最新《结构力学》静定结构的内力分析上
《结构力学》静定结构的内力分析上

静定结构的内力分析
Internal Force Analysis of
Statically Determinate Structures
目 §3-1 §3-2 §3-3 §3-4 §3-5 §3-6
录
杆件内力计算 静定梁 静定刚架 三铰拱 静定桁架 静定结构的内力分析和受力特点
§3-1 杆件内力计算
Mx2= qlx/2cos2-qx2/2cos2 Mx3= qlx/2cos-qx2/2cos
(3)
§3-2 静定梁
一、多跨静定梁的几何组成特性
多跨静定梁常用于桥梁结构。从几何组成特点看,它的组 成可以区分为基本部分和附属部分。 如图所示梁,其中 AC 部分不依赖于其它部分,独立地与大
地组成一个几何不变部分,称它为基本部分;而CE部分就需要
Q P
M m
水平杆件下侧 受拉为正; 竖向杆件右侧 受拉为正。
(2)增量关系
(3)积分关系 由d Q = – q· dx
MA
q(x)
MB
QB QA q( x) dx
xA
xB
由d M = Q· dx
QA QB
M B M A Q( x) dx
xA
xB
P
几种典型弯矩图和剪力图 m
2P
最后结果
A
Pa
Pa
B
C M图
F
D
P
P
+
+
2P
Q图
例3
A
E
P
B
2Pa
a
4Pa
0 A
E
a
P
a
0
C
D
静定结构的内力分析与计算页课件.ppt

FN
x
A
平衡:
FX 0
3. 轴力
FN F 0
FN F
轴向拉伸、压缩时,杆的内力与杆轴线重合,称为轴力,
用FN 表示。
轴力的正负规定: FN 与外法线同向,为正轴力(拉力) FN
FN FN>0
FN与外法线反向,为负轴力(压力) FN 4、 轴力图
FN FN<0
FN (x) 的图象表示。以平行于杆轴的坐标表示横截 面的位置,垂直于杆轴的另一坐标表示轴力
在截开面上相应的内力(力或力偶)代替。 ③ 平衡:对留下的部分建立平衡方。由于整体平衡的要求,对于 截开的每一部分也必须是平衡,因此,作用在每一部分上的外力 必须与截面上分布内力相平衡,组成平衡力系(此时截开面上的 内力对所留部分而言是外力)。
例如: 截面法求FN。
F
A
F
截开:
F
A F
简图
代替:
F
FC
FD
FN4
D
轴力图如右图
FD
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的 F, 轴力N 增量为正; 遇到向右的 F , 轴力N 增量为负。
8kN
5kN
3kN
[例4-2] 图示杆长为L,受分布力 q = kx 作用,方向如图, 试画出杆的轴力图。
解:x坐标向右为正,坐标原点在
杆件的轴向拉伸和压缩的力学模型
F
轴向拉伸,对应的力称为拉力。
F
轴向压缩,对应的力称为压力。
F F
二、轴向拉伸与压缩的内力
1、 内力的定义 内力指由外力作用所引起的、物体内相邻部分之间分布
内力系的合成(附加内力)。
静定结构的内力分析

C
F S CA FNCA
D
FSDB
FSCD
得
3 qa 2
FNDB
第 三 章 作出轴力图为:
静定结构的内力计算
C D B qa/2 A
3qa / 2
Hale Waihona Puke (3) 内力图的校核。F N图
首先进行定性分析。
由内力图的外观校核。杆上无分布荷载FS图为水 平直线;M图为斜直线。杆上有分布荷载FS图为斜直 线;M图为二次抛物线。 FS图为零的截面M为极值。 杆上集中荷载作用的截面, FS图上有突变;M图上有折 弯。根据这些特征来检查,本题的M图、FS图均无误。
第 三 章
静定结构的内力计算
第3 章
静定结构 的 内力分析
第 三 章
静定结构的内力计算
§3-1
杆件的内力计算
材料力学规定: 轴力FN --拉力为正 剪力FQ--绕隔离体顺时 针方向转动者为正 弯矩M--使梁的下侧 纤维受拉者为正
一、 杆件内力及符号规定
注: 二、 计算杆件内力的截面法 轴力=截面一侧外力沿轴线投影的代数和 当外力效果与内力 正方向一致时,取 剪力=截面一侧外力垂直轴线投影的代数和 负号。 ?! 弯矩=截面一侧外力对截面形心力矩的代数和
B a
3 qa 2
FxA FyA
