电机励磁方式及原理

合集下载

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。

励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。

一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。

由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。

二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。

励磁电源提供直流电源,用于激励发电机的磁场。

而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。

三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。

一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。

4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。

在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。

一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。

手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。

五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。

稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。

六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。

它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。

总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。

通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。

良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。

发电机励磁的工作原理

发电机励磁的工作原理

发电机励磁的工作原理发电机作为一种常见的设备,其工作原理是利用磁场与导电线圈的相互作用产生电流。

而发电机励磁则是指对发电机的磁场进行控制和调整,以使其产生稳定的电流输出。

本文将介绍发电机励磁的工作原理。

一、磁场的生成发电机的励磁主要是通过磁场的生成来实现的。

发电机的磁场通常是由一对磁极产生的。

其中,一个磁极是由永磁体构成的,另一个磁极,则是由电磁铁构成的,并且可以通过不同的励磁方式实现。

二、励磁方式发电机的励磁方式可以分为直接励磁和间接励磁两种方式。

1.直接励磁直接励磁是指通过外部电源直接给电磁铁提供电流,从而产生磁场。

这种方式通常适用于小型发电机,因为其励磁电流相对较小。

2.间接励磁间接励磁是指通过发电机本身产生的电流,构建磁场。

这种方式适用于大型发电机,因为其励磁电流相对较大。

间接励磁方式主要包括非励磁旋转子和励磁旋转子两种形式。

(1)非励磁旋转子非励磁旋转子是指发电机的转子上不带有励磁绕组,通过通过定子上的电流诱导转子磁场的形成。

这种方式的优点是结构简单,但缺点是励磁响应慢,励磁调节能力较差。

(2)励磁旋转子励磁旋转子是指发电机的转子上带有励磁绕组,通过给励磁绕组供电,产生磁场。

这种方式的优点是励磁响应快,励磁调节能力强,但缺点是结构复杂。

三、励磁控制系统发电机励磁的控制主要通过励磁调节器来实现。

励磁调节器可以根据需要调整励磁电流的大小,以稳定输出电压。

常见的励磁调节器包括电位器、励磁稳压器和自动励磁控制器等。

其中,电位器是一种手动调节励磁电流的装置,通过改变电位器的电阻值来控制励磁电流的大小。

励磁稳压器是一种自动调节励磁电流的装置,它能根据输出电压的变化自动调整励磁电流的大小,以保持电压的稳定性。

自动励磁控制器是由电路和控制器组成的系统,能够监测和调节发电机的励磁电流,以实现电压控制。

四、励磁过程发电机励磁的过程可以简单描述为以下几步:1.设置励磁电流的大小和方向。

2.经励磁绕组产生的磁场与定子绕组中的电流相互作用,产生感应电动势。

无刷励磁同步电机原理

无刷励磁同步电机原理

无刷励磁同步电机原理一、工作原理无刷励磁同步电机是一种先进的电机,其工作原理主要基于磁场与电流的相互作用。

电机的转子上安装有励磁绕组,通过向励磁绕组提供直流电流来产生恒定的磁场。

