高二月考答案

合集下载

湖南省岳阳市岳阳县2024-2025学年高二上学期9月月考语文试题含答案

湖南省岳阳市岳阳县2024-2025学年高二上学期9月月考语文试题含答案

2024年9月高二语文月考试题(答案在最后)一、现代文阅读(共2小题,满分36分,每小题18分)阅读下面的文字,完成各题。

生死交锋吕啸天北方八月的这天夜里,突然下起了一场鹅毛大雪。

汉军驻扎的秃柳营几乎被大雪所覆盖。

锋利的长枪枪头挂满了雪花,在夜中发出炫目的青光,有些刺眼。

骠骑将军霍去病帐下亲兵魏中悄悄地溜出营门,朝匈奴军驻扎的狼子山狂奔而去。

这个时候,匈奴军元帅呼韩武扬正在帐中喝酒。

他一人喝掉了两瓶烈性的胡冰烧,烈酒烧红了他的双眼,但没有驱散他心中的郁闷。

开春之后,他受单于之命,率二十万大军,从西城长驱而入,占领了河西,打通了入侵汉朝的一条重要的也是唯一的通道。

汉军派出两路人马反击匈奴。

前锋八万人马由骠骑将军霍去病率领,后路军五万人马由征西大将军卫青统领。

霍去病率领的前锋八万人马在离河西匈奴军三四十里外的单旗镇扎营。

呼韩武扬这时才相信汉军的前锋统帅是一位二十出头的年轻人。

这位要统兵入侵汉朝、二十余年征战沙场的胡将,兴奋得连呼:今夜就去劫营,杀霍去病一个人仰马翻!呼韩武扬派前锋呼韩元率五万人马连夜突袭汉军。

半夜时分,一脸血污的呼韩元狼狈不堪地逃了回来,说:汉军早有准备,偷袭不成,反而折损了一万人马。

呼韩武扬暗暗惊讶:没想到霍去病年纪轻轻,竟是这样的统兵奇才!在接下来的交锋中,霍去病采用派出小股军队扰乱敌军,敌军追击再用伏兵消灭的办法,打了几场漂亮的胜仗。

匈奴军士气低落,呼韩武扬率兵退驻漠北。

霍去病率兵追击,在漠北匈奴军三十里外的秃柳营扎营。

两军形成对峙局面。

霍去病在等卫青的后路军前来支援,两军会合后,再一举出击,将匈奴军赶出边塞。

匈奴军二十万人马经过几番厮杀,已经折损了近三万人马,寸土未得。

而且对手还是一个年轻的小将和他率领的仅八万人马。

呼韩武扬觉得作为匈奴最骁勇的大将,这是他统兵征战以来遭受的最致命的重创,也是他生命中的奇耻大辱。

呼韩式扬开启第二瓶胡冰烧酒时,声称有重要情报献给元帅以换取千两黄金赏赐的魏中被带进了帐中。

河南省郑州市外国语学校2024-2025学年高二上学期10月月考语文试题(含答案)

河南省郑州市外国语学校2024-2025学年高二上学期10月月考语文试题(含答案)

郑州外国语学校2024-2025学年高二上期月考语文参考答案一、现代文阅读(16分)(一)现代文阅读Ⅰ(本题共5小题,16分)1.【答案】B【解析】“会做出错误的定义或划分使推理出现瑕疵”错,材料一第一段“人类理性的活动是推演性的,而推演活动又是一种生产性的或构造性的,理性并不保证它在生产或构造或构成中不会出错,相反,它可能会做出错误的定义或划分,推理会出现瑕疵,思想会产生混乱”,可看出原文是“可能会”。

故选:B。

2.【答案】C【解析】“为了正面证明‘无理而妙’的艺术效果已经得到了学者的认可和重视”错。

引用鲁迅的话是为了从反面论证单靠逻辑和理性不能正确有效地品读鉴赏诗歌的语言,即“诗人的语言不能用常理来衡量”。

故选:C。

3.【答案】D【解析】先看“无理而妙”。

材料二第一段“语言运用的艺术,在某些情况下,又是可以突破逻辑规律的框框的,这不仅无碍于语言运用的正确,而且反而使得语言运用收到更好的艺术效果,这就是‘无理而妙’”。