A a a
FyB
取BD杆为隔离体
F NDC M DC FSDC D B
3 qa 2
M BD 0 M DB 0
M DC 0
关键点:求出各杆端(各杆与结点的联结处) 的内力,求内力的方法与梁的内力计算方法相同。
第 三 章 2)作剪力图:
静定结构的内力计算
C E q a B 3 qa 2 a
结构力学---第十九章 静定结构的内力分析

第十九章 静定结构的内力分析一. 内容提要1. 静定梁(1) 单跨静定梁用截面法求内力 平面结构在任意荷载作用下,其杆件横截面上一般有三种内力,即弯矩M 、剪力F Q 和轴力F N .内力符号通常规定如下:弯矩以使梁的下侧纤维受拉为E ;剪力以使隔离体有順时针方向转动趋势者为E ,轴力以拉力为E 。
计算内力用截面法的规律,即梁内任一横截面上的弯矩等于该截面一侧所有外力对该截面形心的力矩的代数和;梁内任一横截面上的剪力等于该截面一侧与截面平行的所有外力的代数和。
内力图 表示内力沿轴线变化规律的图形称为内力图。
内力图包括弯矩图、剪力图和轴力图。
通常情况下,作内力图用简捷法,而作弯矩图常用叠加法。
(2) 斜梁简支斜梁在沿水平方向均布荷载作用下,支座反力与相应水平简支梁相同,而内力表达式为KK M M = αcos 0Q K Q K F F = αsin 0Q K NK F F -= 根据表达式作出共同内力图(3)多跨静定梁多跨静定梁由基本部分和附属部分组成。
其受力特点是;外力作用在基本部分都受力,按照附属部分依赖于基本部分的特点,可把多跨静定梁用层次图表示,层次图把多跨静定梁拆成若干单跨静定梁,计算出各单跨静定梁,然后将各单跨静定梁的内力图连在一起即得多跨静定梁的内力图。
多跨静定梁的计算顺序是先计算附属部分,再计算基本部分。
2. 静定平面刚架静定平面刚架的内力计算原则上与静定梁相同。
通常先由平衡条件求出支座反力,然后按静定梁计算内力的方法逐杆绘制内力图。
在绘制刚架的弯矩图时,不定义弯矩的正负号,但必须将弯矩图绘在杆件的受拉侧,剪力、轴力的正负号规定与静定梁相同,剪力图和轴力图可以画在轴线的任一侧,但需标明正负。
3. 静定平面桁架理想桁架中的各杆都是二力杆,只产生轴力,计算轴力是可均设拉力。
求解桁架内力的方法有:结点法、截面法、联合法。
结点法是取桁架法结点为隔离体,由平面汇交力系的平衡条件求杆件的轴力,这种方法通常适用求简单桁架所有杆件的轴力;联合应用结点法和截面法求桁架的轴力,称为联合法,适用于联合横架和复杂横架的内力计算。
第四章结构力学静定刚架内力分析

3)
校核:
24kNm 28kNm
4kNm
1kN 16kN
1kN 14kN
F By= 30kN
1kN
1kN 2kN
(g)
(h)
第四章结构力学静定刚架内力分析
例4-3-2 速画下列刚架的弯矩图。
第四章 静定刚架的内力分析
第四章结构力学静定刚架内力分析
第一节 概述 组成刚架的杆件主要产生弯 曲变形,可承受弯矩。
刚架的构造特点 具有刚结点
第四章结构力学静定刚架内力分析
(a)
第四章结构力学静定刚架内力分析
(b)
第四章结构力学静定刚架内力分析
(c)
第四章结构力学静定刚架内力分析
刚结点的特点 是能传递力矩(弯矩)
FAxFPq4 F Ax 2 0 1 0 42k0N (→)
图(b)左所示刚架支座反力的计算, 同样取刚架上部整体为隔离体, 见图(b)右,建立平衡方程:
第四章结构力学静定刚架内力分析
MA 0
F By 1 6(q63M F P2) F By 1 6(3631 8 1 22)1k0N (↑)
MO 0
2 qL(←) 3
FAy
1 qL(↓) 3
FBx
1 qL 3
(←)
FBy
1 qL 3
(↑)
第四章结构力学静定刚架内力分析
解法2:
取图(b)所示体系为隔离体。
MA 0
FBx L 2FBy Lq LL 20
(a)
MC 0
L
L
F 2F 20 Bx
By
第四章结构力学静定刚架内力分析
(b)
联立(a)、(b)两式,求解得:
第四章结构力学静定刚架内力分析
《建筑力学》11章静定结构的内力分析

应力的定义与分类
详细描述
应力是指物体在单位面积上所承受的内力,是描述物体受力状态的重要物理量。根据不同的分类标准,应力可以 分为不同的类型,如正应力和剪应力,拉应力和压应力等。