定子绕组在气隙中产生旋转磁场,当电机转动时,转子上的永磁体产生的磁场与定子绕组产生的旋转磁场相互作用,产生转矩,驱动电机旋转。

二、励磁系统无刷励磁同步电机的励磁系统主要包括励磁电源和控制系统。

励磁电源负责提供直流电流,控制系统则负责控制励磁电流的大小和方向,以实现电机的正常运行和调速控制。

三、控制方式无刷励磁同步电机的控制方式主要包括开环控制和闭环控制。

开环控制基于电机的工作原理,通过改变励磁电流的大小和方向来控制电机的输出转矩和转速。

闭环控制则引入了反馈环节,通过比较实际转速与设定转速的差异,调整励磁电流的大小和方向,以达到更高的控制精度和稳定性。

四、运行特性无刷励磁同步电机具有高效、节能、高精度和高可靠性的特点。

由于其励磁系统采用直流电源,可以方便地进行调速控制,同时减小了电机内部的损耗和温升,提高了电机的效率。

此外,由于无刷励磁同步电机采用永磁体产生磁场,其结构简单、维护方便,且具有较高的动态响应性能。

五、优点与缺点优点:1.效率高:由于采用永磁体产生磁场,电机的损耗和温升较低,因此效率更高。

2.结构简单:电机结构简单、紧凑,维护方便。

3.调速性能好:通过调整励磁电流的大小和方向,可以实现电机的平滑调速。

4.可靠性高:电机具有较高的稳定性和可靠性,能够适应恶劣的工作环境。

5.高响应性能:具有较高的动态响应性能,能够快速响应控制信号的变化。

缺点:1.成本较高:由于采用永磁体等高成本材料,电机的制造成本较高。

2.弱磁场能力较低:对于较大的磁场变化和较大的转矩输出,无刷励磁同步电机的性能可能不如其他类型的电机。

发电机励磁原理

发电机励磁原理

发电机励磁原理发电机励磁原理发电机是一种将机械能转化为电能的装置。

为了使发电机能够正常工作,保持稳定的输出电压和电流,需要进行励磁操作。

励磁是指在电磁铁中通过通电产生磁场,进而激励发电机的传导部分产生电流。

本文将介绍发电机励磁的原理及常见的励磁方式。

励磁原理励磁原理基于电磁感应的原理。

通过在发电机中产生磁场,使得传导部分(转子)产生感应电动势,从而驱动电流流过负载并产生电能。

具体而言,发电机的励磁系统由励磁电源、励磁控制器、励磁线圈以及磁场传感器等组成。

励磁电源提供电流给励磁线圈,而励磁线圈则通过产生磁场来激励传导部分产生电流。

励磁控制器根据一定的规则控制励磁电流的大小和方向,确保发电机的稳定运行。

励磁方式在发电机的励磁中,常见的励磁方式主要包括直流励磁和交流励磁。

直流励磁直流励磁是指通过直流电源提供励磁激励。

直流励磁可以进一步分为独立励磁和自励磁两种方式。

独立励磁独立励磁即通过外部直流电源为励磁线圈提供激励。

在独立励磁系统中,励磁线圈是与外部直流电源相连的闭合电路。

通过调节外部直流电源的电压和电流,可以控制励磁线圈产生的磁场大小和方向,从而影响发电机的输出电压和电流。

自励磁自励磁是指利用发电机自身产生的一部分电能来供应励磁激励。

在自励磁系统中,发电机的一部分输出电流经过整流装置(如整流器),将交流电转换为直流电供应给励磁线圈。

通过调节整流装置的电压和电流,可以间接地控制励磁线圈的磁场和发电机的输出。

交流励磁交流励磁是指通过交流电源为励磁线圈提供激励。

交流励磁不同于直流励磁,其特点是励磁线圈的励磁电流是交变的。

常见的交流励磁方式有串励励磁和并励励磁。

串励励磁串励励磁是指将励磁线圈与发电机的输出绕组串联,以产生额外的励磁电流。

在串励励磁系统中,通过控制串联电路的电压和电流,即可控制励磁线圈的磁场大小和发电机的输出电流。

并励励磁并励励磁是指通过将励磁线圈与发电机的输出绕组并联,以增强原有磁场的强度。

电动机他励,并励,串励工作原理

电动机他励,并励,串励工作原理

电动机他励,并励,串励工作原理
电动机的励磁方式决定了其工作原理,以下是电动机他励、并励和串励的工作原理:
1. 他励电动机:励磁绕组与电枢绕组无连接关系,由其他直流电源对励磁绕组供电。

运行过程中励磁磁场稳定且容易控制,易实现再生制动。

当采用永磁激励时,电机效率高,重量体积小。

但由于励磁磁场稳定,电机机械特性不理想,无法产生足够大的输出转矩。

2. 并励电动机:励磁绕组与电枢绕组相并联,共用同一电源。

励磁绕组两端电压就是电枢绕组两端电压,励磁绕组用细导线绕成,匝数多,电阻大,励磁电流较小。

性能基本与他励式直流电机相同。

3. 串励电动机:励磁绕组与电枢绕组串联后,再接于直流电源。

这种直流电机的励磁电流就是电枢电流。

这种电机内磁场随着电枢电流的改变有显著的变化。

为了使励磁绕组中不引起大的损耗和电压降,励磁绕组的电阻越小越好,所以串励式直流电机通常用较粗的导线绕成,它的匝数较少。

串励式直流电机在低速运行时,能给电动汽车提供足够大的转矩,而在高速运行时,电机电枢中的反电动势增大,与电枢串联的励磁绕组中的励磁电流减小,电机高速运行时的弱磁调速功能易于实现,因此串励式直流电机驱动系统能较好地符合电动汽车的特性要求。

