高等数学第六章 第1节 定积分的元素法
第一节 定积分的元素法

高等数学教案 定积分的元素法
1 第六章 定积分的应用
第一节 定积分的元素法
如果某一实际问题中的所求量U 满足:
(1)U 是与x 的变化区间],[b a 有关的量;
(2)U 关于],[b a 具有可加性,即U =
∑∆i i U ;
(3)i i i x f U ∆≈∆)(ξ. 则可用定积分表示该量U .
该方法(即定积分的元素法)的基本步骤是:
(1)选取一个变量如x 为积分变量,并确定积分区间],[b a (即积分变量x 的变化范围); (2)在],[b a 上任取一个小区间],[dx x x +,求出所求量U 在],[dx x x +的元素dU 的表达式(即为被积表达式)
dU =dx x f )(.
其中)(x f 为],[b a 上的连续函数,dx x f U )(-∆是dx x =∆的高阶无穷小.
(3)求定积分,即 ⎰⎰==b
a
b a dx x f x dU U )()(.
注:在上章讨论的曲边梯形的面积问题中,求曲边梯形的面积就是采用元素法。
其它许多实际问题都采用元素法。
6.1 定积分的元素法

(4)则所求的量 Q 的值可用定积分表示为:
Q= dQ = f ( x)dx
a a
b
b
Q= dQ lim f ( x) x
b a
0
y f ( x)
f ( x) dQ
a
x x
b
我们将用微元法建立平 面图形的面积、体积、 平面曲线的弧长、功、 水压力、引力等的积分 模型.
Revised May, 2004 May, 2003
y f ( x)
A
a
v v(t )
s
b
T1
Revised May, 2004
T2
May, 2003
(2)量 Q 具有区间可加性:
Q Qi Q
i 1
n
y f ( x)
Q2
Qi
Qn
Q
Q1
a
b
Revised May, 2004 May, 2003
(3)Q 可以近似表示为 f ( x)x
6.1 定积分的元素法
Revised May, 2004 May, 2003
定积分的微元法 在定积分的应用中,我们经常采用 微元法(也称为元素法). 微元法是用来化实际问题为定积分 问题的一种简便方法,是物理学、力 学、工程技术中建立积分模型时普遍 采用的方法.
Revised May, 2004 May, 2003
Hale Waihona Puke 用微元法建立定积分模型的步骤如下: (1)所求的某量 Q 与定义在一个区间 [a, b]上的连续函数 f(x) 有关.
如区间[a, b]上的一曲线 y=f(x) 与 x 轴所围成的曲 边梯形的面积 A 与函数 f(x) 有关; 以 速 度 v=v(t) 作 变 速 直 线 运 动 的 物 体 在 区 间 [T1, T2]上所经过的路程 s 与速度函数 v(t) 有关.
§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)

则对应该小区间上曲边扇形面积的近似值为
dA 1 ( )2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
x
《高等数学》
返回
下页
结束
例4. 计算阿基米德螺线 到 2 所围图形面积 .
解:
A
2
0
1 (a )2 d
2
02
y
ox
R x
《高等数学》
返回
下页
结束
微分的几何意义与切线段的长度
dy f (x)dx
y y f (x)
y
ds dy dx
o
x
x
切线段的长度
x dx
此直角三角形称为: 微分三角形
ds (d x)2 (d y)2 1 f 2 (x)dx (弧微分公式)
曲线 y f (x) C[a,b], s b 1 f 2 (x)dx.
4 3 a2
3
对应 从 0 变
2 a
o
x
d
例5. 计算心形线
所围图形的面积 .
解:
1 (1 cos )2 d
2
2
2
1 (3cos
)2
d
2
3
5.
4
《高等数学》
返回
与圆
(
3
,
(利用对称性)
)
23
d
o
2x
下页
结束
二、体积
1.平行截面面积为已知函数的立体体积
§6 定积分的应用
§6.1 定积分的元素法(微元法) §6.2 几何应用 §6.3 物理应用
定积分元素法课件

