结构力学-静定结构

合集下载

结构力学第三章静定结构受力分析

结构力学第三章静定结构受力分析

MA

0, FP

l 2
YB
l

0,YB

FP 2
()
Fy

0,YA
YB

0,YA

YB


Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA

0, ql
l 2

XC
l

0,
XC

1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30

结构力学第三章静定结构组合结构及拱

结构力学第三章静定结构组合结构及拱
0 FNJ 右 FQJ 右 sin FH cos (7.5) (0.447) 10 0.894
3.35 8.94 12.29kN (压)
二、三较拱的压力线
如果三铰拱某截面D以左(或以右)所有外力的 合力FRD已经确定,则该截面的弯矩、剪力、轴 力可按下式计算:
15kN K右
Fº =-2.5kN QK右
0 0 (FH 10kN , FQK左 12.5kN , FQK右 2.5kN )
(sin 0.447, cos 0.894)
0 FQK 左 FQK 左 cos FH sin 12.5 0.894 10 0.447
67.5kN
50
A F C G E
B
30
D
M图
kN.m
求AC杆和BC杆剪力
F
FQAC
y
0, FQAC 7.5kN
22.5kN 7.5 32.5 10kN/m FNAD
FAy
+ _
15
+
7.15 67.5kN 35 FQ图 kN
作业
3-20
§3-6 三铰拱受力分析
拱 (arch)
FN DE 135kN ,
FNDF FN EG =-67.5kN
FAy
D
FCx 135kN , FCy 15kN
FNDA
FNDF
D
FN DA FN EB= kN 151
FNDE
2m
F
50kN.m
求AC杆和BC杆弯矩
22.5kN 5kN.m
20kN.m 10kN/m
30kN.m
MD FRD