以上内容仅供参考,如需电动机他励、并励、串励工作原理的更多信息,建议查阅相关电动机的工作原理文献或咨询专业技术人员。

电机励磁方式及原理

电机励磁方式及原理

电机励磁方式旋转电机中产生磁场的方式。

现代电机大都以电磁感应为基础,在电机中都需要有磁场。

这个磁场可以由永久磁铁产生,也可以利用电磁铁在线圈中通电流来产生。

电机中专门为产生磁场而设置的线圈组称为励磁绕组。

由于受永磁材料性能的限制,利用永久磁铁建立的磁场比较弱,它主要用于小容量电机。

但是随着新型永磁材料的出现,特别是高磁能积的稀土材料如稀土钴、钕铁硼的出现,容量达百千瓦级的永磁电机已开始研制。

一般的电机多采用电流励磁。

励磁的方式分为他励和自励两大类。

他励由独立的电源为电机励磁绕组提供所需的励磁电流。

例如用独立的直流电源为直流发电机的励磁绕组供电;由交流电源对异步电机的电枢绕组供电产生旋转磁场等等。

前者为直流励磁,后者为交流励磁。

同步电机按电网的情况,可以是转子的励磁绕组直流励磁,也可以定子上由电网提供交流励磁,一般以直流励磁为主。

如直流励磁不足,则从电网输入滞后的无功电流对电机补充励磁;如直流励磁过强,则电机就向电网输出滞后的无功电流,使电机内部磁场削弱。

采用直流励磁时,励磁回路中只有电阻引起的电压降,所需励磁电压较低,励磁电源的容量较小。

采用交流励磁时,由于励磁线圈有很大的电感电抗,所需励磁电压要高得多,励磁电源的容量也大得多。

他励式励磁电源,原来常用直流励磁机。

随着电力电子技术的发展,已较多地采用交流励磁机经半导体整流后对励磁绕组供电的方式励磁。

励磁调节可以通过调节交流励磁机的励磁电流来实现;也可以在交流励磁机输出电压基本保持不变的情况下,利用可控整流调节。

后者调节比较快速,还可以方便地利用可控整流桥的逆变工作状态达到快速灭磁和减磁,从而取消常用的灭磁开关。

前一种方式,整流元件为二极管,如把它和交流励磁机电枢绕组、同步电机励磁绕组一起都装在转子上,则励磁电流就可以直接由交流励磁机经整流桥输入励磁绕组,不再需要集电环和电刷,可构成无刷励磁系统,为电机的运行、维护带来很多方便。