A.“春风”不知离别之苦,也不能决定柳条是否发青。

李白却赋予春风以人的情感,春风不让柳条发青,怕离别之人又饱受别离的苦楚,从物的角度表现“无理而妙”。

B.不忿:恼恨、嫌恶。

思妇久盼归人,出门眺望,未见亲人,把失望迁怒于啼叫的喜鹊,表现其盼归之苦,无理而妙。

C.花不能“弄”影,此处用拟人手法,暗示有风。

一个“弄”字,生动细致地写出晚风吹拂时花影晃动之态,无理而妙。

D.是现实主义表达,没有突破思维逻辑的语言表达,不能体现“无理而妙”的艺术效果。

故选:D。

4.【答案】①材料一从逻辑内涵的角度强调逻辑是一门科学,又是一门艺术,还是一种理性精神。

②材料二从逻辑运用的角度强调语言艺术可以突破逻辑规律,达到“无理而妙”的效果,而“无理而妙”是建立在深邃的逻辑基础上的智慧和能力。

5.【答案】大前提:一个身在最高层的人是不害怕浮云挡住视线的。

小前提:我是一个身在最高层的人。

结论:我是不害怕浮云挡住视线的。

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

黑龙江省哈尔滨师大附中2024-2025学年高二(上)月考数学试卷(10月份)(含答案)

黑龙江省哈尔滨师大附中2024-2025学年高二(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省哈尔滨师大附中高二(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知椭圆的方程为x23+y24=1,则该椭圆的焦点坐标为( )A. (0,±1)B. (0,±7)C. (±1,0)D. (±7,0)2.已知直线l:x+3my−2=0的倾斜角为π3,则实数m=( )A. −1B. −13C. 13D. 13.已知直线l的方程是(3a−1)x−(a−2)y−1=0,则对任意的实数a,直线l一定经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.已知P是以F1,F2为焦点的椭圆x2a2+y2b2=1(a>b>0)上的一点,若PF1⊥PF2,且|PF1|=2|PF2|,则此椭圆的离心率为( )A. 12B. 23C. 13D. 535.若直线y=x+b与曲线y=1−x2有公共点,则b的取值范围是( )A. [−2,2]B. [−1,2]C. [−1,1]D. (−1,2)6.阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积,当我们垂直地缩小一个圆时,得到一个椭圆,椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积.已知椭圆C:x2a2+y2b2=1(a>b>0)的面积为6π,两个焦点分别为F1,F2,点A是椭圆C上的动点,点B是点A关于原点的对称点,若四边形AF1BF2的周长为12,则四边形AF1BF2面积的最大值为( )A. 45B. 25C. 235D. 357.已知圆C:(x+5)2+(y−12)2=9和两点A(0,m),B(0,−m)(m>0),若圆C上存在点P,使得∠APB=90°,则实数m的取值范围为( )A. [11,15]B. [10,16]C. [9,13]D. [8,12]8.已知A,B是圆x2+y2=4上的两个动点,且|AB|=22,点M(x0,y0)是线段AB的中点,则|x0+y0−4|的最大值为( )A. 12B. 62C. 6D. 32二、多选题:本题共3小题,共18分。

辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷(含答案)

辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷(含答案)

滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题(时间:120分钟,满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在四面体中,已知点是的中点,记,则等于( )A. B.C. D.2.若平面的法向量为,直线的方向向量为,直线与平面的夹角为,则下列关系式成立的是( )A. B.C. D.3.若直线的一个法向量是,则该直线的倾斜角为( )A. B. C. D.4.已知空间向量,则向量在向量上的投影向量是( )A. B. C. D.5.设是的二面角内一点,是垂足,,则的长度为( )A.B.56.对于空间一点和不共线三点,且有,则( )A.四点共面B.四点共面ABCD E CD ,,AB a AC b AD c === BE 1122a b c -++ 1122a b c -+ 1122a b c -+ 1122a b c -++ αμ l vl αθcos v v μθμ⋅= cos v v μθμ⋅=sin v v μθμ⋅= sin v vμθμ⋅= AB )1a =- 30 60 120 150()()1,1,2,1,2,1a b =-=- a b ()1,1,1-555,,663⎛⎫- ⎪⎝⎭555,,636⎛⎫- ⎪⎝⎭111,,424⎛⎫- ⎪⎝⎭P 120 l αβ--,,,PA PB A B αβ⊥⊥4,3PA PB ==AB O ,,A B C 2OP PA OB OC =-+ ,,,O A B C ,,,P A B CC.四点共面D.五点共面7.将正方形沿对角线折成直二面角,下列结论不正确的是()A.B.,所成角为C.为等边三角形D.与平面所成角为8.正方形的边长为12,其内有两点,点到边的距离分别为3,2,点到边的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得和重合.则此时两点间的距离为( )二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.9.下列说法中,正确的有( )A.直线必过定点B.方程是直线的一般式方程C.直线的斜率为D.点到直线的距离为110.已知空间单位向量两两垂直,则下列结论正确的是( )A.向量与共线B.问量C.可以构成空间的一个基底,,,O P B C ,,,,O P A B C ABCD BD AC BD⊥AB CD 60︒ADC V AB BCD 60︒11ABB A ,P Q P 111,AA A B Q 1,BB AB AB 11A B ,P Q ()32y ax a a =-+∈R ()3,20Ax By C ++=10x ++=()5,3-20y +=,,i j k i j + k j - i j k ++ {},,i j i j k +-D.向量和11.如图,已知正六棱柱的底面边长为2,所有顶点均在球的球面上,则下列说法错误的是( )A.直线与直线异面B.若是侧棱上的动点,则C.直线与平面D.球的表面积为第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知点关于直线对称的点是,则直线在轴上的截距是__________.13.若三条直线相交于同一点,则点到原点的距离的最小值为__________.14.已知正三棱柱的底面边长为是其表面上的动点,该棱柱内切球的一条直径是,则的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程:(1)过定点;(2)斜率为.16.(本小题满分15分)如图,在四面体中,面是的中点,是i j k ++ k ABCDEF A B C D E F ''''-''O DE 'AF 'M CC 'AM MD +'AF 'DFE 'O 18π()1,2A -y kx b =+()1,6B --y kx b =+x 2,3,100y x x y mx ny =+=++=(),m n ABC A B C '-''P MN PM PN ⋅ l l ()3,4A -16ABCD AD ⊥,2,BCD AD M =AD P的中点,点在棱上,且.请建立适当的空间直角坐标系,证明:面.17.(本小题满分15分)如图所示,平行六面体中.(1)用向量表示向量,并求;(2)求18.(本小题满分17分)如图,在五棱锥中,平面是等腰三角形.(1)求证:平面平面;(2)求直线与平面所成角的大小.19.(本小题满分17分)如图,在三棱柱中,棱的中点分别为在平面内的射影为是边长为2的等边三角形,且,点在棱上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:BM Q AC3AQ QC=PQ∥BCD1111ABCD A B C D-111ππ1,2,,23AB AD AA BAD BAA DAA∠∠∠======1,,AB AD AA1BD1BD1cos,BD ACP ABCDE-PA⊥,ABCDE AB∥,CD AC∥,ED AE∥,45,24,BC ABC AB BC AE PAB∠====VPCD⊥PACPB PCD111ABC A B C-1,AC CC1,,D E CABC,D ABCV12AA=F11B C(1)若点为棱的中点,求点到平面的距离;(2)求锐二面角的余弦值的取值范围.F 11B C F BDE F BD E --滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题参考答案一、单选题1.A2.D3.B4.C5.D6.B7.D8.【答案】B【详解】解法一:如图建系设圆柱底面半径为,则,所以,则所以.解法二:如图,设过点且平行底面的截面圆心为,过点且平行底面的截面圆心为,设圆柱底面半径为,则,所以,则,.r 2π12r =6πr =33,3,,9ππQ P ⎫⎛⎫--⎪ ⎪⎪ ⎪⎭⎝⎭PQ =P 1O Q 2O r 2π12r =6πr =121122222π,,63πO P O Q PQ PO O O O Q +===++222211221212||22PQ PO O O O Q r O O PO O Q∴=++=++⋅ 222266π36262cos 336,ππ3πPQ ⎛⎫⎛⎫=⋅++⋅⋅=⋅+∴= ⎪ ⎪⎝⎭⎝⎭9.AD 10.BCD.11.【答案】AC【详解】对于A ,如图①,连接,则,所以,所以直线与直线共面,故A 错误;对于B ,将平面沿着翻折到与平面共面的位置,得到矩形,如图②所示.因为底面边长为,所以则的最小值为,故B 正确;对于C ,以为坐标原点,所在直线分别为轴、轴、轴,建立如图①所示的空间直角坐标系,则,所以.设平面的法向量为,则,即,令,得,所以平面的一个法向量为.设直线与平面所成角为,则,故C 错误;对于D ,如图③,设球的半径为,根据对称性可知,正六棱柱的外接球的球心在上下底面的中心的连线的中点处.,则,所以球的表面积,故D 正确.,AD A D ''AD ∥,A D A D ''''∥E F ''AD ∥E F ''DE 'AF 'ACC A ''CC 'CDD C ''ADD A ''2π2,3ABC ∠=AC =AM MD +'AD =='F ,,FA FD FF 'x y z ()(()()(2,0,0,,0,0,0,0,,A F F D E '-'(()(,0,,AF FD FE =''=-=- DFE '(),,m x y z = 00FD m FE m ⎧⋅=⎪⎨⋅=⎪'⎩ 00y x =⎧⎪⎨-++=⎪⎩1z =x =DFE ')m = AF 'DFE 'θ1sin 3θO R 12O O 1122,O C O O ==22222211922R OC O C O O ==+=+=O 294π4π18π2S R ==⨯=12.13.【答案】【详解】由解得把代入可得,所以,所以点到原点的距离当时等号成立,此时.所以点到原点的距离的最小值为14.【答案】【详解】由题意知内切球的半径为1,设球心为,则.因为.四、解答题15.【答案】(1)或.(2)或.【详解】(1)由题意知直线的斜率存在,设为则直线的方程为,它在轴,轴上的截距分别是,由已知,得,解得或.故直线的方程为或.