补偿装置
补偿装置结构与原理

随着新材料和新工艺的不断涌现,气压补偿装置的性能将得到进一步提升。未来,气压 补偿装置有望实现更低的成本、更高的可靠性和更长的使用寿命,更好地满足工业生产 的需求。同时,气压补偿装置还将进一步实现智能化控制,提高其自动化和智能化水平。
THANKS FOR WATCHING
感谢您的观看
未来展望
随着液压技术的不断进步,液压补偿装置的 性能将得到进一步提升。未来,液压补偿装 置有望实现更高的压力和流量、更低的能耗 和更好的环保性能,更好地满足工业生产的
需求。
气压补偿装置的发展趋势与未来展望
发展趋势
气压补偿装置正朝着低成本、高可靠性和智能化的方向发展。为了降低生产成本和提高 生产效率,气压补偿装置需要具备更高的可靠性和更长的使用寿命。
未来展望
随着新材料、新工艺的不断涌现,机械补偿装置的性能将得到进一步提升。未 来,机械补偿装置有望实现更高的精度、更短的响应时间和更长的使用寿命, 更好地满足工业生产的需求。
电子补偿装置的发展趋势与未来展望
发展趋势
电子补偿装置正朝着数字化、集成化和智能 化的方向发展。随着电子技术和控制理论的 不断进步,电子补偿装置的精度和稳定性得 到了显著提高,同时其体积和重量也得到了 有效减小。
液压补偿装置的性能特点
功率密度大
液压补偿装置具有较大的功率密度,能够在 较大的负载下实现稳定的补偿效果。
对负载敏感
液压补偿装置对负载的变化较为敏感,需要 进行相应的控制和调节。
响应速度快
液压补偿装置的响应速度较快,能够满足许 多快速响应的应用需求。
需要专业维护
液压补偿装置需要专业的维护和保养,以保 证其正常工作和延长使用寿命。
适用范围广
机械补偿装置能够适应各种不同的工作环境和条件,如高温、低温、 高压、真空等。
接触网补偿装置讲解

各类型补偿装置的优缺点
从以上几种补偿装置比较,各有优缺点。滑轮组补偿张力恒定, 且传动效率高,特别是无油润滑免维护滑轮被广泛采用;棘轮补 偿装置补偿张力不恒定,且传动效率低于滑轮,但断线制动功能 优越;弹簧补偿体积小,补偿精度略低,适宜于小锚段及隧道等 处所。
接触网液压张力补偿器,是替代传统的坠砣方式,实现电气化 铁道承力索和接触线自动张力补偿的一种新装置,它结构简单、 体积小、重量轻,安装方便,补偿精度能满足规范要求,尤其适 用于隧道内及其它低矮狭窄净空条件下安装使用,亦可用于一般 条件下接触网自动张力补偿,但存在漏油造成补偿性能下降,失 去补偿作用后较难恢复。
限制导管 防止在外力作用下(比如:
风力),坠砣串摆动侵入行车限 界
同侧下锚 注意防止承力索补偿绳和接
触线补偿滑轮上的双环杆相磨
接触网补偿装置
二、补偿器的安设与要求
接触网补偿装置
二、补偿器的安设与要求
2、a、b值及安装曲线
a值 坠陀杆耳环孔中心至补偿(定) 滑轮下沿的距离为a值
b值 坠陀串最下一块坠陀的底面至地 面(或基础面)的距离称为补偿 器的b值
接触网补偿装置有许多种类,有滑轮式 、棘轮式、鼓轮式、液压式及弹 簧式等。
接触网补偿装置
一、滑轮式补偿装置
1、主要组成部分
我国电气化铁道广泛采用滑轮式补偿装装置,它由补偿滑轮(滑 轮组)、补偿绳、杵环杆、坠砣杆、坠砣、连接零件组成。
补偿滑轮 大轮径铝合金轮
补偿绳 不锈钢钢丝绳 连接零件
楔型线夹等
接触网补偿装置
五、弹簧补偿装置
特点: 应用弹簧作为张力
补偿。动作范围受限。 主要应用于日本。
七.恒张力弹簧补偿装置
1.承锚(线锚)角钢 2.固定销轴 3.弹簧补偿装置(本体) 4.钢丝绳 5.双耳楔形线夹 6.平衡板
简述补偿装置的作用

简述补偿装置的作用
补偿装置的作用主要有以下几点:
1. 改善功率因数:通过补偿装置可以尽量避免发电机降低功率因数运行,同时也防止从远方向负载输送无功引起电压和功率损耗。
2. 改善电压调节:当负载对无功需求的变化引起供电点电压的变化时,补偿装置可以起到维持供电电压在规定范围内的重要作用。
3. 调节负载的平衡性:当正常运行中出现三相不对称运行时,会出现负序、零序分量,将产生附加损耗,使整流器波纹系数增加,引起变压器饱和等,经补偿设备就可使不平衡负载变成平衡负载。
此外,某些补偿装置还具有自动调节功能。
例如,当温度变化导致线索受温度影响而伸长或缩短时,补偿装置可以利用补偿坠坨的重量作用,使线索顺线路方向移动并自动调节线索张力,以保持线索弛度并使之符合规定,从而保证接触线悬挂技术状态。
以上信息仅供参考,如有需要,建议咨询相关工作人员。
补偿装置结构与原理.

