二次函数性质一览表
二次函数的特殊性质与公式解析与归纳

二次函数的特殊性质与公式解析与归纳二次函数是数学中的一种常见函数形式,由形如y = ax^2 + bx + c 的方程所表示。
在二次函数中,a、b、c为常数,且a ≠ 0。
本文将就二次函数的特殊性质进行探讨,并对其公式进行解析与归纳。
一、二次函数的图象特殊性质1. 对称轴:二次函数的图象总是关于一条垂直于x轴的直线对称。
这条直线称为二次函数的对称轴。
对称轴的方程可以通过以下公式计算:x = -b / (2a)2. 零点:二次函数在坐标系中与x轴相交的点称为零点。
求二次函数的零点可以通过以下公式计算:x = (-b ± √(b^2-4ac)) / (2a)其中,b^2-4ac被称为判别式,当判别式大于0时,函数有两个不相等的零点;当判别式等于0时,函数有一个唯一的零点;当判别式小于0时,函数没有实数解。
3. 开口方向:二次函数的开口方向由二次项的系数a所决定。
当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
4. 最值点:二次函数的最值点就是函数的最大值或最小值点。
最值点的纵坐标称为二次函数的最值。
当二次函数的开口向上时,最值为最小值;当二次函数的开口向下时,最值为最大值。
最值点的横坐标可以通过对称轴的x坐标计算得出。
二、二次函数的公式解析与归纳1. 一次项系数的影响:在二次函数的标准形式y = ax^2 + bx + c中,一次项系数b确定了对称轴的位置。
当b>0时,对称轴向右平移;当b<0时,对称轴向左平移。
2. 二次项系数的影响:二次项系数a决定了二次函数的开口方向。
当|a|>1时,开口较为陡峭;当0<|a|<1时,开口较为平缓;当a=1时,开口最为平缓;当a=0时,函数退化为一次函数。
3. 常数项的影响:常数项c表示二次函数与y轴的交点,也即函数在x=0时的取值。
当c>0时,函数在原点下方与y轴相交;当c<0时,函数在原点上方与y轴相交。
二次函数性质表格

最值
向上
(-h,0) 直线x=-h
向下
x<-h时y随x的增大而减小 x>-h时y随x的增大而增大
x<-h时y随x的增大而增大 x>-h时y随x的增大而减小
x=-h时y最小值=0
x=-h时y最大值=0
y=ax²+bx+c
a>0
a<0
大致图像
开口方向 顶点
对称轴
增减性
最值
向上 (-b/2a,(4ac-b²)/4a 直线x=-b/2a
y=ax²
a>0
a<0
大致图像
开口方向 顶点
对称轴
增减性
最值
向上
(0,0) y轴(直线x=0)
向下
x<0时y随x的增大而减小 x>0时y随x的增大而增大
x<0时y随x的增大而增大 x>0时y随x的增大而减小
x=0时y最小值=0
x=0时y最大值=0
y=a(x+h)²
a>0
a<0
大致图像
开口方向 顶点
对称轴
向下 )
x<-b/2a时y随x的增大而减小 x>-b/2a时y随x的增大而增大
x<-b/2a时y随x的增大而增大 x>-b/2a时y随x的增大而减小
x=-b/2a时y最小值=(4ac-b²)/4a x=-b/2a时y最大值=(4ac-b²)/4a
y=ax²+k
a>0
a<0
大致图像
开口方向 顶点 对称轴
增减性
最值
向上
向下
(0,k)
y轴(直线x=0)
x<0时y随x的增大而减小 x>0时y随x的增大而增大
x<0时y随x的增大而增 大
x>0时y随x的增大而减
总结二次函数的性质

总结二次函数的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b2)/4a )当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b2-4ac>0时,抛物线与x轴有2个交点。
Δ= b2-4ac=0时,抛物线与x轴有1个交点。
Δ= b2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x= -b±√b2-4ac乘上虚数i,整个式子除以2a)当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=〔4ac-b2〕/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0)7.定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,正无穷);②[k,正无穷)奇偶性:非奇非偶(当且仅当b=0时,函数解析式为f(x)=ax2+c, 此时为偶函数)周期性:无解析式:①y=ax2+bx+c[一般式]⑴a≠0,a、b、c为常数。
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b2)/4a);⑷Δ=b2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)2+k[配方式]此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b2)/4a。
二次函数图像与性质总结

二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x4-=x 【例2】求作函数342+--=x x y 的图象。
二次函数图像与性质完整归纳