(2)设直线在轴上的截距为,则直线的方程是,它在轴上的截距是,8-2,3,y x x y =⎧⎨+=⎩1,2.x y =⎧⎨=⎩()1,240mx ny ++=2100m n ++=102m n =--(),m n d ==4n =-2m =-(),m n []0,4O ()()PM PN PO OM PO ON ⋅=+⋅+ ()2OP PO OM ON OM ON =+⋅++⋅ 2||1PO =- []0,4PM PN ⋅∈ 2360x y +-=83120x y ++=660x y -+=660x y --=l kl ()34y k x =++x y 43,34k k--+()43436k k ⎛⎫+⨯+=± ⎪⎝⎭123k =-283k =-l 2360x y +-=83120x y ++=l y b l 16y x b =+x 6b -由已知,得,所以.所以直线的方程为或.16.解法一:以为坐标原点,所在直线为z 轴,线段的延长线为y 轴,建立如图所示空间直角坐标系,设,由题意得,因为,所以即即所以,所以又因为面BCD 的一个法向量为所以所以又因为面所以面.解法二:66b b -⋅=1b =±l 660x y -+=660x y --=D DA BD 2BD a =()()()10,2,0,0,0,2,0,0,1,0,,2B a A M P a ⎛⎫-- ⎪⎝⎭3AQ QC =34AQ AC = ()()3,,2,,24Q Q Q x y z x y -=-331,,442Q Q Q x x y y z ===331,,442Q x y ⎛⎫ ⎪⎝⎭33,,044PQ x y a ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄BCDPQ ∥BCD取的中点,连接,因为为BM 的中点,所以,所以平面,过作,交BC 于以为坐标原点,的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系.因为为中点,设则设点的坐标为.因为,所以.因为为的中点,故,又为的中点,故,所以又平面BCD 的一个法向量为,故,所以又平面BCD ,所以平面BC D.17.【答案】(1)2【详解】(1),BD O OP P OP ∥MD OP ⊥BCD O OE BD ⊥,E O ,,OE OD OP2,AD M =AD 2BD a=()()0,,2,0,,0A a B a -C ()00,,0x y 3AQ QC = 003131,,4442Q x a y ⎛⎫+ ⎪⎝⎭M AD ()0,,1M a P BM 10,0,2P ⎛⎫ ⎪⎝⎭00313,,0444PQ x a y ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄PQ ∥111,BD AD AA AB BD =+-= 111BD AD AB AD AA AB =-=+-则,所以.(2)由空间向量的运算法则,可得,因为且,因为是正方形,所以,则.18.【答案】(1)见详解(2)【详解】(1)证明:在中,因为,所以,因此故,所以,即又平面,所以.又平面,且,所以平面.又平面,所以平面平面.(或者建系求法向量,证明法向量垂直,略)(2)由(1)知两两相互垂直,分别以的方向为轴、轴、轴正方向,建立()2222211111222BD AD AA AB AD AA AB AD AA AD AB AB AA =+-=+++⋅-⋅-⋅ 111412*********=+++⨯⨯⨯--⨯⨯⨯=1BD = AC AB AD =+ 11,2AB AD AA ===11ππ,23BAD BAA DAA ∠∠∠===ABCD AC = ()()221111BD AC AD AA AB AB AD AD AB AD AA AB AA AD AB AD AB ⋅=+-⋅+=⋅++⋅+⋅--⋅ 22ππππ11cos121cos 21cos 111cos 22332=⨯⨯++⨯⨯+⨯⨯--⨯⨯=111cos ,BD AC BD AC BD AC ⋅===⋅ π6ABC V 45,4,ABC BC AB ∠=== 2222cos458AC AB BC AB BC =+-⋅⋅= AC =222BC AC AB =+90BAC ∠= AB AC⊥PA ⊥,ABCDE AB ∥CD ,CD PA CD AC ⊥⊥,PA AC ⊂PAC PA AC A ⋂=CD ⊥PAC CDC PCD PCD ⊥PAC ,,AB AC AP ,,AB AC AP x y z如图所示的空间直角坐标系,由于是等腰三角形,所以.又,因此,.因为,所以四边形是直角梯形.因为,所以,因此,故,所以.因此.设是面的一个法向量,则,解得.取,得.又,设表示向量与平面的法向量所成的角,则,又因为,所以,因此直线与平面所成的角为.PAB V PA AB ==AC =()()0,0,0,A B ()(0,,0,0,C P AC ∥,ED CD AC ⊥ACDE 2,45,AE ABC AE ∠== ∥BC 135BAE ∠= 45CAE ∠= sin452CD AE =⋅== ()D (()0,,CP CD =-= (),,m x y z =PCD 0,0m CP m CD ⋅=⋅= 0,x y z ==1y =()0,1,1m =(BP =- θBP PCD m1cos 2m BP m BP θ⋅==⋅ π0,2θ⎡⎤∈⎢⎥⎣⎦π3θ=PB PCD π619.【答案】(1(2)解法一:连接,因为在平面内的射影为,所以平面,由于平面,所以,由于三角形是等边三角形,所以,以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,因为所以又因为为中点,所以所以设面的一个法向量为则令,则所以所以点到平面的距离为(2)因为在棱上(包括端点)设12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥ABC BD AC ⊥BD ==1DC ==D 1,,DB DA DC x y z (())11,0,1,0,,0,2C C B E ⎛-- ⎝)11C B CB == 1B F 11B C 12F 12BF ⎛= ⎝ BDE ()111,,m x y z =1(0,,2BD ED ⎛== ⎝ 111000x BD m y ED m ⎧=⎧⋅=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 11z =1y =()m = F BDE BF m m ⋅== F 11B C ()111,01C F C B λλ= ……因为,所以设平面的法向量为,令所以,设锐二面角为,则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.解法二:(1)连接,因为在平面内的射影为,所以平面,由于平面,所以,)11C B = )1,,0C F λ=BDF ()222,,n x y z = 11,,0),DF DC C F λλ=+=+= 22220000DF n x y x DB n λ⎧⋅=++=⎪⇒⎨=⋅=⎪⎪⎩⎩ 2y =2z λ=-()m λ=- F BD E --θ1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥由于三角形是等边三角形,所以,又以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,又,故,则设平面的法向量为,则,故可设,又,所以点到平面的距离为.(2)设,则,设平面的法向量为,则令,所以,所以,设锐二面角为,ABC ,BD AC BD ⊥==1DC ==D 1,,DCDB DCx yz (()()11,1,0,0,,2C C E B ⎛ ⎝()11C B CB ==-(11,2B F ⎛-- ⎝()1,,2DE DB ⎛== ⎝ BDE ()111,,m x y z =1111020m DE x z m DB ⎧⋅=+=⎪⎨⎪⋅==⎩ ()m = 1,2BF ⎛=- ⎝ F BDE BF m m ⋅== ()()1111101,C F C B C B λλ=≤≤=- (()(11111DF DC C F DC C B λλλ=+=+=+-=- BDF ()222,,n x y z =22220000DF n x y y DB n λ⎧⎧⋅=-++=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 2x =2z λ=)n λ=F BD E --θ则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣。