结构力学静定结构与超静定结构

结构力学静定结构与超静定结构

结构力学静定结构与超静定结构结构力学是研究结构承受外力后的力学性能的学科,它在建筑、机械、航空航天等领域都扮演着重要的角色。

在结构力学中,我们可以将结构分为两类:静定结构和超静定结构。

静定结构是指在确定边界条件下,结构的所有支反力以及结构内部的应力分布等参数都可以通过静力平衡方程唯一求解出来的结构。

在静定结构中,支反力的计算可以通过平衡方程解决,而应力的计算可以通过弹性力学理论求解。

以简支梁为例,简支梁的两端固定支承,中间用力作用时,通过平衡方程可以求解出支反力。

而根据梁的几何形状和荷载的大小,可以计算出梁内部的应力分布。

在静定结构中,支反力和应力可以通过简单的数学计算求解,因此设计和分析起来相对简单。

而超静定结构则相对复杂一些。

超静定结构是指在确定边界条件下,结构的参数无法通过静力平衡方程唯一求解出来的结构。

这意味着在求解超静定结构时,不仅需要静力平衡方程,还需要考虑结构的变形和材料的本构关系等。

以悬臂梁为例,悬臂梁的一端固定支承,另一端悬空。

在悬臂梁上增加一个附加支承,形成一个超静定结构。

在这种情况下,由于支承力未知,无法通过静力平衡方程唯一求解出来。

因此,我们需要考虑结构的变形情况,并将其作为一个未知数来求解。

在超静定结构中,我们通常采用的方法是引入截面变形理论和力法。

通过假设结构具有一定的变形形态,并利用力法求解出结构的变形、应力和支反力等参数。

通常情况下,超静定结构的计算需要较为复杂的数学方法和计算机仿真。

静定结构和超静定结构在工程实践中都有广泛的应用。

静定结构常常用于桥梁、楼房等普通建筑结构的设计与分析中,因其计算相对简单,容易掌握。

而超静定结构常常用于大跨度的特殊结构的设计与分析中,如悬索桥、曲线梁等。

虽然超静定结构计算较为复杂,但可以提供更多的设计自由度和结构优化的可能性。

总而言之,静定结构和超静定结构都是结构力学中的重要概念。

静定结构是可通过静力平衡方程求解出内部参数的结构,而超静定结构则需要额外的变形理论和力法求解。

结构力学——静定结构位移计算

结构力学——静定结构位移计算

结构力学——静定结构位移计算在工程和建筑领域中,结构力学作为一门重要的学科,主要研究了结构的受力、变形、破坏机理等问题。

其中,静定结构位移计算是结构力学中的一个重要内容。

静定结构所谓静定结构,是指能够通过静力学方程求解出所有节点的受力、反力和变形的结构。

这种结构是不需要知道材料的物理性质和荷载的实际情况的。

在静定结构中,结构的支座固定方式和荷载情况是已知的,因此能够通过解决一组静力学方程,求解出结构中节点的受力和变形。

静定结构位移计算静定结构位移计算是静定结构的重要计算方法之一。

在结构分析中,位移是一种常见的形变量,它反映了物体在载荷作用下发生的形变情况。

在静定结构中,位移是结构的重要参数之一。

它可以通过求解一组线性方程组得到。

具体来说,就是通过应变—位移—节点力关系,将结构各节点位移用系数矩阵和加载节点力表示出来,再通过求解一个线性方程组,就可以得到各节点的位移值。

静定结构位移计算的步骤静定结构位移计算中的步骤包括:1.列出节点位移方程节点位移与内力之间有一定的关系,可以通过位移方程和内力方程来表示。

这些方程可以根据物理实际条件进行建立。

2.确定支座反力支座反力是从位移计算中得到的结果之一。

支座反力是指结构上所有支点所承受的力,在位移计算时是必须考虑的。

3.形成节点位移方程组形成节点位移方程组时,需要考虑杆件的个数、受力条件、材料特性、支座情况等因素。

4.解出节点位移通过解一个线性方程组,我们可以根据已知的节点力和位移方程,求出每个节点的位移值。

静定结构位移计算的应用静定结构位移计算在现代工程设计中具有广泛的应用。

它能够在保证结构稳定的前提下,可以对结构进行优化设计,提高结构的安全性、稳定性、经济性等方面的性能。

除此之外,静定结构位移计算还可以应用于建筑设计、桥梁设计、机械设计、工业生产等领域中。

它可以提供结构设计的数据支持,为结构工程的实施提供参考。

静定结构位移计算是结构力学中的一个重要方向,其计算方法基于静力学方程进行,其特点是简单、可靠和实用。

结构力学第三章静定结构的受力分析

结构力学第三章静定结构的受力分析

例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA

结构力学 静定结构的位移计算1

结构力学 静定结构的位移计算1
结构发生虚位移的状态和结构承受外力的状态是两个独立 的状态。分别称为结构的位移状态和力状态
P
A
3.位移计算的一般公式
设:结构受荷载的作用, 及支座移动,求A点的竖 向位移。
W外=W变
外力所作的虚功总和W外,等于 各微段截面上的内力在其虚变 形上所作的虚功的总和W变 。
1)位移状态的设定 q
P A
dx
a) 若求结构上C点的竖向位移,
2) 若求结构上截面A的角位移,可在截面处加一单位力矩。
若求桁架中AB杆的角位移,应 加一单位力偶,构成这一力 偶的两个集中力的值取 1/d。 作用于杆端且垂直于杆(d等 于杆长)。
3) 若要求结构上两点(A、B)沿其连线 的相对位移,可在该两点沿其连线 加上两个方向相反的单位力。
A
2)作 M 图 P=1
A C
1.5 M1 图
B 2m
6
B
B
D
66
A
BB
D
9
1
CV
1 1 61.5 3
EI 2

2 2 3 9 5 1.5
EI 3
8
189
=
(向下)
4EI
2)作 M 图
A
BD
6 6
M2 图
A
BB
D
9
1
D

1 EI

一、概述
1.位移的种类
1) 角位移:杆件横截面产生的转角 2) 线位移:结构上各点产生的移动 3) 相对位移(相对角位移,相对线位移)