静定结构的应力分布规律
总结词
静定结构的应力分布规律
详细描述
静定结构是指在不受外力或外力平衡的条件下,其内部应力分布规律与边界条件无关的结构。静定结 构的应力分布规律主要取决于结构的几何形状和材料性质,可以通过理论分析和实验测试来研究。
详细描述:位移法适用于求解静定结构和超静定结构的 内力,特别是当结构的刚度矩阵难以直接求解时。
单位荷载法
在此添加您的文本17字
总结词:基本概念
在此添加您的文本16字
详细描述:单位荷载法是在结构上施加单位荷载,通过计 算单位荷载下的内力和位移来分析结构性能的方法。
在此添加您的文本16字
总结词:应用范围
《建筑力学》11章 静定结构的内力分析
目录
• 静定结构概述 • 静定结构的内力分析方法 • 静定结构的内力计算 • 静定结构的位移计算 • 静定结构的应力分析
01
静定结构概述
静定结构的定义
静定结构的定义
静定结构是指在结构分析中,未知的内力和反力个数相等的结构,也就是说, 静定结构的自均布荷载作用下,其跨中 截面弯矩为最大,且最大弯矩为 ql^2/4,其中q为均布荷载,l为梁 的跨度。
悬臂梁的内力计算
悬臂梁在固定端截面处弯矩为最大, 且最大弯矩为ql^2/3,其中q为均 布荷载,l为梁的跨度。
静定拱的内力计算
圆拱的内力计算
圆拱在均布荷载作用下,其跨中截面 弯矩为最大,且最大弯矩为ql^2/8, 其中q为均布荷载,l为拱的跨度。
静定结构内力分析全

第四章 静定结构的内力分析
轴向拉伸和压缩
求内力的基本方法——截面法
内力的计算是分析构件强度、刚度、稳定性等问题的 基础。求内力的一般方法是截面法。
截面法的基本步骤: (1)截开:在所求内力的截面处,假想地用截面将杆件一 分为二。 (2)代替:任取一部分,其弃去部分对留下部分的作用, 用作用在截开面上相应的内力(力或力偶)代替。 (3)平衡:对留下的部分建立平衡方程,根据其上的已知 外力来计算杆在截开面上的未知内力。
符号FN表示。
轴力的正负规定:
FN与外法线同向,为正轴力(拉力)
FN
FN
FN与外法线反向,为负轴力(压力) FN
FN
第8页/共145页
第四章 静定结构的内力分析
轴向拉伸和压缩
注意: 在计算杆件内力时,将杆截开之前,不能 用合力来代替力系的作用,也不能使用力的可 传性原理以及力偶的可移性原理。因为使用这 些方法会改变杆件各部分的内力及变形。
第4页/共145页
第四章 静定结构的内力分析
轴向拉伸和压缩
构件中的内力随着变形的增加而增加大,但对于确定的 材料,内力的增加有一定的限度,超过这一限度,构件将 发生破坏。
因此,内力与构件的强度和刚度都有密切的联系。在研 究构件的强度、刚度等问题时,必须知道构件在外力作用 下某截面上的内力值。
第5页/共145页
用面垂直于截面的内力偶矩。
剪力FQ : 构件受弯时,横截面上其作
用线平行于截面的内力。
A FAy
1
1 x
FQ C
FQ MC
FP B
FBy
M FP FBy
第41页/共145页
第四章 静定结构的内力分析
二、剪力和弯矩的正负号规定
建筑力学:静定结构的内力分析

静定结构的内力分析第一节多跨静定梁、斜梁一、多跨静定梁若干根梁用中间铰连接在一起,并以若干支座与基础相连,或者搁置于其他构件上而组成的静定梁,称为多跨静定梁。
在实际的建筑工程中,多跨静定梁常用来跨越几个相连的跨度。
图13—1a所示为一公路或城市桥梁中,常采用的多跨静定梁结构形式之一,其计算简图如图13—1b所示。
在房屋建筑结构中的木檩条,也是多跨静定梁的结构形式,如图13—2a所示为木檩条的构造图,其计算简图如图13—2b所示。
连接单跨梁的一些中间铰,在钢筋混凝土结构中其主要形式常采用企口结合(图13—1a),而在木结构中常采用斜搭接或并用螺栓连接(图13—2a)。
从几何组成分析可知,图13—1b中AB梁是直接由链杆支座与地基相连,是几何不变的。
且梁AB本身不依赖梁B C和CD就可以独立承受荷载,所以,称为基本部分。
如果仅受竖向荷载作用,CD梁也能独立承受荷载维持平衡,同样可视为基本部分。
短梁BC是依靠基本部分的支承才能承受荷载并保持平衡,所以,称为附属部分。
同样道理在图13—2b 中梁AB,CD和EF均为基本部分,梁BC和梁DE为附属部分。