湖南省长沙市雅礼中学2024-2025学年高二上学期10月月考语文试题(含答案)

湖南省长沙市雅礼中学2024-2025学年高二上学期10月月考语文试题(含答案)

雅礼集团2024下学期第一次月考试卷高二语文时量:150分钟分值:150分一、现代文阅读(35分)(一)现代文阅读1(本题共5小题,19分)阅读下列文字,完成下面小题。

我们不可像霍布斯那样,因为人没有任何善的观念,便认为人天生是恶人;因为人不知道什么是美德,便认为人是邪恶的;人从来不对他的同类效劳,因为他认为他对他们没有任何义务;人自认为他有取得自己所需之物的权利,因此便以为他自己是整个宇宙的唯一的主人。

诚然,霍布斯看出了现今的人们对自然的权利所作的种种解释的缺点,然而从他自己所作的解释中得出的结论就可看出,他的解释的着眼点也是错误的。

既然这位作者是根据他自己提出的原则进行推理的,他的论点就应该这样来表述:我们在自然状态中对保护我们自己的生存的关心,是丝毫不妨碍他人对保护他自己的生存的关心的,因此这个状态是有利于和平的,是适合于人类的。

然而他在书中所说的话却恰恰相反,因为他把为了满足许许多多欲望而产生的需要,与野蛮人为了保护自己的生存而产生的需要混为一谈了;其实,这些欲望乃是社会造成的,而且,正因为人的欲望丛生,才使法律成为必需的东西。

既然霍布斯认为恶人是一个强壮的孩子,那我们就要问:野蛮人是否也是一个强壮的孩子?如果我们承认他是一个强壮的孩子,那该得出什么样的结论呢?如果这个人强壮的时候也像他柔弱的时候那样依赖他人,那么,什么过分的事他干不出来呢?他的母亲如果不及时喂他奶,他就会打她;如果他觉得他的弟弟招他讨厌,他就会掐死他:如果别人碰撞了他或打扰了他,他就会咬别人的腿。