3 2 -2
3 2 0 5…
2
【例 2】 求作函数 y x 2 4 x 3 的图象。
【解】 y x 2 4x 3 ( x2 4x 3)
[( x 2) 2 7] [( x 2) 2 7 先画出图角在对称轴 x 2 的右边部分,列表
x -2 -1 0 1 2 y 76 5 4 3
【点评】 画二次函数图象步骤: (1) 配方; (2) 列表; (3) 描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利 用对称性描出右(左)部分就可。
, 3 ] 上是增函数,在区间 [ 3, 10
29 ymaz 20 ) 上是减函数。
【点评】 要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:
(1) 配方法;如例 3
(2) 公式法:适用于不容易配方题目 ( 二次项系数为负数或分数 ) 如例 4,可避免出错。
任何一个函数都可配方成如下形式:
b 时, y 随 x 的增大而增大; 当 x b
2a
2a
b ,顶点坐标为 2a
b ,4ac b2 .当 2a 4a
x b 时, y 随 x 的增大而增大;当 x 2a
2
有最大值 4ac b . 4a
b 时, y 随 x 的增大而减小;当 x 2a
b 时, y 2a
六、二次函数解析式的表示方法
1. 一般式: y ax 2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a ( x h)2 k ( a , h , k 为常数, a 0 );
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y X=h
随 x 的增大而增大; x h 时, y 有最大值 k .
二次函数的图像和性质表格

配方法
将二次函数通过配方转化为顶点式$y=a(xh)^2+k$,其中$(h,k)$为顶点坐标。根据 $a$的正负和顶点坐标可求得最值。
公式法
对于一般形式的二次函数$y=ax^2+bx+c$ ,其最值可通过公式$-frac{b}{2a}$求得对 称轴,再代入原函数求得最值。
04 典型二次函数图 像举例
对称轴与顶点坐标
对称轴
对于一般形式$y=ax^2+bx+c$的二次函 数,其对称轴为直线$x=-frac{b}{2a}$。
VS
顶点坐标
顶点的横坐标为对称轴与抛物线的交点, 即$x=-frac{b}{2a}$,纵坐标为$cfrac{b^2}{4a}$。
与坐标轴交点情况
与$x$轴交点
解方程$ax^2+bx+c=0$,若$Delta=b^2-4ac>0$,则有两个不相等的实数根,即抛物线与$x$轴 有两个交点;若$Delta=0$,则有两个相等的实数根,即抛物线与$x$轴有一个交点;若$Delta<0$ ,则无实数根,即抛物线与$x$轴无交点。
与$y$轴交点
抛物线与$y$轴的交点为点$(0,c)$。
03 二次函数性质分 析
奇偶性判断方法
观察法
通过观察二次函数的表达式,判断其是否满足$f(-x)=f(x)$或$f(-x)=-f(x)$,若满足则函数为偶函数或奇函数。
代数法
将$-x$代入二次函数的表达式,化简后与原函数比较,若相等则为偶函数,若互为相反数则为奇函数。
二次函数表达式
一般形式为$f(x) = ax^2 + bx + c$ ,其中$a$、$b$、$c$为常数,且$a neq 0$。
二次函数图像与性质总结(含答案)

