高精度、高稳定性金属膜电阻

合集下载

厚膜电阻和金属膜电阻

厚膜电阻和金属膜电阻

厚膜电阻和金属膜电阻电阻是电路中最基本的元器件之一,它用于限制电流的流动,从而控制电路的功率和温度。

在电子设备中,常用的电阻有厚膜电阻和金属膜电阻。

本文将详细介绍这两种电阻。

一、厚膜电阻厚膜电阻是指将导体材料通过印刷、喷涂等方式直接印刷在绝缘基板上形成的一种电阻。

其特点是具有较高的功率承受能力、较低的价格和较好的可靠性。

厚膜电阻主要应用于大功率、高频等场合。

厚膜电阻的制作过程包括以下几个步骤:1. 基板选择:通常采用陶瓷基板或玻璃纤维基板,因为它们具有良好的耐热性和耐化学性。

2. 导体材料选择:通常采用银浆或铜浆作为导体材料,因为它们具有良好的导电性和可加工性。

3. 印刷工艺:将导体材料通过印刷、喷涂等方式直接印刷在基板上,并通过加热使其与基板牢固结合。

4. 制程检验:对印刷后的电阻进行测试,以保证其符合要求。

厚膜电阻的优点是功率承受能力强,价格低廉,可靠性高。

但是它也存在一些缺点,如精度不高、温度系数大、频率响应差等。

二、金属膜电阻金属膜电阻是指将金属材料通过真空镀膜技术直接镀在绝缘基板上形成的一种电阻。

其特点是具有较高的精度、稳定性和频率响应能力。

金属膜电阻主要应用于精密仪器、计算机等领域。

金属膜电阻的制作过程包括以下几个步骤:1. 基板选择:通常采用陶瓷基板或玻璃纤维基板,因为它们具有良好的耐热性和耐化学性。

2. 金属材料选择:通常采用铬、镍铬等材料作为导体材料,因为它们具有良好的导电性和可加工性。

3. 真空镀膜工艺:将金属材料通过真空镀膜技术直接镀在基板上,并通过加热使其与基板牢固结合。

4. 制程检验:对镀膜后的电阻进行测试,以保证其符合要求。

金属膜电阻的优点是精度高、稳定性好、频率响应能力强。

但是它也存在一些缺点,如价格昂贵、功率承受能力较弱等。

综上所述,厚膜电阻和金属膜电阻都是常见的电阻类型。

它们各自具有不同的特点和应用场合。

在选择电阻时,需要根据实际需求进行选择,以达到最佳的性能和成本效益。

超精密金属膜电阻军用标准(RE)规格书

超精密金属膜电阻军用标准(RE)规格书

D
50 0 -55 70 175 (°C) (RE)功率 - 温度曲线
型号 额定功率 (W) 最大工作电压(V) 尺寸(Unit: mm) 阻值范围(Ω) 工作溫度范围 标称阻值误差
70 °C L ± 0.3 D ± 0.4 A ± 0.05
RE50 0.125 200 4.0 1.4 0.40
1 ~ 3M
RE55 0.25 200 6.9 2.05 0.60
0.05 ~ 10M
RE60 0.5 250 9.8 3.2 0.60
0.05 ~ 10M
RE65 0.75 300 12.5 3.6 0.60
0.05 ~ 10M
RE70 1.0 350 14.1 4.65 0.80
0.05 ~ 10M
RE75 1.5 500 17.8 7.2 0.80
长期
无机械损伤,飞弧,绝缘击穿 短期
GJB244A (MIL-PRF-55182) 3.17/3.22/3.23 ΔR≤±(0.20%R+0.01Ω)
无机械损伤
GJB244A (MIL-PRF-55182)3.20 ΔR≤±(0.10%R+0.01Ω)
无机械损伤
Version 2014
德键电子工业股份有限公司
要求
GJB244A (MIL-PRF-55182) 3.24 ΔR≤±(0.5%R+0.01Ω) ΔR≤±(2%R+0.01Ω) GJB244A (MIL-PRF-55182)3.21 ΔR≤±(0.4%R+0.01Ω) GJB244A (MIL-PRF-55182)3.25 ΔR≤±(2.0%R+0.01Ω) GJB244A (MIL-PRF-55182) 3.18/3.29/3.16 ΔR≤±(0.15%R+0.01Ω)

