海洋波浪能资料
波浪能资源

波浪的分类
• 按形成的作用力,波浪可分为风浪,潮波, 地震波和海啸;按波浪的形成和外貌特征, 将海面由风形成的浪分为风浪,涌浪和混 合浪;按相对水深(d/λ)的大小,波浪可 分为深水波(>0.5),有限水深波(<0.5)和浅 水波(<0.05);按相对振幅(a/λ)的大小, 波浪可分为小振幅波和有限振幅波;按波 形的传播性质,波浪可分为前进波和驻波; 按波浪发生的位置,波浪可分为表面波, 内波和边缘波;按波浪的形状,可分为规 则波和不规则波。
2 2 2 2 风大的海区风 浪也大。大洋中的盛行西风带和信风带, 由于风时长,风力持久,风区也大,所以 风浪也大。随着风的季节变化,风浪也有 相应的季节变化。太平洋、大西洋和印度 洋由于具体条件不同,风浪的分布也有较 大的差异。
中低纬度以副热带为中 心
世界表层洋流分布
中高纬以副极地为中心
北印度洋海区
主要以信风为动力构成大洋环 流 北半球顺时针方向流动,南半 球反时针方向流动;大洋环流 东部为寒流,西部为暖流 主要以西风为动力构成极地环 流 北半球为反时针方向流动, 南半球形成自西向东的西风漂 流,大洋东部为暖流,西部为 寒流 季风洋流,夏季盛行西南季风, 海水向东流,顺时针方向,冬 季盛行东北季风,海水向西流, 反时针方向
涌浪
风浪
波浪的运动
• ⑴波浪运动的特点: • ①波浪的传播实际上是一种波形的传播,能量的 传播,海水的质点是作椭圆形运动的; • ②波浪在深海以定常速度和振幅运动;进入浅海 时,速度会减小,波高会增加,在近海滩处会发 生破碎; • ③海底起伏会引起波浪的折射,海岸和障碍物引 起波浪的反射和绕射 • ⑵波面曲线:η=Acos(Kx-σt),波向x方向传播, 速度c=σ/K=L/T 0 • ⑶速度势函数的控制方程 x y z
海洋波浪能

海洋波浪能概述海洋中有丰富的波浪能和水,波浪能是指海洋表面波浪所具有的动能和势能,波浪能具有能量密度高,分布面广等优点。
它是一种最易于直接利用、取之不竭的可再生清洁能源。
尤其是在能源消耗较大的冬季,可以利用的波浪能能量也最大。
摘要资料海洋波浪能是取之不竭的可再生清洁能源。
它的能量如此巨大,存在如此广泛,自古吸引着沿海的能工巧匠们,想尽各种办法,企图驾驭海浪为人所用。
全世界海洋波浪能利用的机械设计数以千计。
世界上第一座商用波浪能电厂已投入使用。
基本概念简介21世纪是海洋的世纪,人类从大海中利用资源已成为必然趋势。
海浪总是周而复始,昼夜不停地拍打着海岸,其中所蕴藏的波浪能是一种取之不尽的可再生能源,有效利用巨大的海洋波浪能资源是人类几百年来的梦想。
波浪能取之不竭的可再生清洁能源。
地球表面有超过70%以上面积是海洋,广大的海洋面积在吸收太阳辐射之后,可以说是世界最大的太阳能收集器,温暖的地表海水,造成与深海海水之间的温差,由于风吹过海洋时产生风波,这种风波在宽广的海面上,风能以自然储存于水中的方式进行能量转移,因此波浪能可以说是太阳能的另一种浓缩形态。
不稳定同时,波浪能是海洋能源中能量最不稳定的一种能源。
波浪能是由风把能量传递给海洋而产生的,它实质上是吸收了风能而形成的,它的能量传递速率和风速有关。
基本元素破坏力海浪的破坏力大得惊人。
扑岸巨浪曾将几十吨的巨石抛到20米高处,也曾把万吨轮船举上海岸。
海浪曾把护岸的两、三千吨重的钢筋混凝土构件翻转。
许多海港工程,如防浪堤、码头、港池,都是按防浪标准设计的。
在海洋上,波浪中再大的巨轮也只能像一个小木片那样上下漂荡。
大浪可以倾覆巨轮,也可以把巨轮折断或扭曲。
假如波浪的波长正好等于船的长度,当波峰在船中间时,船首船尾正好是波谷,此时船就会发生“中拱”。
当波峰在船头、船尾时,中间是波谷,此时船就会发生“中垂”。
一拱一垂就像折铁条那样,几下子便把巨轮拦腰折断。
20世纪50年代就发生过一艘美国巨轮在意大利海域被大浪折为两半的海难。
海洋动力能源的利用与环境影响

