线性规划问题的图解法

合集下载

运筹学线性规划图解法

运筹学线性规划图解法

引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法

线性规划(图解法)

线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10

第1.2节 线性规划问题的图解法

第1.2节 线性规划问题的图解法

x1 20 * x 2 100
* * z 1240
27
2 规划问题求解的几种可能结果
2)无穷多最优解
max z 12 x1 8 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x x2 40 1 3 3 3 x1 2 x2 260 x1 , x2 0
23
x2 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
工序 花瓶种类 占用材料 (盎司) 艺术加工 (小时) 储存空间 (一单位) 利润值 (元)
大花瓶
1/3x1+1/3x2=40 (60,40)
x1
22
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 图1 花瓶问题的图解法
图解法的基本步骤:
(4)确定最优解。最优解是可行域中使目标
函数值达到最优的点,当目标函数直线由原点 开始沿法线方向向右上方移动时,z 值开始增 大,一直移到目标函数直线与可行域相切时为 止,切点即为最优解。
18
图解法的基本步骤:
(3)作出目标函数。由于
z 是一个待求的目 标函数值,所以目标函数常用一组平行虚线表 示,离坐标原点越远的虚线表示的目标函数值 越大。

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的

§1.2图解法

§1.2图解法
试用图解法分析,问题最优解随( 试用图解法分析,问题最优解随(-∞<c<∞)变化的情况 变化的情况
注:本问题有可行解,但无最优解。 本问题有可行解,但无最优解。
例4
max z = 3 x1 + x2
x1 − x 2 ≤ − 1 x1 + x 2 ≤ − 1 x , x ≥ 0 1 2
该问题的可行域是空的,即无可行解( 解 该问题的可行域是空的,即无可行解(
x2
x1-x2=-1
本问题只有唯一最优解。 注:本问题只有唯一最优解。
例1的最优生产方案为: 生产产品甲为2件, 的最优生产方案为: 生产产品甲为2 生产产品乙6 生产产品乙6件,最大利润为36万元。 最大利润为36万元 万元。
注: 问题的可行域是一个有界的凸多边形, 其边界由5条直线所围成: 其边界由 条直线所围成: 条直线所围成

该线性规划问题的可行域见图1 该线性规划问题的可行域见图1-1。
x2 8
Q1(0,6)
Q2(2,6)
图1-1 图解法解题过程 x1=4 2 x 2 = 12 3x1+5x2=z=36
6
4 Q 2
Q3(4,3)
3x1+2x2=18
Q4(4,0)
0
Q0(0,0)
2
4
6
8
x1 3x1+5x2=z=20
1 3 , 10 10
如图: 解 该问题的可行域 Q 如图
x2 x1+x2=5 6x1+2x2=21 -x1+x2=0
A(11/4,9/4)
B(21/6,0) 3x 1 + x 2 = z =0 3x 1 + x 2 = z =6