、要求 半补偿时,接触线带补偿器,多采用两滑轮组结构, 滑轮组的传动比为1:2,即坠砣块的重力为接触线标称张 力的一半。
全补偿时,接触线与承力索两端均带补偿器,接触线 补偿器的安设与半补偿相同。承力索补偿器则采用三滑 轮组式,传动比为1:3。
2020/4/23
7
3、补偿器的a、b值
概念
a值:坠陀杆耳环孔中心至补偿(定)滑轮下沿的距离 为a值。 b值:坠陀串最下一块坠陀的底面至地面(或基础面) 的距离称为补偿器的b值。
径是鼓轮直径的4倍,鼓轮直径
从126~137变化,形成一个由
中间向两端缩小的锥度,图中
A、B向标示出了鼓轮的几何尺
寸。滑轮外廓曲线为阿基米德
曲线,半径由263逐渐增大至
269,275。平均每30度增大
1mm,补偿绳在滑轮沟槽内转
动。由于采用了阿基米得螺线
形滑轮沟部轮廓,当补偿鼓轮
转动时,鼓轮的传动比随回转
式中:
2020/4/23
amin ——设计时规定的最小值(mm);
bmin ——设计时规定的最小值(mm); tmin ——设计时采用的最低气温( C);
tx ——安装或调整作业时的温度(C );
tmax ——设计时采用的最高气温( C );
n ——补偿滑轮传动系数(即传动比的倒
数);
L
——锚段内中心锚结至补偿器间距离
复杂,轮径大,薄壁部位多,对生产制造设备和
工艺要求较高,价格偏贵。
2020/4/23
13
三、横承力索张力补偿
由于气温变化悬殊,对软横跨进行补偿,采用软横跨定位 绳补偿装置,即弹性补偿器。
2020/4/23
14
2020/4/23
无功补偿装置的分类及原理

无功补偿装置的分类及原理无功补偿装置是电力系统中的重要设备,可以通过对无功功率的调整来提高电力系统的功率因数,提高供电质量。
本文将对无功补偿装置的分类及原理进行详细介绍。
一、无功补偿装置的分类根据无功补偿装置的工作原理和结构特点,可以将其分为以下几类:静态无功补偿装置、动态无功补偿装置、谐波滤波无功补偿装置和电容式无功补偿装置。
1. 静态无功补偿装置静态无功补偿装置是通过电子元件,如电容器、电抗器等,来实现无功补偿的装置。
根据无功补偿的方式,静态无功补偿装置可以进一步细分为并联补偿和串联补偿。
并联补偿装置主要是通过并联连接电容器来补偿电路中的无功功率,这样可以提高功率因数,提高电网的稳定性。
而串联补偿装置则是通过串联连接电抗器来调整电路中的无功功率,来实现无功补偿的效果。
2. 动态无功补偿装置动态无功补偿装置主要是通过控制器来控制电容器的连接和断开,以实现对无功功率的补偿。
具有响应速度快、调节范围大等优点,适用于电网无功功率变化较大的情况。
3. 谐波滤波无功补偿装置谐波滤波无功补偿装置主要用于滤除电网中的谐波成分,以提高电网的谐波污染程度,保证电网的供电质量。
常见的谐波滤波无功补偿装置主要包括谐波滤波器和无功发生器。
4. 电容式无功补偿装置电容式无功补偿装置是一种通过电容器来实现无功补偿的装置。
通过控制电容器的容量和连接方式,可以实现对电网的无功功率进行精确调节。
二、无功补偿装置的原理无功补偿装置的原理主要是通过改变电路的电流和电压之间的相位差,来实现对电流中的无功功率的补偿。
当电力系统中存在导致无功功率的负荷或设备时,会导致电流与电压之间的相位差,从而产生无功功率。
无功补偿装置通过调整系统中的无功补偿元件(如电容器或电抗器)的连接和断开方式,来改变电路中的相位差,从而实现对无功功率的补偿。
在静态无功补偿装置中,通过控制无功补偿元件的连接或断开来改变相位角。
对于串联补偿装置,通过增加或减少串联电抗器的容值,来改变电路的无功功率。
无功补偿成套装置

