高等数学 定积分及其应用复习题
定积分期末考试题及答案

定积分期末考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a, b]上连续,则定积分∫<sub>a</sub><sup>b</sup>f(x)dx的值:A. 总是存在B. 可能不存在C. 总是不存在D. 无法确定答案:A2. 计算定积分∫<sub>0</sub><sup>1</sup>x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A3. 函数f(x)=x^3在区间[-1, 1]上的定积分值为:A. 0B. 2C. -2D. 1答案:A4. 若∫<sub>a</sub><sup>b</sup>f(x)dx =∫<sub>a</sub><sup>b</sup>g(x)dx,则f(x)和g(x)在区间[a, b]上的关系是:A. 相等B. 相等或相反C. 相等或相等的常数倍D. 无法确定答案:C5. 定积分∫<sub>0</sub><sup>π/2</s up>cos(x)dx的值是:A. 1B. 0C. π/2D. -1答案:B二、填空题(每题5分,共20分)1. 定积分∫<sub>0</sub><sup>1</sup>(2x+1)dx的值为______。
答案:3/22. 函数f(x)=x^2在区间[0, 2]上的定积分值是______。
答案:8/33. 计算定积分∫<sub>0</sub><sup>π</sup>sin(x)dx的值是______。
答案:24. 定积分∫<sub>-1</sub><sup>1</sup>|x|dx的值为______。
定积分试题及答案大学

定积分试题及答案大学# 定积分试题及答案试题1:计算定积分 \(\int_{0}^{1} x^2 dx\)。
答案:首先,我们需要找到函数 \(f(x) = x^2\) 的原函数。
对于这个函数,原函数是 \(F(x) = \frac{1}{3}x^3\)。
然后,我们计算在区间 \([0, 1]\) 上的定积分:\[\int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1}{3}(1)^3 -\frac{1}{3}(0)^3 = \frac{1}{3} - 0 = \frac{1}{3}\]试题2:求定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
答案:函数 \(f(x) = \frac{1}{x}\) 的原函数是自然对数函数\(F(x) = \ln|x|\)。
计算定积分:\[\int_{1}^{2} \frac{1}{x} dx = F(2) - F(1) = \ln(2) - \ln(1) = \ln(2)\]试题3:计算定积分 \(\int_{0}^{\pi} \sin(x) dx\)。
答案:函数 \(f(x) = \sin(x)\) 的原函数是 \(-\cos(x)\)。
计算定积分:\[\int_{0}^{\pi} \sin(x) dx = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2\]试题4:求定积分 \(\int_{-1}^{1} (x^2 - 1) dx\)。
答案:函数 \(f(x) = x^2 - 1\) 的原函数是 \(F(x) =\frac{1}{3}x^3 - x\)。
计算定积分:\[\int_{-1}^{1} (x^2 - 1) dx = F(1) - F(-1) =\left(\frac{1}{3}(1)^3 - 1\right) - \left(\frac{1}{3}(-1)^3 - (-1)\right) = \frac{1}{3} - 1 + \frac{1}{3} + 1 = \frac{2}{3} \]试题5:计算定积分 \(\int_{0}^{1} e^x dx\)。
定积分及其应用计算题

3
(1) 求它与 x 轴所围成的面积; (2) 求它的弧长; (3) 求它与 x 轴围成区域绕 x 轴旋转而成的旋转体的体积和 表面积. 15* 设曲线 y ax a 0, x 0 与 y 1 x 相交于点 A ,过坐标原点 O 和点 A 的直线与曲线 y ax 围成一个平面图形,问 a 为何值时,该 图形绕??轴旋转一周所得的旋转体的体积最大 ?最大体积为多 少? 16. 过点 1,0 作曲线 y x 2 的切线,该切线与上述曲线及 x 轴 围成一个平面图形 A .(1) 求 A 的面积; (2) 求 A 绕 x 轴旋转 一周所成的旋转体的体积. 17* 设函数 f x 在闭区间 0,1 上连续,在开区间 0,1 内大于零, 并满足 3a xf x f x x (a 为常数);
1 2
y a1 cos t ,
(1) 求它绕 x 轴旋转一周生成的旋转体的体积与侧面积; (2) 求它绕 y 轴旋转一周生成的旋转体的体积与侧面积. 12. 13. 14.
x 2 求曲线 y 在 0 x 2 区间段的弧长. 2 x at sin t , 求外旋轮线的方程为 0 t 2 , a 0 的弧长. y a1 cos t ,
要求汽锤每次击打桩时所做的功与前一次击打时所做的功之 比为常数 r ( 0 r 1 ).问: (1) 汽锤击打 3 次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? 广义积分问题 1. 计算
3 2 1 2
dx xx
x2 0
2
.
专升本高等数学(二)-定积分计算方法及其应用