海洋动力能源的利用与环境影响海洋动力能源是指利用海洋潮汐、海流、波浪和温度差异等自然力量来发电和产生能源的一种可再生能源。
随着能源需求的增加和对环境可持续性的要求,海洋动力能源被视为未来清洁能源的重要替代品。
然而,海洋动力能源的利用也会对环境产生一定的影响。
本文将重点探讨海洋动力能源的利用方式及其对环境的影响。
一、海洋动力能源的利用方式1. 潮汐能利用:潮汐能是指利用潮汐涨落的潮水动能来发电。
目前最常见的潮汐能利用方式是潮汐发电站。
潮汐发电站通常分为潮汐流式和潮汐水位式两种类型,利用潮汐涨落的动力带动涡轮机,通过发电机产生电能。
潮汐能具有稳定、可预测、高密度等特点,是一种非常可靠的能源形式。
2. 波浪能利用:波浪能是指利用海洋波浪的起伏来产生能源。
波浪能利用通常通过波浪发电机来实现。
波浪发电机可以将波浪的运动转化为机械能,再经过发电机转化为电能。
波浪能具有丰富、稳定、适应性强等特点,是一种具有巨大潜力的清洁能源。
3. 海流能利用:海流能是指利用海洋洋流的动力来产生能源。
常见的海流能利用方式是通过安装涡轮机来转换海流动能为电能。
海流能具有稳定、连续、丰富等特点,具备着广阔的开发前景。
4. 温差能利用:温差能是指利用海水不同温度层次之间的温差所产生的能量。
常用的温差能利用技术是海洋温差发电。
通过在不同温度的海水之间设置换热器和发电机,将温差转换为电能。
温差能属于低温梯度能源,存在着巨大的开发潜力。
二、海洋动力能源利用的环境影响1. 生态影响:海洋动力能源的开发过程中,需要在海洋中安装大型设备,并涉及到大量海洋生态系统。
这些设备的安装和运行会对海洋生态环境产生一定的干扰。
例如,部分海洋生物的迁徙和繁殖可能会受到影响,海底生物的栖息地也可能被破坏。
2. 水动力影响:利用海洋动力能源的技术设备需要对海洋水流进行调控和控制。
这些调控措施可能会导致一些不良的水动力影响,如水流变化、沉积物悬浮物的输运等,进而影响到沿海的水动力生态系统。
《海洋能的开发利用》 知识清单

《海洋能的开发利用》知识清单一、海洋能的定义和种类海洋能,简单来说,就是蕴藏在海洋中的可再生能源。
它主要包括以下几种类型:1、潮汐能潮汐能是由于天体引力的作用,使得海水在涨潮和落潮过程中产生的能量。
这种能量的产生与月球和太阳对地球的引力有关。
潮汐能的特点是具有规律性和可预测性。
2、波浪能波浪能是由风作用于海面产生的波浪所蕴含的能量。
波浪的起伏和运动蕴含着巨大的能量,但其能量密度相对较低,且具有不稳定性。
3、海流能海流能是由海水流动产生的能量。
例如,大洋中的暖流和寒流都携带着巨大的能量。
海流能的优点是持续性较好,但开发难度较大。
4、温差能温差能是基于海洋表层和深层之间的温度差异而产生的能量。
通常,海洋表层的水温较高,而深层的水温较低,这种温差可以被用来驱动热力循环,从而产生电能。
5、盐差能盐差能则是由于海水盐度的差异所产生的能量。
当淡水与海水相遇时,由于盐度的不同,会产生渗透压,这种压力差可以转化为能量。
二、海洋能的特点1、储量巨大海洋覆盖了地球表面的约 70%,其中蕴含的能量是极其丰富的。
据估计,海洋能的总储量远远超过了目前全球能源的消费量。
2、可再生性海洋能是一种可再生的能源,只要太阳、月球等天体存在,海洋能的产生就不会停止。
3、清洁环保在开发和利用海洋能的过程中,不会产生二氧化碳、硫化物等污染物,对环境的影响极小。
4、分布广泛海洋能在全球范围内都有分布,不受地域和资源分布不均的限制。
然而,海洋能的开发利用也面临着一些挑战和限制:1、能量密度低相比传统的化石能源,海洋能的能量密度通常较低,这意味着需要较大的设备和面积来收集和转化能量。
2、开发成本高海洋环境复杂恶劣,开发海洋能需要使用先进的技术和设备,这导致了高昂的开发成本。
3、技术难度大海洋能的开发涉及到海洋工程、电力工程等多个领域的技术,目前许多关键技术仍有待突破。
4、对环境的潜在影响虽然海洋能本身是清洁的,但开发过程中的一些活动,如海洋工程建设等,可能会对海洋生态环境造成一定的影响。
海洋波浪能发电技术