说自然状态中的人是强壮的,与说自然状态中的人需要依赖于人,这两种说法是矛盾的。

人只有在处于依赖状态的时候才是柔弱的:如果他无拘无束,不依赖他人的话,他早就是很强壮的了。

霍布斯没有看出:我们的法学家所说的阻碍野蛮人使用理智的原因,正好就是霍布斯本人所说的阻碍野蛮人滥用他们的官能的原因。

因此,我们认为野蛮人之所以不是恶人,其原因恰恰在于他不知道什么是善,因为防止他们作恶的,既不是智慧的发达、也不是法律的约束,而是欲念的平静和对恶事的无知:他们从对恶事的无知中得到的益处,比别人从对美德的认识中得到的益处多得多。

重庆市某重点中学2024-2025学年高二上学期10月月考化学试题(含答案)

重庆市某重点中学2024-2025学年高二上学期10月月考化学试题(含答案)

高2023级高二上期月考 化学试题可能用到的相对原子质量: H1 C12 N14 O16 Na23 S32一、选择题(本大题共14小题,每小题3分,共42分,每小题只有一个正确选项)1.下列有关活化能和活化分子,说法不正确的是( )A .活化能接近零的反应,当反应物相互接触时,反应瞬间完成,而且温度对其反应速率几乎没有影响B .升高温度是通过增大活化分子百分数来加快化学反应速率的C .人们把能够发生有效碰撞的分子叫做活化分子,把活化分子具有的能量叫做活化能D .活化能的大小意味着一般分子成为活化分子的难易,但是对化学反应前后的能量变化无影响2.下列关于化学反应与能量的说法中,不正确的是( )A .化学反应必然伴随发生能量变化B .加入合适的催化剂,不能增加单位质量的硫燃烧放出的热量C .可以用氢氧化钠固体和醋酸溶液来测定中和反应反应热D .一个化学反应中,反应物总能量大于生成物的总能量时,反应放热,ΔH <03.关于热化学方程式,下列说法正确的是( )A .标准状况下,2gH 2完全燃烧生成液态水,放出热量,则H 2 燃烧热的热化学方程式为:2H 2 (g)+O 2(g)= 2H 2O(l) ΔH =-574.6kJ·mol -1B .C(石墨,s)=C(金刚石,s) ΔH =+1.9kJ·mol -1,则金刚石比石墨稳定C .1molH 2SO 4和2mol NaOH 反应,该反应的中和热为ΔH = -57.3 kJ·mol -1D .500℃、30MPa 下,1molN 2和3molH 2充分反应生成NH 3(g)并放热38.6 kJ ,则热化学方程式为: N 2 (g)+ 3H 23(g) ΔH= -38.6 kJ·mol -14.对于可逆反应2M(g)+2N(g)3P(g)+Q(g),在不同条件下测得的化学反应速率如下,下列反应速率大小关系正确的是( )①v (M)=4 mol·L -1·min -1 ②v (N)=0.1 mol·L -1·s -1 ③v (P)=0.1 mol·L -1·s -1 ④v (Q)=1 mol·L -1·min -1A .①>④>③>② B .②>③=①>④ C .③>②=④>① D .④>③>①>②5.2SO 2(g)+O 23(g)反应过程中能量变化如图所示(图中E 1表示正反应的活化能,E 2表示逆反应的活化能)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二语文九月份月考参考答案1、AB.“体现出令人满意的环保认知度”错误,从文中看,“人们对于周边生态环境越来越重视”,但“对于环保认知的深度、广度和准确度还有所不足”,“拥有较高的环保期望,但自我行为约束意识较差”,可见,人们对周边生态环境越来越重视,环保期望越来越高,并不能体现出令人满意的环保认知度。

C.“在生态治理的实践中积极完善环保奖惩机制”与“强化全民生态行为的主体自觉”不存在必要条件关系,如文中还提出“各种积极的政策鼓励并培育绿色生活方式”等内容。

D.“比其他形式能更有效地调动群众的积极性”错误,文中没有将这种形式和其他形式进行比较。

2、C “用大量篇幅阐述生态理论”错误。

文中更多的是紧密结合现实问题展开论述。

3、B “而不是去关注负面环保问题”错误。

文中“但多数人更关注一些负面环保问题”意为在对待负面环保问题与正面环境议题上,不应该只关注负面环保问题。

4、答案 B 解析本题考查筛选并整合文中的信息的能力。

B项,选项对本轮“人才争夺大战”的起因分析有误。

从文中来看,材料一“近日,杭州、郑州、武汉、合肥、南京等20多个城市都出台了人才新政。

这些人才政策,既立足国内,又放眼全球,掀起了一场‘人才争夺战’”“中国大力实施创新驱动和创新创业,人才就是从要素驱动转向创新驱动的核心资源”,材料三“报道称,大城市年轻劳动人口普遍不足是此轮抢人的重要原因”,由此可知,“人才争夺大战”的起因是中国大力实施创新驱动和创新创业,以及大城市年轻劳动人口普遍不足等。