当然整流元件、快速熔断器等器件在运行中均处于高速旋转状态,要承受相当大的离心力,这在结构设计时必须加以考虑。

直流电机励磁原理

直流电机励磁原理

直流电机励磁原理
直流电机励磁原理是指在直流电机中通过一定的方式产生磁场,使电机能够正常工作。

励磁是指给电机的磁场提供电能,使电机能够产生磁场。

直流电机的励磁方式通常有磁场励磁和电流励磁两种形式。

磁场励磁是通过外部线圈产生的磁场来励磁。

具体而言,将直流电源接通到电机的励磁线圈上,通过产生的磁场相互作用,使电机的磁场得以形成。

电流励磁是通过通电线圈在产生磁铁旁引线产生磁场来励磁。

具体而言,将直流电源接通到电机的绕组上,电流在线圈中流动,产生磁场,从而使电机获得励磁。

通常来说,直流电机的励磁线圈被称为电枢线圈或者励磁绕组。

电枢线圈是由细线圈绕制而成的,能够产生足够的磁场来使电机正常运转。

在直流电机的励磁过程中,需要根据实际需要调整励磁电流的大小和方向,以控制电机的运转速度和输出功率。

这通常通过调整励磁电流的大小来实现。

总结起来,直流电机的励磁原理是通过磁场励磁或电流励磁的方式来产生电机所需的磁场,使电机正常工作。

励磁电流的大小和方向可以通过调节来控制电机的运转速度和输出功率。

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理
发电机的励磁系统是指用来激励电磁铁产生磁场的装置。

励磁系统的原理是通过外部直流电源对电磁铁进行电流供给,使其产生磁场。

在发电机的励磁系统中,有三种常见的励磁方式:直接励磁、直流励磁和交流励磁。

直接励磁是指直接将励磁电流来自发电机的一个分支。

这种方式简单、容易实现,但在应对大功率发电机时,励磁电流较大,会对发电机本身产生较大压力。

直流励磁是将外部直流电源的电流通过整流装置变为直流电源,然后再供给到发电机的励磁设备。

这种方式比直接励磁更加灵活,能够适应不同功率的发电机,并且可以稳定控制励磁电流。

交流励磁是将外部交流电源的电流通过变压器降压,然后再通过整流装置变为直流电源供给到发电机的励磁设备。

这种方式可以根据需要调整变压器的输出电压来控制励磁电流,从而实现对发电机输出电压的调节。

总的来说,发电机的励磁系统通过对电磁铁供给电流,产生一定强度和方向的磁场,进而实现对发电机的励磁,调整发电机的输出电压。

不同的励磁方式具有不同的特点和适用范围,可以根据实际需求进行选择和调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机励磁方式旋转电机中产生磁场的方式。

现代电机大都以电磁感应为基础,在电机中都需要有磁场。

这个磁场可以由永久磁铁产生,也可以利用电磁铁在线圈中通电流来产生。

电机中专门为产生磁场而设置的线圈组称为励磁绕组。

由于受永磁材料性能的限制,利用永久磁铁建立的磁场比较弱,它主要用于小容量电机。

但是随着新型永磁材料的出现,特别是高磁能积的稀土材料如稀土钴、钕铁硼的出现,容量达百千瓦级的永磁电机已开始研制。

一般的电机多采用电流励磁。

励磁的方式分为他励和自励两大类。

他励由独立的电源为电机励磁绕组提供所需的励磁电流。

例如用独立的直流电源为直流发电机的励磁绕组供电;由交流电源对异步电机的电枢绕组供电产生旋转磁场等等。

前者为直流励磁,后者为交流励磁。

同步电机按电网的情况,可以是转子的励磁绕组直流励磁,也可以定子上由电网提供交流励磁,一般以直流励磁为主。

如直流励磁不足,则从电网输入滞后的无功电流对电机补充励磁;如直流励磁过强,则电机就向电网输出滞后的无功电流,使电机内部磁场削弱。

采用直流励磁时,励磁回路中只有电阻引起的电压降,所需励磁电压较低,励磁电源的容量较小。

采用交流励磁时,由于励磁线圈有很大的电感电抗,所需励磁电压要高得多,励磁电源的容量也大得多。

他励式励磁电源,原来常用直流励磁机。

随着电力电子技术的发展,已较多地采用交流励磁机经半导体整流后对励磁绕组供电的方式励磁。

励磁调节可以通过调节交流励磁机的励磁电流来实现;也可以在交流励磁机输出电压基本保持不变的情况下,利用可控整流调节。

后者调节比较快速,还可以方便地利用可控整流桥的逆变工作状态达到快速灭磁和减磁,从而取消常用的灭磁开关。

前一种方式,整流元件为二极管,如把它和交流励磁机电枢绕组、同步电机励磁绕组一起都装在转子上,则励磁电流就可以直接由交流励磁机经整流桥输入励磁绕组,不再需要集电环和电刷,可构成无刷励磁系统,为电机的运行、维护带来很多方便。