专升本高等数学(二)-定积分计算方法及其应用(总分:97.00,做题时间:90分钟)一、{{B}}填空题{{/B}}(总题数:6,分数:13.00).(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] [*]为奇函数..(分数:2.00)填空项1:__________________ (正确答案:2)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] 令[*],先证明[*].再用定积分区间可加性合并得 [*].(分数:3.00)填空项1:__________________ (正确答案:π)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]6. 1.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]二、{{B}}解答题{{/B}}(总题数:6,分数:84.00)对比计算.(分数:36.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(设[*]=t,则x=t2,dx=2tdt.[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(6). 2.00)__________________________________________________________________________________________ 正确答案:(方法一凑微分法. [*] 方法二换元法,用方程思想构造等式.设[*],则dx=-dt. [*] 所以 [*])解析:(7)..(分数:2.00)__________________________________________________________________________________________ 正确答案:(令lnx=t,则x=e t,dx=e t dt.当x=1时,t=0;当x=e时,t=1.[*])解析:(8).求曲线x=acos3t,y=asin3t所围成的平面图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(星形线(见下图)是关于x和y对称的.[*] 参数t从0变到[*]正好是它在第一象限部分,所以 [*])解析:(9).[-2,2]上的定积分.(分数:2.00)__________________________________________________________________________________________ 正确答案:(在有限个点上改变被积函数的函数值,不会影响积分值.也就是说,在闭区间上有有限个第一类间断点时,还能用牛顿—莱布尼兹公式计算定积分. [*])解析:(10).设f(x)=3x2,求f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(设[*],则f(x)=3x2-A,两边积分得[*]故[*].)解析:(11).已知f(π)=-2,求f(0).(分数:2.00)正确答案:(因[*] 移项得[*][f(x)+f"(x)]sinxdx=f(0)-2=6,故f(0)=8.)解析:(12).设f(0)=1,f(2)=3,f'(2)=5.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设2x=f,则[*]当x=0时,t=0;当x=1时,t=2.[*] 因为f(0)=1,f(2)=3,f'(2)=5,所以[*]xf"(2x)dx=2.)解析:(13).试分析k,a,b 2.00)__________________________________________________________________________________________ 正确答案:([*] 所以当[*],a=0,b=8时,有[*].)解析:(14).设f(x)=e-t2dt f(x)dx.(分数:2.00)__________________________________________________________________________________________ 正确答案:(分部积分得 [*])解析:(15).求k 2.00)__________________________________________________________________________________________ 正确答案:(因为 [*] 所以 [*] 令[*],解得[*].)解析:(16).当a为何值时,抛物线y=x2与三条直线x=a,x=a+1,y=0所围成的图形面积最小,求将此图形绕x 轴旋转一周所得到的几何体的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所围面积为S(a).[*]S'(a)=(a+1)2-a2=2a+1令[*]S"(a)=2>0,所以[*]为最小的面积[*])解析:(17).设f(x) 2.00)__________________________________________________________________________________________ 正确答案:(令[*],dx=-dt. [*])解析:(18).直线x=1把圆x2+y2=4分成左、右两部分,求右面部分绕y轴旋转一周所得的旋转体体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(直线x=1与圆x2+y2=4的交点是[*],右部分绕y轴旋转一周所得几何体的体积为[*])解析:计算下列定积分.(分数:10.00)2.00)正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5).设,求 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:计算下列定积分.(分数:10.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(由于公式sin2x=[*](1-cos2x),所以[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:(证明设[*],则dx=-dt,当x=0时,[*];当[*]时,t=0. [*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3).设函数f(x)在区间[a,b]上连续,,求 2.00)__________________________________________________________________________________________ 正确答案:(设t=a+b-x,则dt=-dx,当x=a时,t=b;当x=b时,t=a.于是, [*] 而[*],所以 [*]) 解析:(4). 2.00)__________________________________________________________________________________________ 正确答案:(设1-x=t,则x=1-t,dx=-dt.当x=0时,t=1;当x=1时,t=0.于是 [*])解析:(5).f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:([*] 故 [*])解析:(6).设f(x)为连续函数,,且φ'(x)并讨论φ'(x)在x=0处的连续性.(分数:2.00)__________________________________________________________________________________________ 正确答案:(f(0)=φ(0)=0,令y=xt,[*]两边对x求导得φ'(x)=[*] 由导数定义,有 [*] 故φ'(x)在x=0处连续.)解析:(7).证明:若f(x)在[-a,a] 2.00)__________________________________________________________________________________________ 正确答案:(因为f(x)在[-a,a]上连续,则[*] 对于[*],令设x=-t,则dx=-dt.当x=-a时,t=a;当x=0时,t=0.于是, [*] 从而 [*])解析:(8).当k?又为何值时发散?(分数:2.00)__________________________________________________________________________________________ 正确答案:(当k≠1时 [*] 当k=1时,[*].所以广义积分[*]当k>1时收敛,当k≤1时发散.)解析:(9).求曲线y=2lnx,过曲线上点(e,2)处的切线及y=0所围成的图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(因为[*],过点(e,2)切线斜率为[*],切线方程为[*].即[*] 切线经过原点(0,0),曲线y=2lnx(即[*])经过点(1,0)和(e,2)所围成图形面积为 [*])解析:设平面图形是由曲线y=x2和x=y2围成,试求该图形:(分数:6.00)(1).绕x轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕x轴旋转一周而形成的立体图形的体积[*])解析:(2).绕y轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕y轴旋转一周而形成的立体图形的体积[*])解析:(3).设函数f(x)=x2,求f(x)在区间[0,2]上的最大值与最小值.(分数:2.00)__________________________________________________________________________________________ 正确答案:(由于定积分[*]是一确定的实数,设[*].对f(x)的等式两边积分有 [*] 于是 [*] 由上式解得[*].令f'(x)=2x=0得驻点x=0.当x∈(0,2)时,恒有f'(x)>0,表明f(x)在区间(0,2)内严格增加,所以f(0)=[*]是函数f(x)在[0,2]的最小值,[*]是函数f(x)在[0,2]的最大值.)解析:设某产品的边际成本函数为C'(q)=4+0.25q(万元/吨),边际收入为R'(q)=80-q(万元/吨),其中q为产量.(分数:4.00)(1).求产量由10吨增加到50吨时,总成本和总收入各增加多少?(分数:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2).设固定成本为10万元,求总成本函数和总收入函数.(分数:2.00)__________________________________________________________________________________________ 正确答案:([*]由于固定成本为10万元,所以总成本函数为C(q)=4q+[*]q2+10又由于[*],故当q=0时无收入,即R(0)=0=C.所以总收入函数为R(q)=80q-[*]q2)解析:。
最新定积分及其应用练习-带详细答案