故选B。

5.答案 C 解析本题主要考查对材料相关内容的概括和分析的能力。

C项,以偏概全,“关键在于要有温度”错误,材料二第四段原句是“留住心才能留住人,这需要城市既要大度,也要有温度”,可见,原文意思是“既要大度,也要有温度”,两者不可偏废。

故选C。

6.答案①材料一侧重报道多城抢夺人才的新政策;材料二侧重解读关于留住人才举措的高下;材料三侧重报道各方在本轮人才争夺中的认识。

②三家媒体定位和出发点不同,“人民网”的报道欲彰显中国大力实施创新驱动和创新创业的发展活力;“新华网”的报道则欲强调对热点现象的冷思考;《参考消息》则欲从外国旁观者的视角对“抢人”现象做出报道与思考。

7.CA.“又含有作者对不合理社会现实的深刻批判”牵强附会。

B.“由此可看出师傅是一个自私、冷漠的人”分析有误,从全文来看,师傅对银红是充满关爱的,他并不自私、冷漠。

D.“真实地再现了特定年代杂技艺人普遍经历的心路历程”分析有误,文中只是写出了银红在艺途上的心路历程。

8.①坚强,有狠劲,不怕吃苦。

狠心拒绝母亲的拥抱,苦练各种基本功。

②聪慧,有悟性,富有主见。

能深悟师傅的良苦用心,从摔伤中得到启发;师母以全部家当诱使她与不学无术的儿子结婚,她最终选择离开。

(答出一点给3分,若有其他答案,言之成理亦可)9.表层含义:银红怨恨父母将其卖给杂技班,狠心拒绝母亲的拥抱而摔倒在台阶前;后来在表演中分心失足,从高空摔下来。

(2分)深层含义:①作为一名杂技演员,要能够摒弃个人的喜怒哀乐、恩怨情仇及各种名利诱惑,不为情分心、不为财分神,做到全神贯注,心无旁骛。

②人生的荣耀与光环之下,掩盖着的是无底的深渊,在人生路上应抛弃浮躁,小心谨慎,以定力和专注力提升人生境界,使自己免受伤害。

(每点2分)10.D(金忠义用艺能来结交权贵宠臣,替他说情的不止一两个,韦贯之对自己所持意见更加坚定。

他不久又上疏陈述金忠义不应当玷污朝廷官吏的名册,词理恳切,金忠义的官职终于被免去。

)11.A (为避唐宪宗李纯之讳,任何人包括韦贯之自己都不能用名“纯”来称呼)12.B (“宰相儿子杜从郁做补阙,韦贯之却两次上奏”错,两次上奏一次是针对“补阙”,一次是针对“左拾遗”;且“一降再降为秘书丞”错,原文第二段是“改为秘书丞”)13.(1)(向李实)推荐(韦贯之)的人很高兴,急忙把李实的话告诉韦贯之,并且说:“你今天到李实那里去,明天就能受到庆贺。

”(“说者”“骤”“且”“诣”各1分,大意通1分)(2)这件事就停止不办了。

张宿对此怀恨在心,(韦贯之)最终还是被张宿陷害,诬陷他结朋连党,罢免了他的官职,让他做了吏部侍郎。

(“寝”、“衔”、“构”各1分,“卒为所构”被动句式1分,大意通1分)14. D “宠辱偕忘的态度”说法有误,“聚会场景的详细描述”分析错误。

15.相同之处:都体现了对百姓疾苦的关注,都表达了自省愧疚之情。

(2分)不同之处:韦诗正面描写与嘉宾的宴饮之乐,反衬未见百姓安居的愧疚心理,偏重于对自身责任的警醒;白诗直接刻画百姓困苦的生活,抒发对底层民众的哀悯,含蓄表达对统治阶层的指责,情感内蕴更为深刻。

(4分)16.(1)潦水尽而寒潭清,烟光凝而暮山紫。

(2)落霞与孤鹜齐飞,秋水共长天一色。

(3)悟已往之不谏,知来者之可追。

17.B18.C19.D20.(1)“信”指使者(2)逐渐形成了一套固定的格式(3)却在开头就写明作书人和受书人(却先写作书人,后列受书人)21、答案【答案】(5分)①以网络为载体②教学规模大③开放性强④教学手段多样⑤教学互动性强(每点2分,满三点5分,语意相近即可)【解析】在整体感知文段内容的基础上,根据句意内容,抓住关键词来概括慕课的主要特点。