海洋波浪能发电技术作者:暂无来源:《科学中国人》 2017年第4期海洋是巨大的能源宝库。
理论上,海洋完全可以满足地球上所有的能源需求,并且不会对大气造成任何污染,因此海洋能也被誉为“蓝色能源”。
蓝色能源与传统绿色能源相比,拥有地理分布上的优势,海洋覆盖了地球70%的表面,全球约44%的人口都居住在距海岸线150km的范围内,人类向大海索取资源已成为必然的趋势。
海洋可再生能源包括离岸风能和其它海洋能源,比如波浪能、潮汐能、海洋热能转换等。
海洋能源的利用有助于国家发展低碳经济,减少对矿物燃料的依赖,提高能源安全,实现与其他可再生能源比如风能和太阳能的平衡,确保稳定的可再生能源供应。
海洋波浪能是指海洋表面波浪所具有的动能和势能,分成风浪、涌浪和近岸浪三种,具有能量密度高,分布面广等优点,据估计地球上海浪中蕴藏着的能量相当于90万亿k W·h时的电能。
现今波浪能的利用形式是将大面积的波浪能加以吸收,并集中转换成机械能,再带动电磁发电机运转发电。
作为目前世界上发展势头最快的海洋能源利用形式,美国、日本、英国、西班牙、瑞典、丹麦等海洋大国均十分重视波浪能研究,相继在海上建立了波浪发电装置,然而普遍存在发电功率小、发电不稳定、转换效率不高等缺陷,特别是在小浪时,捕获波浪能效率不高。
利用海洋能发电这一重要研究领域一直进展缓慢,海洋波力发电开发之艰辛,困难重重,究其原因主要是已研制的波能量收集器是基于法拉第电磁感应定律的传统电磁发电机,其输出电压、电流都与机械能频率成正比,进而输出功率与机械能频率的平方成正比,故需稳定且较高的工作频率(>10H z)才能获得高效的输出,但无论是海洋中的波浪、潮汐和洋流等,其运动频率均较低(0.1~2H z),且海浪变幻无常,运动无规律,而这些磁铁和线圈只能采集水流的能量,方向性比较单一,而且这些装置必须安装在海边上,不但影响景观而且收集效率非常低,并且无法收集深水区的能量,极大地制约了它的实际应用价值。
海洋波浪能

1978年
•日本建造了一艘长80 m、宽12 m、高5.5 m称为“海明号”的波浪能发电船。
1965年 1910年
•日本发明了导航灯浮标用气轮机波浪能发电装置,成为首次商品化的波浪能发电装置。 •法国建造了一套气动式波浪能发电装置,供应他自己住宅1 kW的电力。
1799年
•法国的吉拉德父子,获得了利用波浪能的首项专利。
机械式装置多是早期的设计,往往结构 笨重,可靠性差,未获实用。
机械式装置简图
2.波浪能发电
气动式
通过气室、气袋等泵气装置将波浪能转换成空气能,再由气轮机驱 动发电机发电的方式。
Hale Waihona Puke 漂浮气动式装置由于波浪运动的表面性和较 长的中心管的阻隔,管内水面可 看作静止不动的水面。内水面和 气轮机之间是气室。当浮体带中 心管随波浪上升时,气室容积增 大,经阀门吸入空气。当浮体带 中心管随波浪下降时,气室容积 减小,受压空气将阀门关闭经气 轮机排出,驱动冲动式气轮发电 机组发电。
2.波浪能发电
液压式
通过某种泵液装置将波浪能转换为液 体(油或海水)的压能或位能,再由油压马 达或水轮机驱动发电机发电的方式。
点头鸭液压式
波浪运动产生的流体动压力和静压力 使靠近鸭嘴的浮动前体升沉并绕相对固定 的回转轴往复旋转,驱动油压泵工作,将 波浪能转换为油的压能,经油压系统输送 ,再驱动油压发电机组发电。
日本
海洋科学技术中心 大学
研究所 公司
4座波力电站,8座试运行,世界领先
国内现状
中国拥有着473万 平方千米的海洋、 1.8万千米绵延的 海岸线,可以说有 着富饶的海洋能资 源。据现有观测资 料统计,全国沿岸 波浪能资源平均理 论功率大约为1000 余万kW,其中台 湾省沿岸最多,为 429万kW,占全 国总量的1/3;
海洋波浪发电简介