当然整流元件、快速熔断器等器件在运行中均处于高速旋转状态,要承受相当大的离心力,这在结构设计时必须加以考虑。

自励利用电机自身所发电功率的一部分供应本身的励磁需要。

电机采用自励时,不需要外界单独的励磁电源,设备比较简单。

但如果原先电机内部没有磁场,它就不可能产生电动势,也就不可能进行自励。

所以实现自励的条件是电机内部必须有剩磁。

自励系统又可分为并励和复励两种。

并励指仅由同步电机的电压取得能量的自励系统,复励指由同步电机的电压及电流两者取得能量的自励系统。

并励发电机进行自励的条件和起励过程如图1和图2所示。

图1是并励直流发电机的原理接线图。

图2为其起励过程。

其中曲线1为发电机的磁化曲线Φ=f(If)。

由于在一定转速下电机的感应电动势与磁通成正比,所以曲线1同时也就是电机的空载特性曲线E 0=f(If),即电机的感应电动势与励磁电流If 之间的关系。

而曲线2为励磁回路的电阻特性U=If·∑R,它表示励磁电流与电机电压之间的关系。

它实际是一条斜率为ΣR的直线。

其中∑R 为励磁回路的总电阻,它包括励磁绕组的电阻和外加的调节电阻Rr。

电机自励的过程如下:电机以某一速度п旋转时,由于电机中有剩磁,会在电枢绕组中感应电动势Er。

在此电动势作用下,在励磁回路中会产生一个励磁电流If1。

如励磁绕组接法正确,If1所产生的磁通势将使电机中的磁场加强,电枢绕组中感应电动势进一步增加到E1,使励磁电流又将增大到If2。

如此相互促进,直至电机空载特性和电阻特性的交点A。

在这一点上,电机的端电压为U0,它所产生的励磁电流为If1,而在这个励磁电流If1下,电机产生的电动势正好为U0,电机就稳定工作在这一点。

如果增大励磁回路的电阻∑R,电阻特性的斜率将增大,它与空载特性的交点下移,发电机的输出电压就下降。

当电阻增大到某一临界值∑Rcr时,电阻特性3与发电机空载特性几乎相重合。

此时电机电压将不确定。

若电机温度和运行条件有一点变化,电压就会大幅度变化。

如进一步增大电阻,发电机就不能自励建立电压。

在要求电压能大范围调节的场合,如同步发电机的励磁机,可在磁极钢片中开一个小槽,使磁路中出现狭窄区域。

这些区域在比较小的磁通下就开始饱和,使电机的空载特性变得比较弯曲(图3),这样励磁回路电阻特性能在较大范围内和空载特性确定相交,从而获得较广的调压范围。

发电机在带负载时,负载电流在电机内阻上的电压降会使端电压下降。

对于自并励电机,端电压的下降使励磁电流减少而导致电机端电压的进一步下降,如图4曲线1所示。

为了克服这个缺点,发电机常采用复励,即除了并励绕组以外,再加一个串励绕组,串励绕组和负载电路串联。

随着负载的增加,串励绕组的磁通势增大,使电机的感应电动势相应地增加,以补偿负载电流在内阻上的电压降,从而使电机的端电压能基本保持平稳,如图4曲线2所示。

异步发电机的自励交流励磁的异步发电机也可以进行自励。

其交流励磁电流须由电容器供给,利用LC 并联谐振的原理建立电压。

与直流发电机一样,要实现自励,电机铁心中必须有剩磁,利用剩磁在电枢绕组中产生电动势对电容负载供电,输出容性电流。

由于输出相位超前的容性电流,相当于输入滞后的感性电流,它具有助磁作用,使电机气隙磁场加强,从而增大电机的感应电动势和容性电流。

最后由于磁路饱和的影响,电机的电压稳定在空载特性和电容特性的交点上(图5)。

它建立电压的过程与自励直流发电机十分相似。

只是用电容特性代替了电阻特性。

电容特性的斜率为。

为保证异步发电机能自励建压,需要有足够的电容,当电容小到临界值Ccr 时,电容特性与无载特性重合,电机就不能稳定发电。

再减小电容,电机就不能自励建立电压。

同步电机的励磁励磁系统除了应该能维持电机电压以外,还有其他一系列要求,如在调节系统的无功功率和在电力系统发生突然短路、突加负载及甩负载时,能对电机强行励磁或强行减磁,以提高电力系统运行的稳定性和可靠性,当电机内部发生短路事故时能对电机快速灭磁,以防止事故扩大,避免电机进一步损坏等。

所以同步电机的励磁系统比较复杂,种类繁多,其分类列于表。

同步电机励磁系统的分类如下:同步电机的励磁系统由励磁电源、手动调节装置、自动励磁调节器和灭磁装置等组成。

励磁电源也分为自励式和他励式两大类。

他励式设备比较庞大,但调节性能较好,而自励式电源比较简单,但是当电力系统发生故障,电网电压严重下降时,其励磁电流可能反而减少,使电网电压情况更为恶化。

励磁电压影响电机运行的稳定性,为此必须采取适当的设备保护措施。

自励式励磁电源取自同步电机内部的辅助绕组或直接取自同步电机本身的出线端。

同步电机自励式励磁系统中,自动励磁调节器是重要部件。

它的作用是当同步电机的端电压和无功功率发生变化时,能根据电压量测比较单元和无功补偿(调差)单元送回的反馈信号,自动地控制励磁机或其他励磁供电电源的输出电流,达到自动调节端电压和无功功率的目的。