“大规模网络在线公开课程”“分布于世界各地的授课者和成千上万个学习者”可理解为以网络为载体和教学规模大的特点;“凡是想学习的人,不分国籍,都可以注册进行学习。

”可从开放性强角度概括;“分运用动画、视频、微课程和小测试等手段”可从教学手段多样化角度概括;“你问我答,亦学亦师”可从互动性强角度概括作答。

22. [写作指导]本题是一道任务驱动型材料作文题,作文要求在所给的热词中选取两三个确定立意。

所以考生在写作时应理清热词在立意上的内在逻辑关联,然后确定立意。

参考立意:1.如用“天宫一号”“抗战胜利70周年”“金砖会议”可以写零零后处在一个国力空前强大的时代,要在这个舞台上有所作为。

2.用“王者荣耀”“QQ空间”“搜题软件”“阿尔法狗”可以写零零后面对一个“智能”的时代,要做时代的主人。

3.用“诗词大会”“选秀”“成人礼”写零零后正面对一个属于自己的时代,要活出自己的个性,展示自己的芳华。

4.可以根据热词提炼文章的主题,如根据“王者荣耀”“QQ空间”“搜题软件”“阿尔法狗”可提炼出“做智能的主人”。

行文中首先提出“智能时代来临”和“面对的挑战”,如诱惑、失业等;然后提出应对之策——提高自己的能力,做智能的主人;最后发出呼吁,不要做智能的奴隶,要做时代的主人。

参考译文:韦贯之,名纯,避宪宗名讳,以字行于世。

年轻时就考中进士科。

德宗末年,人有把韦贯之推荐给京兆尹李实,李实举起笏板给人看他所记下来的名字,说:“这是他的姓名,和我是同乡,一向就听说他很贤能,希望认识他,然后引荐给皇上。

”推荐的人很高兴,急忙把李实的话告诉韦贯之,并且说:“你今天到李实那里去,明天就能受到庆贺。

”韦贯之维诺而已,但几年中始终不肯前往,这件事之后他的官位也没有升迁。

永贞年间,韦贯之才被授任为监察御史。

他上书举荐小弟韦纁代替自己任监察御史,当时议论这不是徇私枉法。

于是转任右补阙,而韦纁代替自己做监察御史。

元和元年,宰相杜佑的儿子杜从郁做补阙,韦贯之坚持说不可以,不久降职为左拾遗。

他再次上奏说:“拾遗、补阙虽然品级不同,但都是谏官。

父亲任宰相,儿子任谏官,如果政事有失,做儿子的不可能去议论父亲。

”于是杜从郁改任秘书丞。

新罗人金忠义因为投机取巧进用,官做到少府监,他的儿子以门荫当上了两馆的生徒。

韦贯之扣住他的册籍不下发,并说:“工商之家出身的子弟,不应当做官。

”金忠义用艺能来结交权贵宠臣,替他说情的不止一两个,而韦贯之更是坚持己见。

他不久又上疏陈述金忠义不应当玷污朝廷官吏的名册,词理恳切,金忠义的官职终于被免去。

当时讨伐吴元济,韦贯之请求先放下镇州,集中力量对付淮西,并且说:“陛下难道不知道建中年间的事情吗?开始是蔡州急呼,而魏州响应,齐、赵一同起来,德宗征发天下兵马讨伐他们,财物用完而人力费尽,所以朱泚乘机作乱。

这不是别的原因,是要迅速扑灭叛乱。

如今陛下难道不能稍稍忍一下,等蔡州平定之后再讨伐镇州吗?”当时皇帝已经讨伐镇州了,没有听从韦贯之的建议。

最终的结果是,蔡州平定之后,镇州才屈服。

开始,讨伐蔡州,让宣武韩弘做都统,皇帝又下诏叫河阳乌重胤、忠武李光颜合并兵力而进军。

韦贯之以为诸将从四面讨伐叛贼,各自会迅速进攻,如今设置都统督战,又令二个节帅连营,那么他们会慎重行事,保存各自威力,攻克的日期就难以估计了。

皇帝还是没有听从。

后来用了四年时间才攻克蔡州。

一切都如韦贯之所预料的。

有个叫张宿的人,很有口才,受到宪宗的宠幸,被提升为左补阙。

张宿将要出使淄青,宰相裴度要替他请求章服。

韦贯之说:“此人已备受皇帝宠幸,为何还要再给他优厚的宠幸呢?”于是这件事就停了下来。

张宿因此对他怀恨在心,(韦贯之)最终还是被张宿陷害,张宿诬陷他结朋连党,罢免了他的官职,让他做了吏部侍郎。

不到十天,又外任为湖南观察使。

后来又罢为太子詹事,在东都分司任职。

穆宗即位,随即下令授拜他为河南尹,召入朝廷任工部尚书,还未赴任,去世,终年六十二岁,追赠尚书右仆射,谥号贞。

相关文档
最新文档