 亚当斯法答案:C8. 在数值分析中,下列哪个概念与病态问题无关?A. 条件数B. 误差放大C. 稳定性D. 收敛性答案:D9. 以下哪种情况不会导致数值解的不稳定?A. 步长过大B. 初始条件不精确C. 算法本身稳定D. 计算精度过高答案:C10. 在数值计算中,下列哪种方法用于求解特征值问题?A. 高斯消元法B. 幂法C. 牛顿法D. 蒙特卡洛方法答案:B二、填空题(每题3分,共30分)1. 在数值计算中,使用______方法可以提高插值的精度。

答案:牛顿插值2. 梯形规则的误差与被积函数的______阶导数有关。

答案:二阶3. 在数值微分中,使用______差分法可以提高微分的精度。

答案:中心4. 非线性方程的求解可以通过______法来实现。

答案:牛顿5. 常微分方程的数值解法中,______法是最基本的方法之一。

答案:欧拉6. 对于线性方程组的求解,______法是最基本的方法之一。

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。

A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。

A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。

7.数值计算的主要目的是将_______问题转化为_______问题。

8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。

9.有限差分法的核心思想是将偏微分方程转化为_______方程。

10.牛顿法是一种_______方法,适用于求解非线性方程组。

三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。

()12.在数值计算中,误差只能通过增加计算精度来减小。

()13.迭代法求解线性方程组时,需要预先知道方程组的解。

()14.数值计算方法在实际应用中具有较高的可靠性。

()15.有限元法适用于求解所有类型的偏微分方程。

()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。

17.请简要介绍有限差分法的原理及应用。

18.请简要说明牛顿法求解非线性方程组的原理。

五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

《数值计算方法》试题集及答案(1-6)-2..

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法复习一、用牛顿法求解方程42()230f x x x x =+--=的解,0 1.0x =,收敛精度0.001ε=()34212420001020010 '441 23,0,1,441231213=1 1.14294414410.14280.001n n n n n n n f x x x x x x x x n x x x x x x x x x x x +=+-+--=-=+-+--+---=-=+-+--=>L 解:迭代格式42421112123112142422223222223 1.14292 1.1429 1.14293=1 1.12454414 1.14294 1.14291 0.01840.00123 1.12452 1.1245 1.1 =1441x x x x x x x x x x x x x x x x +--+⨯---=-=+-⨯+⨯--=>+--+⨯--=-+-33224531.12414 1.12454 1.124510.0003580.001x x -=⨯+⨯--=>二、应用列主元素消元法求解1230.001 2.000 3.000 1.0001.000 3.712 4.623 2.0002.000 1.072 5.643 3.000x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦的解,保留4位有效数字0.0012.0003.000 1.000 2.000 1.072 5.643 3.000 = 1.000 3.7124.623 2.000 1.000 3.712 4.623 2.0002.000 1.0725.643 3.0000.001 2.000 3.000 1.000 A -⎡⎤⎡⎤⎢⎥⎢⎥-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦%解:扩展矩阵如下:1.0000.536 2.822 1.500 1.0000.536 2.822 1.50003.176 1.8010.500010.5670.15702.0013.003 1.00200 1.8680.6871.0000.536 2.822 1.500 010.5670.1570010.368------⎡⎤⎡⎤⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦---⎡⎤⎢⎥→⎢⎥⎢⎥⎣⎦原方程变换[]3211.0000.536 2.822 1.500 010.5670.1570010.3680.3680.05110.499x x x x ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=--为:求解得到:三、应用雅可比迭代法求解下列方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩,收敛精度0.01ε< (1)()()123(1)()()213(1)()()312 0.10.20.720.10.20.830.20.20.84k k k k k k k k k x x x x x x x x x +++⎧=++⎪=++⎨⎪=++⎩解:迭代格式求解过程如表:四、设246391541636A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应用幂法求解其最大特征值,以及对应的特征向量[]0101(1)(0)1112461120.2143 3915127 0.4821 41636156 1.0000 max 0.78570.Tj j jx x Ax x x x =⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦-=>解:取212(2)(1)0012460.21438.35710.1875 39150.482119.9821 0.4483 41636 1.000044.5714 1.0000 max 0.03380.001j j jx Ax x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦-=>323(3)(2)2460.18758.16830.1860 39150.448319.5974 0.4462 41636 1.000043.9231 1.0000 max 0.00210.001j j jx Ax x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦-=>434(4)(3)2460.18608.15660.1859 39150.446219.5735 0.4460 41636 1.000043.8827 1.0000 max 0.000130.001j j jx Ax x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦-=<计算得到:[]118.156619.573543.882743.879430.18600.446218.156619.573543.8827Tλω===(++)对应的特征值为:五、用拉格朗日差值法构造三次多项式,求解472.0=x 处的函数值要求小数点后4位23413412121314212324123124331321441 ()()()()()()()()()()()()()()()()()()()()()()()(x x x x x x x x x x x x y f x y y x x x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x x ------==+------------++----解:构造插值函数如下:442430.472)()(0.4720.47)(0.4720.48)(0.4720.49)0.484655(0.460.47)(0.460.48)(0.460.49)(0.4720.46)(0.4720.48)(0.4720.49)0.493745(0.470.46)(0.470.48)(0.470.49)(0. y x x x y -----=⨯------+⨯---+4720.46)(0.4720.47)(0.4720.49)0.50275(0.480.46)(0.480.47)(0.480.49)(0.4720.46)(0.4720.47)(0.4720.48)0.511668(0.490.46)(0.490.47)(0.490.48)0.4956---⨯------+⨯---=20122111023111112234111 nnn i ii i i i nnn ni i i i i i i i i n n n i ii i i i y a a x a x nx x y a x x x a x y a x x x ===========++⎛⎫ ⎪⎪⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭∑∑∑∑∑∑∑∑∑解:构造拟合函数如下:应用最小二乘拟合的原理,可以得到上式中各系数的计算方程组21012290 3.7518.1183 0 3.7508.44373.750 2.76567.5870 2.0001 2.25160.0313n i i i x y a a a y x x =⎛⎫ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭=++∑∑代入具体数据后,得计算得到各个系数如下:七、用龙贝格求积公式计算积分12041I dx x =+⎰的近似值,要求收敛精度0.0001ε=21211214224 ()11) (0)4,(1)21((0)(1)) 322) (0.5) 3.211(0.5) 3.12241= =3.13333333) (0.25) 3.76471,(0.75) 2.5611((0.25)(0.75)) 3.13118244 = 3f x x f f T f f f T T f S T T f f T T f f S T =+===+===+=-===++=解:设421218448421=3.141573161= =3.1421215154) (0.125) 3.93846,(0.375) 3.50685,(0.625) 2.8764,(0.875) 2.2654911((0.125)(0.375)(0.625)(0.875)) 3.138992841= =3.14159331 = T C S S f f f f T T f f f f S T T C --=====++++=-421211684261=3.141591515641==3.1415863635) 3.14094,=3.14159,=3.14159,=3.14159S S R C C T S C R --=八、用预测-校正的改进欧拉法求解如下常微分方程2(0)0dy x x ydxy ⎧=+-⎪⎨⎪=⎩,取步长为0.1,计算到1.0 ()()(){}21221- 2i i i i i i i i i i i i i y y h x x y h y y x x y x x y ++⎧=++-⎪⎨=++-++-⎪⎩%%解:预测校正的欧拉法迭代计算格式如下:各阶段计算结果如下:。

相关文档
最新文档