求由抛物线 y2 8x( y 0) 与直线 x y 6 及 y 0 所围成图形的面积.
答案: 40 . 3
详解:
作出 y2 8x( y 0) 及 x y 6 的图形如右:
解方程组
y2
8x
x y 6 0
得
x y
2 4
解方程组
x
y
y 0
6
0
得
x y
6 0
所求图形的面积 s
(2)取特殊情况,在(1)的条件下,导函数 f′(x)=3cos3x+6π,求得 Aπ9,0, B51π8,-3,C49π,0,故△ABC 的面积为 S△ABC=12×39π×3=π2,曲线段与 x 轴所 围成的区域的面积 S=- fx 49π9π=-sin43π+π6+sin39π+π6=2,所以该点在△
精品文档
A.1/2 答案:D. 详解:
B.1
由题意图象与 x 轴所围成图形的面积为
1
0
(x 1)dx 0
cos xdx
2
C.2
(
1 2
x2
x)
|10
sin
x
|0 2
1 1 2
3. 2
故选 D.
D.3/2
题四 题面:
(导数与积分结合,二星)设函数 f (x) xm ax 的导函数为 f (x) 2x 1 ,则
(1)若 φ=π6,点 P 的坐标为0,3 2 3,则 ω=________;
(2)若在曲线段 ABC 与 x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为
________.
精品文档
精品文档
[解析] (1)函数 f(x)=sin(ωx+φ)求导得,f′(x)=ωcos(ωx+φ),把 φ=π6和点0,32 3代 入得 ωcos0+π6=3 2 3解得 ω=3.
定积分练习题

定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。
2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。
3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。
4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。
5. 计算 $\int_{0}^{\pi} \sin x \, dx$。
二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。
7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。
8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。
9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。
三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。
11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。
12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。
13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。
14. 计算 $\int_{0}^{2} |x 1| \, dx$。
四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。
(完整版)定积分应用题附答案

《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。
解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。
(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。
解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。
抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。
故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。
五、定积分及其应用