02
确定被积函数
03
建立积分方程
根据物理或工程问题的数学模型 ,确定被积函数,即需要求解的 未知函数。
根据定积分的定义和性质,将问 题转化为数学模型中的积分方程 。
离散化方程的推导
离散化方法
将连续的积分元素离散化为有限个离散点,常用的离散化方法有矩形法、三角形法等。
离散化方程推导
根据离散化方法和定积分的性质,推导离散化方程,即将积分方程转化为有限元方程。
二维问题的求解
总结词
定积分元素法在解决二维问题时,通过 将二维平面离散化为网格,将复杂的二 维积分运算转化为一系列的一维积分运 算,降低了求解难度。
VS
详细描述
二维问题涉及平面上的形状、面积、体积 等的求解。定积分元素法将二维平面离散 化为网格,每个网格点上的积分值相等。 通过求解每个网格点的积分值,再求和得 到整体解。这种方法简化了二维积分运算 ,提高了计算精度和效率。
三维问题的求解
总结词
定积分元素法在解决三维问题时,通过将三 维空间离散化为体素,将复杂的三维积分运 算转化为一系列的二维积分运算,降低了求 解难度。
详细描述
三维问题涉及空间中的形状、体积等的求解 。定积分元素法将三维空间离散化为体素, 每个体素上的积分值相等。通过求解每个体 素的积分值,再求和得到整体解。这种方法 简化了三维积分运算,提高了计算精度和效 率。
步骤 1. 将问题分解为若干个元素或单元;
定积分元素法的应用场景
物理问题
定积分元素法广泛应用于物理问题的求解 ,如静力学、动力学、热力学等领域。
工程问题
在土木工程、机械工程、航空航天等领域 ,定积分元素法也被广泛应用。
数值分析
在数值分析中,定积分元素法是数值求解 微分方程的重要方法之一。
高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
定积分元素法课件

元素法的应用范围
01 02 03
适用于被积函数为连续函数的定积 分计算。
适用于被积函数为分段函数的定积 分计算。
适用于被积函数为周期函数的定积 分计算。
03
元素法的具体应用
求解定积分的具体方法
01
矩形法
将积分区间[a,b]分成n个小区间,每个小区间的长度为$\Delta x$,用
矩形近似代替该小区间上的曲线,求出矩形面积之和,即得定积分的近
计算方法则是通过数值计算方法(如梯形法、辛普森法等)来求解近似值。 • 两者都可以得到较为精确的结果,但数值计算方法需要更多的计算量。
元素法与物理方法的比较研究
元素法是通过数学模型和数值计 算方法来得到近似解,而物理方 法则是通过实验测量数据来得到 近似解。
在求解积分问题时,物理方法通 常是通过实验测量数据来得到近 似解。
元素法在求解积分问题时,将积分区间划分为若干个小区间,用近似函数代替被积 函数,从而将积分转化为求和。
微积分提供了一般的理论框架,而元素法是一种具体的计算方法,两者相辅相成。
元素法与数值计算方法的比较研究
• 数值计算方法是一种通过数值计算求解数学问题的方法,包括数值积分、数值微分、数值求解方程等。 • 元素法与数值计算方法在求解积分问题时,都采用了近似代替的方法。 • 元素法在求解积分问题时,将积分区间划分为若干个小区间,用近似函数代替被积函数,从而将积分转化为求和。而数值
近似方法的选取
根据具体问题的特点,选择合适的近 似方法(矩形法、梯形法或辛普森法 ),以保证近似值的精度和计算效率 。
求解定积分的实例分析
计算定积分$\int_{0}^{1}e^{x}dx$
通过矩形法、梯形法和辛普森法分别计算该定积分的近似值,并比较其精度和计算效率 。
6-1 定积分的元素法