Δ A
θ
(A截面的转角θ )
(A结点的水平线 位移Δ,转角θ)

ΔA A

《结构力学》静定结构内力计算

《结构力学》静定结构内力计算

只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12

解 (1)求支反力

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
FNEC FNED 33.54 kN
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx 2
dx
水平梁,分布荷载向下
a.均布荷载q向上时,弯矩图抛物线的凹向与M 坐标正向一致,
即凹向朝下(因为M 坐标的正方向取向下);
b.均布荷载q向下时,弯矩图抛物线的凹向与M 坐标正向相反,
即凹向朝上。
即:M图抛物线的凹向与分布荷载箭头指向相反.
8
§3-2 单跨静定梁 3.内力的符号与画法约定
弯矩M
M MM M 材力:
M图画在杆件受拉边,要注明正负号. 结力:M图画在杆件受拉边,不必标正负号.
9
§3-2 单跨静定梁
3.内力的符号与画法约定
剪力Q
Q QQ Q 材力: Q图一般正的画在水平梁上方,负的
画在下方,而且要注明正负号.
结力:使隔离体有顺时针转动趋势为正,反之为负; Q图可画在杆件任一侧,但要注明正负号.
静定结构的受力分析是利用静力平衡方程求结构的支座反力 和内力、绘内力图、分析结构的力学性能。
学习静定结构的过程中应注意以下几点:
1)静定结构与超静定结构的区别(是否需考虑变形条件);
2)结构力学与材料力学的关系。材料力学研究单根杆件,结 构力学则是研究结构,其方法是将结构拆解为单杆再作计算;
3)受力分析与几何组成分析的关系。几何组成分析是研究如 何将单杆组合成结构——即“如何搭”;受力分析是研究如何 把结构的内力计算拆解为单杆的内力计算——即“如何拆”。
qL2/8是沿垂直于梁轴线方向
B 量取(不是垂直于MAMB的
连线)。
12
§3-2 单跨静定梁
例2: MA
A
MA
P L/2 L/2
P
4.(区段)叠加法作弯矩图
MB 结论:
B
把两头的弯矩标在
杆端,并连以(虚)直线,
然后在直线上叠加上
由节间荷载单独作用
在简支梁上时的弯矩
图.
MB MA
PL/4
PL/4
MB
3)在相邻分段点之间(假设梁轴线为水平直线) ①q=0:Q为常数,剪力图为水平直线;
M为x的一次函数,弯矩图为倾斜直线。 ②q=常数≠0:Q为x的一次函数,剪力图为倾斜直线;
M为x的二次函数,弯矩图为抛物线。 上述两种情况可归纳为:零~平~斜~抛 ③q为变量:Q、M图为曲线。 (此时一般通过内力方程作内力图)
轴力N
N NN N 材力: N图一般正的画在水平梁上方,负的
画在下方,而且要注明正负号.
结力:拉为正,压为负; N图可画在杆件任一侧,但要注明正负号.
10
§3-2 单跨静定梁 4.(区段)叠加法作弯矩图 1)几种简单荷载的弯矩图 ▲ 简支梁在均布荷载作用 下的弯矩图
▲ 简支梁在跨中集中力作 用下的弯矩图
dM 2 (x) dQx
dx2
q(x)
dx
水平梁,分布荷载向上
dM 2 (x) dQx
q(x)
dx 2
dx
水平梁,分布荷载向下
1)求支座反力(有时也可不用求,如悬臂梁)
2)选取分段点: ①集中力(偶)(包含支座反力)作用点; ②分布力起止点; ③梁的自然端点。
5
§3-2 单跨静定梁