二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。
二次函数图像与性质完整归纳

二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。
2. 的性质:2y ax c =+上加下减。
3. 的性质:()2y a x h =-左加右减。
4. 的性质:()2y a x h k =-+的符号a 开口方向顶点坐标对称轴性质a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .c 0a <向下()0c ,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .c 的符号a 开口方向顶点坐标对称轴性质a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y .00a <向下()0h ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()h k ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k,【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2三、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过()2y a x h k =-+2y ax bx c =++配方可以得到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,.k 0a <向下()h k ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .k四、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确2y ax bx c =++2()y a x h k =-+定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点y ()0c ,()0c ,、与轴的交点,(若与轴没有交点,则取两组关于对称轴()2h c ,x ()10x ,()20x ,x 对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 五、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当时,随的增大而减小;当时,随的增大而增大;当2b x a <-y x 2bx a>-y x 时,有最小值.2b x a =-y 244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当0a <2bx a =-2424b ac b aa ⎛⎫-- ⎪⎝⎭,时,随的增大而增大;当时,随的增大而减小;当时,2b x a <-y x 2b x a >-y x 2bx a=-有最大值.y 244ac b a-六、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x 240b ac -≥用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a >a a 大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a <a a 大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决a a a 定开口的大小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,ab abx 2-=y 0>ab y 0<ab 概括的说就是“左同右异”总结:3. 常数项c⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c <y x y 负.总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是; 2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n ,关于点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a 合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=3(x+4)22y=3x 2十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数的图象64212++=x x y 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x 以为中间值,取的一些值,列表如下:4-=x x x …-7-6-5-4-3-2-1…y …25023--223-025…【例2】求作函数的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数性质一览表
表达式(a≠0) a值图像
开
口
方
向
对称
轴
顶点
坐标增减性最值举例
①
y=ax2a>0
向
上
y轴
(0,
0)
①当x>0
时,y随x的
增大而增大
②当x<0
时,y随x的
增大而减小
当x=0
时,y
有最小
值,即
y最小值=0
y=
4
3x2
y=3x2 a<0
向
下
y轴
(0,
0)
①当x>0
时,y随x的
增大而减小
②当x<0
时,y随x的
增大而增大
当x=0
时,y
有最大
值,即
y最大值=0
y=-5x2
y=
3
1
x2
②
y=ax2+ k a>0
向
上
y轴
(0,
k)
①当x>0
时,y随x的
增大而增大
②当x<0
时,y随x的
增大而减小
当x=0
时,y
有最小
值,即
y最小值=k
y=4x2+5
y=3x2-1 a<0
向
下
y轴
(0,
k)
①当x>0
时,y随x的
增大而减小
②当x<0
时,y随x的
增大而增大
当x=0
时,y
有最大
值,即
y最大值=k
y=-2x2+3
y=-3x2-2
③
y=a(x-h)2a>0
向
上
直线
x=h
(h,
0)
①当x>h
时,y随x的
增大而增大
②当x<0
时,y随x的
增大而减小
当x=h
时,y
有最小
值,即
y最小值=0
y=2(x-3
)2
y=
2
1(x+2
)2
a <0
向下
直线x=h (h ,0) ①当x >h 时,y 随x 的增大而减小 ②当x <0时,y 随x 的增大而增大
当x=h
时,y
有最大
值,即
y 最大值=0 y=-3(x-2)2 y=-2(x+1)2
④y=a(x-h)2+k
a >0
向上
直线x=h (h ,k ) ①当x >h 时,y 随x 的增大而增大 ②当x <h 时,y 随x 的增大而减小
当x=h
时,y
有最小
值,即
y 最小值=k y=5(x-2)2+1 y=2(x-1)2-3 y=3(x+1)2+2 y=4(x+2)2-4 a <0
向下
直线x=h (h ,k ) ①当x >h 时,y 随x 的增大而减小 ②当x <h 时,y 随x 的增大而增大
当x=h
时,y
有最大
值,即
y 最大值=k y=-2(x-1)2+3 y=-3(x-2)2+1 y=-4(x+1)2+3 y=-5(x+2)2+4 ⑤ y=ax 2+bx+c
可化为: y=a(x+
)
2a b
2+a
b a
c 442
-
a >0
向上
直线x=-a b 2
(-a b
2,
a b
ac 442
-)
①当x >-a
b 2时,
y 随x 的增大而增大 ②当x <-a b 2时,y 随x 的增大而减小
当x=-a
b 2时,y 有最小值,即y 最小值=a b a
c 442
- y=2x 2+3x
+4
y=3x 2-3x +4 y=4x 2-3x -4 y=5x 2+3x -4
a
<0向
下
直线
x=-
a
b
2
(-
a
b
2
,
a
b
ac
4
42
-
)
①当x>-
a
b
2
时,y随x的
增大而减小
②当x<-
a
b
2
时,y随x的
增大而增大
当
x=-
a
b
2
时,y
有最大
值,即
y最大值
=
a
b
ac
4
42
-
y=-2x2+3
x+4
y=-3x2-3
x+4
y=-4x2-3
x-4
y=-5x2+3
x-4
二次函数的有关知识
一、用代定系数法求二次函数表达式的方法(a≠0):
1、一般式:y=ax2+bx+c [已知抛物线任意三点(x1,y1),(x2,y2),(x3,y3)可设一般式求得]
2、顶点式:y=a(x-h)2+k [已知顶点坐标(h,k)和任意一点(x,y)可设顶点式求得]
3、两根式:y=a(x-x1)(x-x2) [已知抛物线与x轴是的两个交点(x1,0),(x2,0)和任意一点(x,y)可设两根式求得]
二、二次函数图象平移变换关系:
三、二次函数图象(抛物线)与x轴交点情况的判断:
y=ax2+bx+c (a≠0,a、b、c都是常数)
四、二次函数与一元二次方程、一元二次不等式的解之间的关系:
1、二次函数y=ax2+bx+c的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0
的解。
因此利用二次函数图象可求以x 为未知
数的一元二次方程ax 2+bx+c =0的解(从图象上进行判断)。
2、二次函数y =ax 2+bx+c 在x 轴上方的图象上的点的横坐标是一元二次不等式ax 2+bx+c >0的解;在x 轴下方的图象上的点的横
坐标是一元二次不等式ax 2+bx+c <0的解。
五、关于x 轴、y 轴对称的二次函数图象的关系:
二次函数y =ax 2+bx+c 与y =-ax 2+bx+c 关于x 轴对称,即关于x 轴对称的两个
二次函数其二次项系数互为相反数,一次项系数
和常数项相同。
六、二次函数y =ax 2+bx+c,当a 、b 同号时,对称轴直线x =-a b 2在x 轴的负半轴,即y 轴的左则;当a 、b 异号时,对称轴直线x =
-a b 2在x 轴的正半轴,即y 轴的右则;当c >0时,图象交于y 轴的正半轴;当c =0时图象一定过原点;当c <0时,图象交于y 轴
的负半轴。
七、任意一个二次函数y =ax 2+bx+c(a ≠0,不考虑b 和c 的取值)都可以化为
y=a(x+)2a b 2+a b ac 442
-的形式,即顶点坐标为(a b 2-,a
b
ac 442
-), 当x=-a b 2时,y 有最值,即y 最值=a
b
ac 442
-,对称轴是直线x=-a b 2.。