(3) 求和. 得A的近似值
n
A f ( i )xi
y
i 1
n
(4) 求极限. A lim 0
f ( i ) xi
i 1
y = f (x)
b
f ( x)dx a
0 1 2 i
x0 a x1 xi1 xi
xn返1nb回xxn
把上述步骤略去下标,改写为:
(1) 分割. 把区间[a, b]分成n个小区间,任取其中一个小
区间[x, x+dx](区间微元),用A表示[x, x+dx]上
的小曲边梯形的面积,于是 A A
(2) 近似. 计算A的近似值 A f ( x) dx
并记 dA f ( x)dx 称为面面积积元微元素y
y f Leabharlann x返回b 回顾曲边梯形面积A转化为定积分
f ( x)dx 的计算过程:
a
n
(1) 分割. 把区间[a, b]分成n个小区间, 有 A Ai
i 1
总量A 对于[a, b]具有区间可加性, 即A可以分割成
n个部分量Ai 的和.
(2) 近似. 计算Ai的近似值 Ai f ( i )xi ( xi1 i xi )
(2) 求全量
应用方向:
元素积分得 U
b
f ( x)dx
a
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
返回
微元法 (Element Method)
例1. 写出长为l的非均匀细直棒质量的积分表达式
任一点的线密度是长度的函数。 解:建立坐标如图,
o x x+dx
lx
则任意点x的密度为 ( x)
高等数学第六章定积分的应用

3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b]上作定积分,得U
b
a
f
( x)dx
,
即为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
第二节 平面图形的面积
一、直角坐标系情形
y y f (x)
弧长元素 ds 1 y2dx 弧长 s b 1 y2dx. a
例1
计算曲线 y
2
x
3 2
上相应于
x
从a
到b
的一段
3
弧的长度.
解
y
1
x2,
ds
1
(
x
1 2
)2
dx
1 xdx,
所求弧长为
a
b
s
b
2
3
3
1 xdx [(1 b)2 (1 a)2 ].
a
3
x
例 2 计算曲线 y n n sin d 的弧长(0 x n) . 0
a
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx ,
面 积 元 素
dA
y f (x)
于是A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
当所求量U 符合下列条件:
(1)U 是与一个变量x 的变化区间a,b 有关
x y2 y x2
面积元素 dA ( x x2 )dx
A
1
0
(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)将微元从 a到b积分
U f ( x )dx
a
b
这个方法通常叫做元素法.
应用方向: 平面图形的面积;体积;平面曲线的弧 长;功;水压力;引力和平均值等.
二、小结
元素法的提出、思想、步骤.
(注意微元法的本质)
思考题
微元法的实质是什么?
思考题解答
微元法的实质仍是“和式”的极限.
b
i 1
n
a
( max{ x1 , x2 ,xn })
上步骤若省略下标 i , 则 y f ( x )x ] [ xi , xi 1 ] [ xi , yx [ x, x x] [ x, x dx] i i Ai A 取 i xi f ( i )xi f ( xi )xi f ( x )x f ( x )dx o a x x dx bx b
y
2、 近 似 Ai f ( i )xi
xi xi xi 1 , o a
n
n
x1
x i 1 x i
xn1
b
x
i为[ xi 1 , xi ]上任一点
3、 求 和 A Ai f ( i )xi
i 1
i 1
i
f ( i )xi 4、取极限A lim 0 f ( x )dx
a
A f ( x )dx
a
b
分表示? 问 题: 什么样的量可以用定积 U 符合下列条件: 当所求量
( 2 ) U 对 于 区 间 a , b 具 有 可 加 性 , 就 是 说,如果把区间a , b分成许多部分区间,则 U 相应地分成许多部分量,而 U 等于所有部 分量之和;
(1)U 是与一个变量 x 的变化区间a , b有 关的量;
(3)部分量U i 的近似值可表示为 f ( i )x i ;
就可以考虑用定积分来表达这个量 U
元素法的一般步骤:
1)根据问题的具体情况,选取一个变量例如x [a , b ] ; 为积分变量,并确定它的变化区间
2)在[a, b]内考虑典型区间 [ x, x x],求微元 dU f ( 的问题
曲边梯形由连续曲线
y
y f ( x ) ( f ( x ) 0) 、 x 轴与两条直线 x a 、
y f ( x)
x b 所围成。
b
o a
b x
A a f ( x )dx
求曲边梯形面积的步骤:
1、 分 割
A Ai
i 1 n
A lim f ( i )xi
0
实际求面积 A的方法: (1)选取x为积分变量 , a x b. (2)在典型区间 [ x, x dx]上作近似 A f ( x )dx 即 dA f ( x )dx ___面积元素 (3)对面积元素从 a到b积分
A f ( x )dx