为了更清楚地表示各部分之间的支承关系,把基本部分画在下层,将附属部分画在上层,分别如图13—1c和图13—跨梁的内力图连在一起,便得到多跨静定梁的内力图。
要依靠AC 梁才能保证其几何不变性,所以CE 梁为附属部分。
(2)计算支座反力从层叠图看出,应先从附属部分CE 开始取隔离体,如图13-3c 所示。
∑=0CM 04680=⨯-⨯D V kN V D 120=(↑) ∑=0DM04280=⨯-⨯C V kN V C 40=(↓)将C V 反向,作用于梁AC 上,计算基本部分∑=0X 0=AH∑=0AM -40×10+V B ×8+10×8×4-64=0 ∑=0BM-40×2-10×8×4-64+V A ×8=0V A =58kN (↑) V B =18kN (↓) 校核:由整体平衡条件得∑Y =—80十120—18十58—10×8=0, 无误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、分段叠加法作弯矩图
P
MA
q
MB
q
Y
A
M
MA
M
MA
M
+
M
MMM
A
B
Y
B
MA
q
MB
MB
NA
NB
YA
d 2M dx2
qdQ dxqFra bibliotekYBMA
q
MB
MB
Y
A
Y
B
弯矩、剪力相等
YA=YAo YB=YBo
解:(1)先计算支座反力 (2)求控制截面弯矩值
RA 17kN
RB 7kN
M D 1 2 7 8 1 2k 6 m N
M F 7 2 1 6 3k 0 m N
取GB部分为隔离体, 可计算得:
MGr 717kN m
M G l 711 62k 3N m
取AD部分为隔离体, 可计算得:
P=8kN
截面杆,不论该段内各相邻截面间是连续的还是定向连接或者是铰结的,
弯矩叠加法均可适用。
例:利用叠加法求作图示梁结构的内力图。
[分析] 该梁为简支梁,弯矩控制 截面为:D、F、G 叠加法求作弯矩图的关键 是计算控制截面位置的弯 矩值。
P=8kN q=4 kN/m m=16kN.m
A
B
C D E FG
1m 1m 2m 2m 1m 1m
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺
序。
1
A
B
P
CD
E
F
q
GH
q
P
A
B
P
CD
E
F
GH
q
2 A
BC
D
E
F
P
q
A
BC
D
E
F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上
产生内力和弹性变形,而附属部分上的荷载可使其自身和基本 部分均产生内力和弹性变形。
因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。——顺荷载传力方向
MA
M
MB
M
4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
8kN·m
2kN/m
3m
3m
2m
(1)悬臂段分布荷载作用下
4kN·m 2kN·m
(2)跨中集中力偶作用下
4kN·m
4kN·m
(3)叠加得弯矩图
6kN·m
10
40k N
80k N·m
20k N/m
AB
25 2m
2m
50
CD
EF
G
H
2m 1m 2m 2m 1m
4m
5
55
40
20
2m
85 40
20
40
B
A
RB=ql/2
M1max=ql2/8
l
x
(l)
RB=ql/2cos2
M2max=ql2/8cos2
l
x
(2)
A
q
B
RB=ql/2cos
M3max=ql2/8cos
l
x
(3)
Mx1=qlx/2-qx2/2 Mx2= qlx/2cos2-qx2/2cos2 Mx3= qlx/2cos-qx2/2cos
《结构力学》静定结构的 内力分析上
第3章
静定结构的内力分析
Internal Force Analysis of Statically Determinate Structures
三、荷载、内力之间的关系
(1)微分关系
dQ q
q(x)
dx
水平杆件下侧 受拉为正; 竖向杆件右侧
dx
q(x)方向? Q(x)方向?