第1章 2 线性规划问题的图解法

第1章 2 线性规划问题的图解法

其中c 令 Z=2x1+3x2=c, 其中c为任选的一个常 数 , 在图中画出直线 2x1+3x2=c, 即对应着一 组可行的生产结果, 组可行的生产结果,使两种产品的总利润达到 c。 。 这样的直线有无数条, 且相互平行, 这样的直线有无数条 , 且相互平行 , 称 只要画两条 这样的直线为目标函数等值线。只要画两条 目标函数等值线 等值线, 目标函数等值线,如令 x2 c=0和c=6,可看出目 = 和 ,可看出目
x2
4x1 ≤ 16 C D
| 1 | 2 | 3 | 4
4 x2 ≤ 16
最优解 (4, 2)
x1 + 2x2 ≤ 8
| 6 | 7 | 8 | 9
A
0
E
| 5
x1
图解法求解步骤
由全部约束条件作图求出可行域; 由全部约束条件作图求出可行域; 作目标函数等值线,确定使目标函数 作目标函数等值线, 最优的移动方向; 最优的移动方向; 平移目标函数的等值线,找出最优点, 平移目标函数的等值线,找出最优点, 算出最优值。 算出最优值。
练习1答案
max z=x1+3x2 s.t. x1+ x2≤6 -x1+2x2≤8 x1 ≥0, x2≥0
x2 6
最优解(4/3,14/3)
4
可行域
-8 0
目标函数等值线
6
x1
练习2 某公司由于生产需要,共需要A, 练习 :某公司由于生产需要,共需要 , B两种原料至少 两种原料至少350吨(A,B两种材料有 两种原料至少 吨 , 两种材料有 一定替代性),其中A原料至少购进 ),其中 原料至少购进125 一定替代性),其中 原料至少购进 但由于A, 两种原料的规格不同 两种原料的规格不同, 吨。但由于 ,B两种原料的规格不同, 各自所需的加工时间也是不同的, 各自所需的加工时间也是不同的,加工每 原料需要2个小时 吨A原料需要 个小时,加工每吨 原料需 原料需要 个小时,加工每吨B原料需 小时, 个加工小时。 要1小时,而公司总共有 小时 而公司总共有600个加工小时。 个加工小时 又知道每吨A原料的价格为 万元,每吨B 原料的价格为2万元 又知道每吨 原料的价格为 万元,每吨 原料的价格为3万元 万元, 原料的价格为 万元,试问在满足生产需 要的前提下,在公司加工能力的范围内, 要的前提下,在公司加工能力的范围内, 如何购买A, 两种原料 两种原料, 如何购买 ,B两种原料,使得购进成本 最低? 最低?

第二章 图解法与单纯形法

第二章 图解法与单纯形法

表1-4 XB
基变量 x1 x2
进基列 x3
bi /ai2,ai2>0 x4 b
将3化为1
(1)
θi 40 10
出 基 行
x3
x4
2
1 3
1
3 4
1
0 0
0
1 0
40
30
σj
x3
乘 以 1/3 后 得 到
5/3
0 1 0 0 1
1 0 0 3/5 -1/5
-1/3 1/3 -4/3 -1/5 2/5
x2
40
例题
2 x1 x2 40 x1 1.5x2 30
(15,10)
max Z 3x1 4x2 2 x1 x2 40
30
x1 1.5 x2 30 x1 0, x2 0
20
最优解X=(15,10) 最优值Z=85
10
O
10
20
30
40
x1
2.1 线性规划问题的图解法
θ M 20
0 λj
0 2 λj 1 2 λj
x5
x4 x2 x1 x2
1/3 1
3 1/3 1/3 1 0 0
1 2
0 1 0 0
5 1
17 5 -9 17/3
0 0
1 0 0 1/3
1 0
3 1 -2 1
20
75 20 25
25 60
1 0
28/9 -1/9 2/3 -98/9 -1/9 -7/3
1.通过图解法了解线性规划有几种解的形式 2.作图的关键有三点 (1)可行解区域要画正确 (2)目标函数增加的方向不能画错 (3)目标函数的直线怎样平行移动

线性规划问题的图解法

线性规划问题的图解法
bm 0 1 am ,m 1 amn m
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图解法
线性规划问题的求解方法
一般有 两种方法
图解法 单纯形法
两个变量、直角坐标 三个变量、立体坐标
适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。
则X为X (1) ,..., X (k )的凸组合.
X