一、无功补偿成套装置三)高压数码编组自动投切无功补偿成套装置1,概述目前,电力系统广泛使用的传统型高压并联电容器补偿装置,由于不分组手动(或自动)投切,补偿后无法满足系统无功不断变化的需求,因而功率因数不能达到比较高而且平稳的水平,当系统重载时应投入足够的无功补偿容量,而当主变轻载后必须及时切除投入的电容器,否则可能会因过补偿使电压升高造成事故。
如果采用传统的分组投切电容器补偿装置来满足由于负荷变化引起的无功需求,则可能存在由于设备安装复杂,安装所需要的材料较多,装置占地面积增大等问题。
数码编组自动投切无功补偿装置很好地解决了以上问题,装置是分组自动投切补偿的,补偿功率因数可保证在任何时候不低于设定的数值,在系统轻载时装置会自动切除多余的补偿电容器,不会使系统电压升高。
一般情况下,编码投切的电容器组最小投切单元的容量会设计成系统最低无功需求的容量,每个电容器组均设有过流、过压、欠压、速断、三相不平衡等保护,而这些保护对单台电容是十分可靠的,由于每次投入的容量减小,对于线路的冲击也大大减小,安装费用低廉,占地面积也大大减小。
2,产品型号及用途2.1产品型号2.1.1 HTBBJ型接触器数字编码自动(或手动)投切高压并联电容器补偿装置型号:HTBBJ10—700(100+200+400)/100—12—AKW其中各符号标注的含义是:HTBBJ—我公司生产的接触器投切高压并联电容器补偿装置10—标称电压(KV),1.1KV—110KV700(100+200+400)/100—电容器装置安装容量/单台容量(Kvar),容量范围可从100—30000Kvar(100+200+400)—分组投切电容器容量+组数(可以倍差或等差分组),投切组数1—5组12—串联电抗器电抗率(%),一般为3%,6%,12%A—电容器接线方式:A—单星型联接;B—双星型连接;C—电压差动保护;K—保护方式:K—开口三角保护;L—不平衡电流保护;W—户外安装(户内不标)。
电力系统补偿装置分类

电力系统补偿装置分类电力系统补偿装置主要用于对系统中的电参数进行调节和优化,以提高电力系统的稳定性和效率。
根据其工作原理和应用场景,电力系统补偿装置可以分为以下几类:1.静态补偿装置:主要通过连接电容器、电感器等静态元件来实现对系统电参数的调节。
它主要包括无功补偿、降压补偿、升压补偿、无功-有功转换等补偿方式。
静态补偿装置具有体积小、响应速度快、精度高等优点,但无法对频率变化、电压突变等问题进行补偿。
2.动态补偿装置:通过控制电子器件,如IGBT、PWM等,实现对电气系统电参数的精确调节。
主要包括交流传输线的串补偿、交流传输线的并补偿、直流输电线的电压稳定、电力系统稳定控制等技术。
动态补偿装置可以在毫秒级别内进行精确的响应和调节,有效解决电力系统中频率变化、电压波动等问题。
3.谐波补偿装置:通过连接电容、电感等被动元件,或使用谐波滤波器等主动元件,来消除电气系统中的谐波干扰。
谐波补偿装置主要用于电气系统中的非线性负载,如电炉、变频器等设备,能够有效地消除谐波干扰,避免对其他设备的影响。
4.电力质量调节装置:通过对电气系统中的有害电参数进行监测,在出现问题时通过控制电气元件来进行调节,从而实现对电气系统的优化。
主要包括电压调节器、电流平衡器、电能质量综合控制器等。
能够实现对电气系统电流、电压、功率等参数进行准确监测和调节,有效提升电力系统的稳定性和可靠性。
此外,还有一些特定的补偿装置,如无功并联补偿器,主要通过并联电容器来提供无功电流,以提高电网的功率因数,具有调节范围广、响应速度快、无噪音等优点。
以及串联补偿器,一般采用电抗器或电容器串联在负载电路上,以减小谐波、降低谐波压缩比等作用,主要用于短线路和电力负载变化大的场合。
在实际应用中,需要根据电力系统的实际情况和需求选择合适的补偿装置。
补偿装置结构与原理.