海洋波浪发电简介摘要:文章从海洋波浪发电原理以及海洋波浪发电现状和波浪发电遇到的问题等方面叙述了海洋波浪发电的特点。
关键词:海洋波浪、波能、发电、能源1.前言地球表面积的71%是海洋,而海洋是巨大的能源。
太阳注人地球表面的能量换算为电功率约为1013kW,而其中大约2/3是用来加热海面表层的海水,使其与深水的温差超过20°c以上。
另外,由于地球和月球或太阳之间相对的天体运动和相互作用而引起海洋的潮流、潮汐以及气流等,并进而引起波浪、波流等。
海水的温差、海洋的波浪、波流、潮汐、潮流等都是海洋能源,可用来发电。
尽管它的特点是能量多变,而且密度较低,然而它确实是巨大的,而且是永恒的能源。
考虑到地球环保和温室效应,为了取代排出废气较多的化石燃料发电,可再生的清洁的海洋能源便更加受到重视。
2.海洋波浪发电由于地球和月球之间的作用,引起了潮流、潮汐、气流等,并进而引起波浪。
波浪的动力还来自海风,可以说波能的源泉就是太阳能。
2.1 海洋波浪发电原理由于波浪很不规则,只能采用经统计学处理的数据,即波能的表达式如下:E =0.5·(H1/3)2·(Tl/3),kW/m式中,H1/3和T1/3分别为有效波高(m)和有效波周期(s),也是波高H 和波周期T 的算术平均值。
英国苏格兰西北沿岸的平均波能高达48kw/m。
日本四季的平均波能约为l3kw/m(近海)和6kW/m(沿岸)。
日本的波能可满足国内能源总需求量的l/3。
波力发电的原理主要是将波力转换为压缩空气来驱动空气透平发电机发电。
当波浪上升时便将空气室中的空气顶上去,被压空气穿过正压水阀室进入正压气缸,并驱动发电机轴伸端上的空气透平,使发电机发电。
当波浪落下时,空气室内形成负压,使大气中的空气被吸人气缸,并驱动发电机另一轴伸端上的空气透平,使发电机发电,其旋转方向不变。
从中排出的空气进入负压气缸,再穿过负压水阀室并到达负压空气室。
由于正、负压水阀室相当于逆止阀的作用,正、负两条回路互不干扰。
波浪能的研究现状与开发利用

波浪能的研究现状与开发利用随着世界经济的发展,人口的激增,社会的进步,人们对能源的需求日益增长。
占地球表面70%的广阔海洋,集中了97%的水量,蕴藏着大量的能源,即海洋能。
近20多年来,受化石燃料能源危机和环境变化压力的驱动,作为主要可再生能源之一的海洋能事业取得了很大发展,在相关高技术后援的支持下,海洋能应用技术日趋成熟,为人类在下个世纪充分利用海洋能展示了美好的前景。
海洋能源通常指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能。
更广义的海洋能源还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。
究其成因,潮汐能和潮流能来源于太阳和月亮对地球的引力变化,其他基本上源于太阳辐射。
海洋能源按储存形式又可分为机械能、热能和化学能。
其中,潮汐能、海流能和波浪能为机械能,海水温差能为热能,海水盐差能为化学能。
其中波浪由于开发过程中对环境影响最小且以机械能的形式存在,是品位最高的海洋能。
据估算,全世界波浪能的理论值约为109Kw量级。
是现在世界发电量的数百倍,有着广阔的商用前景,因而也是各国海洋研究的重点。
自20世纪70年代世界石油危机以来,各国不断投入大量资金人力开展波浪能开发利用的研究,并取得较大的成果。
日,英,美,澳的国家都研制出应用波浪发电的装置,并应用于波浪发电中。
我国对波浪能的研究,利用起步较晚,目前我国东南沿海福建。
广东等地区已在试验一些波浪发电装置波浪能简介:波浪能是指海洋表面波浪所具有的动能和势能。
波浪的能量与波高的平方、波浪的运动周期以及迎波面的宽度成正比。
波浪能是海洋能源中能量最不稳定的一种能源。
波浪能是由风把能量传递给海洋而产生的,它实质上是吸收了风能而形成的。
能量传递速率和风速有关,也和风与水相互作用的距离有关。
波浪可以用波高、波长和波周期等特征来描述目前波浪能的主要的主要利用方式是波浪能发电,此外,波浪能还可以用于抽水、供热、海水淡化以及制氢等。