图
A
C
(a)
EA
C
E
A
(b)
E C
(c)
二、分析多跨静定梁的一般步骤
对如图所示的多跨静定梁,应先从附属部分CE开始分析:将 支座C 的支反力求出后,进行附属部分的内力分析、画内力图, 然后将支座 C 的附属部分反力反向加在基本部分AC 的C 端作为 荷载,再进行基本部分的内力分析和画内力图,将两部分的弯 矩图和剪力图分别相连即得整个梁的弯矩图和剪力图 。
dM Q 受拉为正。 dx
q
Q
M+d M
P
Q
M+ M
M(x)方向?
d 2M dx2
q
M d x Q+d Q
m
(2)增量关系 QP
M
d x Q+ Q
Mm
(3)积分关系 由d Q = – q·d x
q(x)
MA
MB
QB
QA
xBq(x)dx
xA
由d M = Q·d x
QA
QB
MBMA
xBQ(x)dx
§3-2 静定梁
一、多跨静定梁的几何组成特性
多跨静定梁常用于桥梁结构。从几何组成特点看,它的组
成可以区分为基本部分和附属部分。
如图所示梁,其中 AC 部分不依赖于其它部分,独立地与大 地组成一个几何不变部分,称它为基本部分;而CE部分就需要 依靠基本部分AC才能保证它的几何不变性,相对于AC 部分来 说就称它为附属部分。分清基本部分和附属部分的图形叫层次
4kN·m
2kN·m
分段叠加法作弯矩图的方法:
(1)选定外力的不连续点(集中力作用点、集中力偶作用点、分布荷载的 始点和终点)为控制截面,首先计算控制截面的弯矩值; (2)分段作弯矩图。当控制截面间无荷载时,弯矩图为连接控制截面弯矩 值的直线;当控制截面间存在荷载时,弯矩图应在控制截面弯矩值作出的直 线上再叠加该段简支梁作用荷载时产生的弯矩值。 几点注意: 1、弯矩图叠加是竖标相加,而不是图形的拼合。叠加上的竖标要垂直杆轴线。 2、为了顺利地利用叠加法绘制弯矩图,应牢记简支梁在跨中荷载下的弯矩图。 3、利用叠加法绘制弯矩图可以少求一些控制截面的弯矩图。 4、利用叠加法绘制弯矩图还可以少求一些支座反力。 5、对于任意直杆段,不论其内力是静定还是超静定,不论是等截面杆还是变
例1
AB
40k N
80k N·m
20k N/m
CD
IE F
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
构造关系图
AB
B
25
A
B 25
50
40k N
80k N·m
20k N/m
C
I
F
G
H
80k N·m
D
I
E
20
40
20
40k N
20
40
C
D
20
20k N/m
EF
G
H
55
85
5
20
40
20
50
A
D
M图(kN.m)
4
取FB部分为隔离体,
可计算得:
m=16kN.m
F
B
8
Q图(kN)
P=8kN q=4 kN/m m=16kN.m
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A CD E 13
17 26 8
FG B 7 15 23
30
17
9
A+ CD
E FG B _
7
五、斜梁的计算
q q
xA
几种典型弯矩图和剪力图
q
P
m
l /2
P 2
l /2
P 2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
l /2
l /2
m l
m 2
m 2
2、集中力矩作用点 M图有一突变,力矩 为顺时针向下突变; Q 图没有变化。
l
ql 2
ql 2
ql 2 8