③ a、b值的计算及坠砣安装曲线
a amin nL (tx tmin )
b bmin nL (tmax t x )
式中:
amin ——设计时规定的最小值(mm);
bmin ——设计时规定的最小值(mm);
tmin ——设计时采用的最低气温(
tmax ——设计时采用的最高气温( C );
tx
n
); C ——安装或调整作业时的温度( C );
——补偿滑轮传动系数(即传动比的倒 数); L ——锚段内中心锚结至补偿器间距离 (mm); ——线索的线胀系数( C 1)。
二、棘轮式补偿装置
棘轮本体大轮直径为566mm,小轮直径为170mm, 传动比为1∶3,补偿绳为柔性不锈钢丝绳,比普 通不锈钢丝绳性能更好,工作荷重有30kN、36kN 两种. 主要优点是具有断线制动功能,棘轮可以自由转 动;当线索断裂后,棘轮和坠砣在重力作用下下 落,棘齿卡在制动卡块上, 从而可以有效地缩小 事故范围、防止坠砣下落侵入限界。 棘轮装置的棘轮与其它工作轮共为一体,可以解 决空间受限时的补偿问题。
弹簧补偿装置主要用于 软横跨上下部固定绳的张力 补偿,隧道内有时也用弹簧 补偿器。 特点是在弹簧补偿器内 部装有一个具有一定初始压 缩力的弹簧,当软横跨上下 部固定绳伸长时,弹簧被释 放,工作杆收回拉紧软横跨 上下部固定绳;当上下部固 定绳收缩时,弹簧被压缩, 工作杆伸出,使软横跨上下 部固定绳的张力保持在一定 范围内。
3、补偿器的a、b值
概念 a值:坠陀杆耳环孔中心至补偿(定)滑轮下沿的距离 为a值。 b值:坠陀串最下一块坠陀的底面至地面(或基础面) 的距离称为补偿器的b值。 要求 在最低温度时,a值应大于零。 在最低温度时,b值应小于零。 “接触网运行检修规程”规定,补偿器a、b值的最 小值不小于200mm,在进行接触网设计时,a、b值不 小于300mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压补偿装置是利用热胀冷缩原理进行工作的,在 装置的中心设有一个密封性极好的液压油缸,四周环绕 着一个充有一定气压的气囊。当温度变化时,气囊内的 气体发生热胀冷缩,推动油缸伸出或收缩,从而达到补 偿的目的,
接触网补偿装置 一、滑轮式补偿装置
1、主要组成部分 补偿滑轮(滑轮组) 补偿绳 杵环杆 坠砣杆 坠砣 连接零件
接触网补偿装置
返回
接触网补偿装置
1:3传动比补偿滑轮组
返回
接触网补偿装置
补偿滑轮是滑轮补偿装置的核心设备,一般由铝合金 铸造而成,补偿滑轮的传动效率直接影响补偿装置的性能, 其传动效率应在98%以上 。
接触网补偿装置
2、补偿器的安设与要求 、安设 补偿器串接在锚段内线索两端与支柱固定处,根据接 触悬挂类型的不同有不同的补偿器结构。 、要求 半补偿时,接触线带补偿器,多采用两滑轮组结构, 滑轮组的传动比为1:2,即坠砣块的重力为接触线标称张 力的一半。 全补偿时,接触线与承力索两端均带补偿器,接触线 补偿器的安设与半补偿相同。承力索补偿器则采用三滑 轮组式,传动比为1:3。
tx
n
); C ——安装或调整作业时的温度( C );
——补偿滑轮传动系数(即传动比的倒 数); L ——锚段内中心锚结至补偿器间距离 (mm);