标准型
min Z CX AX b X 0
可行解:满足AX=b, X>=0的解X称为线性规划问 题的可行解。所有可行解的集合称为可行域。 最优解:使Z=CX达到最大值的可行解称为最优解 。 等值线:目标函数为常数的光滑连续曲线。
❖图解法
s.t. X1 + 1.9X2 ≤11.4 X1 - 1.9X2 ≥ -3.8 X1 ,X2 ≥ 0
图解法---唯一最优解
X1 + 1.9X2 ≥ 3.8 X1 - 1.9X2 ≤ 3.8
max Z = 2X1 + X2 s.t. X1 + 1.9X2 ≤11.4
X1 - 1.9X2 ≥ -3.8
X1 ,X2 ≥ 0
x2
4 = 2X1 + X2
X1 + 1.9X2 = 11.4(≤)
X1 - 1.9X2 = -3.8 (≥)
11 = 2X1 + X2 17.2 = 2X1 + X2
20 = 2X1 + X2
D可行域
(7.6,2)
此点是唯一最优解, 且最优目标函数值
max Z=17.2
max Z
X1 + 1.9X2 = 3.8(≥)
min Z
X1 - 1.9X2 = 3.8(≤)
o
Lo: 0 = 2X1 + X2
x1
图解法---唯一最优解
min Z=5X1+4X2
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 (0,2)
D可行域
43=5X1+4X2
max Z
x1
❖图解法
x2
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
7—
6—
4x1 16
5—
4—
3—
2—
1 — 可行域
4 x2 12 x1 + 2x2 8
0
|| | | || | | | 12 3 4 5 6 7 8 9
x1 3x2 6
x1 x2 3x1 x
4 2 6
x1 0、x2 0
2
max Z min Z
x1+x2=4(≥)
2
4
无界解(无最优解)
x1+3x2=6(≥)
6
x1
图解法x2 ---无可行解
50 40
30 20
10
例1.7
max Z=3x1+4x2
2x1 x2 40 x1 1.5 x2 30
x1 x2 50 x1 0, x2 0
x1
❖图解法
x2
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
7—
6—
4x1 16
5—
4 —B
C
3—
2—
1 — 可行域
0 || |
A
12 3
D
| E|
45
4 x2 16 x1 + 2x2 8
|||| 6789
x2
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
7—
6—
5—
(0, 4)
4—
3—
2—
4x1 16
4 x2 16 x1 + 2x2 8
1—
(8, 0)
0
|| | | || | | | 12 3 4 5 6 7 8 9
x1
❖图解法
x2
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
7—
6—
5—
4 —B
C
3—
2—
1—
0 || |
A
12 3
D
| E|
45
4x1 16
4 x2 16
2x1 + 3x2 = 6
x1 + 2x2 8|||| 6789x1
图解法求解步骤
1.由全部约束条件作图求出可行域; 2.作目标函数等值线,确定使目标函数 最优的移动方向; 3.平移目标函数的等值线,找出最优点 ,算出最优值。
图解法
例1 用图解法求解线性规划问题
max Z = 2X1 + X2 X1 + 1.9X2 ≥ 3.8 X1 - 1.9X2 ≤ 3.8
X1 + 1.9X2 = 3.8(≥)
min Z
X1 - 1.9X2 = 3.8 (≤)
o
x1
L0: 0=5X1+4X2
图解法---无穷多最优解
max Z=3X1+5.7X2
x2
X1 + 1.9X2 = 11.4 (≤)
(3.8,4)
D可行域
max Z
X1 + 1.9X2 = 3.8(≥)
X1 - 1.9X2 = -3.8(≥)

则X为顶点.







凸组合:
线 设X(1) ,..., X (k )是n维向量空间中的k个点,
性 若存在1,..., k ,且0 i 1, i 1,2,..., k,
规k


i 1,
i 1
n=2,k=3
题 的
使X 1 X 1 2 X (2) ... k X (k )
几 何
x1
❖图解法
x2
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
7—
6—
5—
4 —B
C
3—
2—
1—
0 || |
A
12 3
D
| E|
45
4x1 16
4 x2 16
最优解 (4, 2)
x1 + 2x2 8
|||| 6789
蓝色线段上的所有点都是最 优解这种情形为有无穷多最 优解,但是最优目标函数值
max Z=34.2是唯一的。
(7.6,2)
34.2 = 3X1+5.7X2
X1 - 1.9X2 = 3.8 (≤)
o
x1
L0: 0=3X1+5.7X2
图解法---无界解
x2
6 3x1+x2=6(≥) 4
例1.6
max Z=x1+2x2
线 设k是n维欧氏空间的一点集,
性 对X(1) K,X(2) K
规 划
连线上的一切点
问 题
α X(1) (1 α )X(2) K,
的 (0 α 1),则K为凸集。




凸集
凹集
顶点: 若K是凸集,X∈K;若X不能用不同
的两点的线性组合表示为:
线
X (1) K和X (2) K
性 规
X X (1) (1 ) X (2) (0 1)
相关文档
最新文档