此外,调节器中还有一些辅助调节装置,例如用以限制发电机某些运行量(如转子电流,定子电流等)的限制单元;通过引入转速或频率等附加信号来改善电子系统动态性能的稳定单元和其他补偿单元等。

此外,还有灭磁装置,它是在电机内部发生短路时,使电机的励磁电流迅速衰减到零,从而使电机的感应电动势降到很低,以避免进一步损坏。

电动机的励磁原理利用导线切割磁力线感应出电势的电磁感应原理,将原动机的机械能变为电能输出。

同步发电机由定子和转子两部分组成。

定子是发出电力的电枢,转子是磁极。

定子由电枢铁芯,均匀排放的三相绕组及机座和端盖等组成。

转子通常为隐极式,由励磁绕组、铁芯和轴、护环、中心环等组成。

汽轮发电机的极数多为两极的,也有四极的。

转子的励磁绕组通入直流电流,产生接近于正弦分布磁场(称为转子磁场),其有效励磁磁通与静止的电枢绕组相交链。

转子旋转时,转子磁场随同一起旋转、每转一周,磁力线顺序切割定子的每相绕组,在三相定子绕组内感应出三相交流电势。

发电机带对称负载运行时,三相电枢电流合成产生一个同步转速的旋转磁场。

定子磁场和转子磁场相互作用,会产生制动转矩。

从汽轮机输入的机械转矩克服制动转矩而作功。

发电机可发出有功功率和无功功率。

所以,调整有功功率就得调节汽机的进汽量。

转子磁场的强弱直接影响定子绕组的电压,所以,调发电机端电压或调发电机的无功功率必须调节转子电流。

发电机的有功功率和无功功率几何相加之和称为视在功率。

有功功率和视在功率之比称为发电机的功率因数(力率),发电机的额定功率因数一般为0.85。

供给发电机转子直流建立转子励磁的系统称为发电机励磁系统。

大型发电机励磁方式分为:①它励励磁系统;②自并激励磁系统。

它励励磁是由一台与发电机同轴的交流发电机产生交流电,经整流变成直流电,给发电机转子励磁。

自并激励磁是将来自发电机机端的交流电经变压器降压,再整流变成直流电,作为发电机转子的励磁。

电磁调速异步电动机(滑差电机)电磁调速异步电动机又称滑差电机,它是一种恒转矩交流无级变速电动机。

由于它具有调速范围广、速度调节开滑、起动转矩大、控制功率小、有速度负反馈、自动调节系统时机械特性硬度高等一系列优点。

电磁调速异步电动机结构与工作原理电磁调速异步电动机是由普通鼠笼式异步电动机、电磁滑差离合器和电气控制装置三部分组成。

异步电机作为原动机使用,当它旋转时带动离合器的电枢一起旋转,电气控制装置是提供滑差离合器励磁线圈励磁电流的装置。

电磁滑差离合器包括电枢、磁极和励磁线圈三部分。

电枢为铸钢制成的圆筒形结构,它与鼠笼式异步电动机的转轴相连接,俗称主动部分;磁极做成爪形结构,装在负载轴上,俗称从动部分。

主动部分和从动部分在机械上无任何联系。

当励磁线圈通过电流时产生磁场,爪形结构便形成很多对磁极。

此时若电枢被鼠笼式异步电动机拖着旋转,那么它便切割磁场相互作用,产生转矩,于是从动部分的磁极便跟着主动部分电枢一起旋转,前者的转速低于后者,因为只有当电枢与磁场存在着相对运动时,电枢才能切割磁力线。

磁极随电枢旋转的原理与普通异步电动机转子跟着定子绕组的旋转磁场运动的原理没有本质区别,所不同的是:异步电动机的旋转磁场由定子绕组中的三相交流电产生,而电磁滑差离合器的磁场则由励磁线圈中的直流电流产生,并由于电枢旋转才起到旋转磁场的作用。

1-原动机 2-工作气隙 3-主轴 4-输出轴 5-磁极 6-电枢电磁滑差离合器的机械特性可近似地用下列经验公式表示: n=n0-KT2/I4f 式中:n0-离合器主动部分(鼠笼电动机)的转速; n-离合器从动部分(磁极)的转速; If-励磁电流; K-与离合器结构有关的系数; T-离合器的电磁转矩。

当稳定运行时,负载转矩与离合器的电磁转矩相等。

相关文档
最新文档