2.简易作图法回顾
Q Y 截面一侧
弯矩在数值上等于截面一侧所有的外力(荷载和支座 反力)对该横截面形心的力矩的代数和,符号按弯矩符 号规定判定,即:
M mC截面一侧
7
§3-2 单跨静定梁
2.简易作图法回顾
# M图抛物线的凹向由M的二阶导数确定:
dM 2 (x) dx2
dQx
dx
q(x)
水平梁,分布荷载向上
dM 2 (x) dQx q(x)
3
第3章 静定结构
§3-2 单跨静定梁(single-span beam) 1.单跨梁基本形式 简支梁(Simply-supported beam)
伸臂梁(Overhanging beam)
悬臂梁(Cantilever)
按两刚片规则与基础相连组成静定结构
4
§3-2 单跨静定梁
2.利用M、Q、q 微分关系作内力图 (简易作图法)回顾
13
§3-2 单跨静定梁
4.(区段)叠加法作弯矩图
3)区段叠加法作弯矩图
P
q
M
对图示简支梁把其中的 AB段取出,其隔离体如 图所示:
A
L
q MA
QAB
B
MB QBA
把AB隔离体与相应的简支 梁作对比:
MA
A
q MB
B
显然两者是完全相同的!
q
MA A YA
B MB YB
14
§3-2 单跨静定梁
P
A
MA
A
4.(区段)叠加法作弯矩图
q
M
L
B
q
MB
B
因此,上图梁中AB段的弯矩图可以用与下图 简支梁相同的方法绘制,即把MA和MB标在杆端, 并连以(虚)直线,然后在此直线上叠加上节间荷载 单独作用在简支梁上时的弯矩图,为此必须先求出
上图梁中的MA和MB。
15
§3-2 单跨静定梁
4.(区段)叠加法作弯矩图
区段叠加法画弯矩图的具体步骤如下:
▲ 首先把杆件分成若干段,求出分段点上的弯 矩值,按比例标在杆件相应的点上,然后每两点 间连以直线。
▲ 如果分段杆件的中间没有荷载作用,那么这 直线就是杆件的弯矩图。如果分段杆件的中间还 有荷载作用,那么在直线上还要迭加上荷载单独 在相应简支梁上产生的弯矩图。
16
§3-ቤተ መጻሕፍቲ ባይዱ 单跨静定梁
▲ 简支梁在跨中集中力偶 作用下的弯矩图
q qL2/8 P
L/2 M/2
PL/4 L/2
M
M/2
L/2
L/2
11
§3-2 单跨静定梁
2)叠加法作弯矩图 例1:
4.(区段)叠加法作弯矩图
MA
q
MB
A
B=
MA
+
+
q
qL2/8 MB
MA
=A
注:叠加是数值的叠加,不
MB 是M图形的简单组合,竖标
qL2/8
4)在Q=0处,由 dM x Qx 0 知,该截面的弯矩取得极值
dx
(但不一定是最值)。
5)集中力作用点,剪力图突变,弯矩图发生转折; 集中力偶作用点,弯矩图突变,但剪力图无变化。
6
§3-2 单跨静定梁
2.简易作图法回顾
# 指定截面剪力和弯矩的计算规则:
剪力在数值上等于截面一侧所有的外力(荷载和支座 反力)在该横截面切向方向投影的代数和,符号按剪力 符号规定判定,即:
4.(区段)叠加法作弯矩图
例:用区段叠加法画出图示简支梁的弯矩图。
8kN 4kN/m
结构力学
结构静力分析篇 之
静定结构
1
第3章 静定结构
§3-1 §3-2 §3-3 §3-4 §3-5 §3-6 §3-7 §3-8
概述 单跨静定梁 多跨静定梁 静定刚架 静定桁架 组合结构 三铰拱 静定结构总论
2
第3章 静定结构
§3-1 概述
在工程实际中,静定结构有着广泛的应用,同时,静定结构 的受力分析又是超静定结构受力分析的基础。
相关文档
最新文档