2
sin
xd sin
x
.
0
0
2
3.【解】
令
1
f
xdx
A ,则由
f
x
1 x2
1 2x4
f xdx ,得
1
A
1
1 x2
dx
A 2
1
1 x4
dx
1
A ,解得 A 6 ,所以
6
7
f x
1 x2
3 7x4
.
4.【解】
1 0
f
xdx
x
1
2 0
f
xd
x 2
x
f
x
1
0
1
2 0
x f xdx
0
20
0
2
x t
x cos x dx
t cost dt
t cost dt
cost dt 2 3 ,
0
0
0
3
x 2 t
x cos xdx
t 2 cost dt
t cost dt 2
cost dt 5 ,
2
0
0
0
则 n x cos x dx 3 2n 1 n2 . 0
arcsin2x
1
1 1
,
1 2 x 1 2
22
2 2
3
2
1
dx
3
2
x2 x 1
d x 1
2 ln x 1
x 1 2 1 2
2
3
x2 x 2 ln 2 1
3,
2 2
原式 ln 2 3 . 2
8.【证明】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五、六章 定积分及其应用
(1)
一.判断题
( )1.函数)(x f 在区间],[b a 上有界,则)(x f 在],[b a 上可积.
( )2.若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )3.设)(x f 在),(+∞-∞内连续,则⎰
=x a
dt t f x G )()(是)(x f 的一个原函数.
( )4.
⎰
⎰=b
a
b a
dx x f k dx x kf )()(,⎰⎰=dx x f k dx x kf )()(都对.
( )5.函数)(x f 在],[b a 上有定义,则存在一点],[b a ∈ξ,使
)()()(a b f dx x f b a
-=⎰
ξ. ( ).
二.填空题 1.设⎰=
x
x tdt x f 2
ln )(,则=')2
1(f . 2.⎰=x tdt dx d 1sin , dx d ⎰b a
x 2
s i n dx = . 3.若),1(2)
(0
2x x dt t x f +=⎰
则=)2(f .
4.1
1xdx -⎰
= .
5.
⎰
+21
42
)1
(dx x x = , ⎰-10241dx x = .
三.计算题 1.
⎰
-e e
dx x 1
ln 2.dx x x ⎰-π
53sin sin
3.设⎪⎩⎪⎨
⎧>-≤=1
,
11,
)(2
x x x x x f ,求
⎰
20
)(dx x f .
4.dt t
dx d x x ⎰+32411 5.20
0arctan lim x tdt x
x ⎰→ 四.对任意x ,试求使
⎰
-+=x a
x x dt t f 352)(2成立的连续函数)(x f 和常数a .
五.证明题:设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且0)('≤x f ,证明
函数⎰-=
x a
dt t f a x x F )(1
)(在),(b a 内单调递减.
第五、六章 定积分及其应用
(2)
一.判断题
( )1.⎰⎰⎰---+-=⋅+=+112
11
221
12)1
()(111)(111x
d x
dx x x x dx
2
1arctan
1
1
π
-
=-=-x .
( )2.
2)2(10
=+⎰
dx k x ,则1=k .
( )3.设函数⎰-=
x
dt t y 0
)1(,则y 有极小值2
1
. ( )4.设
2
1
)(21)(0
-=
⎰
x f dt t f x ,且1)0(=f ,则x e x f 2)(=. ( )5.只要)(x f 可积,则
0)(11
2=⎰
-dx x xf .
二.计算题
1.dx x x ⎰+1
021arctan 2.⎰+20ln 1e x x dx 3.dx x ⎰-π03
)sin 1(
4.
dx e x ⎰
-2
ln 1
1 5.⎰
-51
1
dx x
x 6.⎰-2ln 01dx e x
7.
⎰
-20
224dx x x 8.
⎰
10
arctan xdx x 9.
⎰
2
cos π
xdx e x
10.
dx x
x ⎰
+3
1
2
11
三.证明题 (1) ⎰⎰
-=-1
10
)1()1(dx x x dx x x m n n
m )0,0(>>n m ;
(2)
⎰⎰
-+=b
a
b a
dx x b a f dx x f )()(;并由此计算dx x x x
⎰-3
6
2)
2(cos π
π
π
第五、六章 定积分及其应用
(3)
一.填空题 1.dx x ⎰
∞+1
4
1
= . 2.
dx xe
x
⎰
∞
+-0
2= ,
dx xe
x ⎰
∞+-0
22
= ,
dx e
x x ⎰
∞+-0
222
= .
3.写出下列各图中阴影部分面积的公式.
图)(a 图)(b 图)(c
图)(a 的为 , 图)(b 的为 , 图)(c 的为 . 二.计算题 1.
dx x x ⎰
∞+1
2arctan 2.dx x x ⎰∞++12)
1(1
3.
btdt e
at
cos 0
⎰
∞+- )0(>a 4.
dx x ⎰1
)sin(ln
三.当k 为何值时,广义积分dx x x k
⎰
∞+2
)
(ln 1
收敛?当k 为何值时,广义积分发散? 四.求由曲线3
x y =及直线0,2==y x 所围成的平面图形分别绕x 轴及y 轴旋转所得旋转
体的体积.
五.已知某产品生产x 个单位时,总收益R 的变化率(边际收益)为
100
200)(x
x R R -
='=' (0≥x ) (1)求生产了50个单位时的总收益;
(2)如果已经生产了100个单位,求再生产100个单位时的总收益.。