棘轮本体大轮直径为566mm,小轮直径为170mm,传动比为1∶3, 补偿绳为柔性不锈钢丝绳,比普通不锈钢丝绳性能更好,工作荷重 有30kN、36kN两种. 主要优点是具有断线制动功能,棘轮可以自由转动;当线索断裂 后,棘轮和坠砣在重力作用下下落,棘齿卡在制动卡块上, 从而 可以有效地缩小事故范围、防止坠砣下落侵入限界。 棘轮装置的棘轮与其它工作轮共为一体,可以解决空间受限时的 补偿问题。
由于气温变化悬殊,对软横跨进行补偿,采 用软横跨定位绳补偿装置,即弹性补偿器。
华东交通大学电气学院
接触网补偿装置
弹簧补偿装置主要用于 软横跨上下部固定绳的张力 补偿,隧道内有时也用弹簧 补偿器。 特点是在弹簧补偿器内 部装有一个具有一定初始压 缩力的弹簧,当软横跨上下 部固定绳伸长时,弹簧被释 放,工作杆收回拉紧软横跨 上下部固定绳;当上下部固 定绳收缩时,弹簧被压缩, 工作杆伸出,使软横跨上下 部固定绳的张力保持在一定 范围内。
接触网补偿装置
③ a、b值的计算及坠砣安装曲线
a amin nL (tx tmin )
b bmin nL (tmax t x )
式中:
amin ——设计时规定的最小值(mm);
bmin ——设计时规定的最小值(mm);
tmin ——设计时采用的最低气温(
tmax ——设计时采用的最高气温( C );
接触网补偿装置
棘 轮 式 补 偿 装 置 安 装 图
接触网补偿装置
哈大线棘轮式补偿装置:
棘轮式补偿装置与滑轮式补偿装置相比,具 有占用空间少、转动灵活、传动效率高、防腐性 能好,使用寿命长等优点,但由于棘轮本体形状 复杂,轮径大,薄壁部位多,对生产制造设备和 工艺要求较高,价格偏贵。
接触网补偿装置 三、横承力索张力补偿
接触网补偿装置
本讲主要内容
1、补偿器作用; 2、补偿器的形式、组成及安设要求; 3、补偿器a、b值的含义及b值安装曲线在工程中的应用; 4、补偿器的检修。
接触网补偿装置
接触网补偿装置,又称张力自动补偿器,它 安装在锚段的两端,并且串接在接触线承力索内, 它的作用是补偿线索内的张力变化,使张力保持 恒定。
接触网补偿装置
四、鼓轮并联补偿装置
鼓轮并联补偿装置的核心 部件为带滑轮的鼓轮,滑轮直 径是鼓轮直径的4倍,鼓轮直径 从126~137变化,形成一个由中 间向两端缩小的锥度,图中A、 B向标示出了鼓轮的几何尺寸。 滑轮外廓曲线为阿基米德曲线, 半径由263逐渐增大至269,275。 平均每30度增大1mm,补偿绳在 滑轮沟槽内转动。由于采用了 阿基米得螺线形滑轮沟部轮廓, 当补偿鼓轮转动时,鼓轮的传 动比随回转角度变化,从而使 施加于线索的张力产生变化。
接触网补偿装置
四、鼓轮并联补偿装置
鼓轮补偿装置有两 大特点:一是鼓轮的轮 曲线为阿基米德曲线; 二是用鼓轮平衡板将接 触线和承力索并行下锚, 以解决接触悬挂的来回 窜动。张力在接触线和 承力索之间的分配由绝 缘子串和平衡板之间的 联接点到平衡板与接触 线和承力索之间的联接 点的长度比例决定。
接触网补偿装置
接触网补偿装置
3、补偿器的a、b值
概念 a值:坠陀杆耳环孔中心至补偿(定)滑轮下沿的距离 为a值。 b值:坠陀串最下一块坠陀的底面至地面(或基础面) 的距离称为补偿器的b值。 要求 在最低温度时,a值应大于零。 在最高温度时,b值应大于零。 “接触网运行检修规程”规定,补偿器a、b值的最 小值不小于200mm,在进行接触网设计时,a、b值不 小于300mm。