金属膜电阻和碳膜电阻 薄膜点尊

金属膜电阻和碳膜电阻 薄膜点尊

金属膜电阻和碳膜电阻是电子元件中常见的两种薄膜电阻。

它们都是由一层薄膜材料覆盖在电阻材料上制成的。

薄膜电阻通常用于精密仪器、汽车、电子设备和通讯设备等领域。

然而,金属膜电阻和碳膜电阻在性能、制造工艺和应用范围上都有所不同。

本文将从几个方面对金属膜电阻和碳膜电阻进行比较。

一、性能比较1. 电阻精度:金属膜电阻的精度通常比碳膜电阻高,金属膜电阻的精度一般可达1。

而碳膜电阻的精度一般为5。

2. 温度系数:金属膜电阻的温度系数较低,温度稳定性好。

而碳膜电阻的温度系数较高,温度稳定性差。

3. 长期稳定性:金属膜电阻的长期稳定性较好,使用寿命长。

碳膜电阻的长期稳定性较差,使用寿命短。

4. 散热性能:金属膜电阻的散热性能较好,能够快速散热。

碳膜电阻的散热性能较差,不易散热。

二、制造工艺比较1. 制造工艺:金属膜电阻的制造工艺较为复杂,需要多道工序。

碳膜电阻的制造工艺相对简单,成本较低。

2. 耐久性:金属膜电阻的耐久性较好,不易受潮氧化。

碳膜电阻的耐久性较差,容易受潮氧化。

3. 尺寸稳定性:金属膜电阻的尺寸稳定性好,尺寸不易变形。

碳膜电阻的尺寸稳定性差,易变形。

三、应用范围比较1. 金属膜电阻广泛应用于精密仪器、高端通讯设备等领域,对电阻的精度和长期稳定性要求较高的场合。

2. 碳膜电阻常用于一些对成本要求较低、温度变化较小的场合,如家用电子产品、低端通讯设备等领域。

在选择金属膜电阻和碳膜电阻时,需要根据实际的使用环境和要求来进行综合考虑。

不同的电子元件可能需要不同性能的薄膜电阻,只有在了解其特性的基础上,才能更好地选择合适的薄膜电阻,以满足电路设计的要求。

随着科技的不断发展,薄膜电阻的研究和制造技术也在不断改进和提高,未来薄膜电阻将不断向更高的性能和更广泛的应用领域发展,为电子行业的发展做出更大的贡献。

在现代电子工业中,金属膜电阻和碳膜电阻的应用范围广泛,它们在电路设计和制造中发挥着重要作用。

随着科技的不断发展,这两种薄膜电阻的性能和制造工艺也在不断改进和提高,为电子行业的发展做出了重要贡献。

电阻分类及其作用

电阻分类及其作用

电阻分类及其作用
电阻是电路中常见的元件之一,具有阻碍电流流动的作用。

根据材料和结构的不同,电阻可以分为许多类型。

常见的电阻包括:碳膜电阻、金属膜电阻、金属氧化物电阻、线性电位器、可变电阻等。

碳膜电阻是一种使用碳膜覆盖在陶瓷基底上的电阻。

它的使用寿命较短,但价格较便宜,适用于一些低要求的电路。

金属膜电阻是将金属薄膜附着在陶瓷基底上,具有高精度、高稳定性和较长的使用寿命。

金属氧化物电阻是将金属氧化物陶瓷制成的电阻,具有高精度、高稳定性和较宽的温度范围。

线性电位器是一种可调电阻,可用于调整电路中的电压、电流和信号等。

可变电阻与线性电位器类似,不同的是它只能进行有限的调整,通常用于模拟电路中。

电阻在电路中的作用主要有两个方面。

一方面,它可以用来调节电路中的电压、电流和信号等参数。

另一方面,它还可以用来限制电路中的电流,以保护其他元器件不被过载或损坏。

综上所述,电阻是电路中不可或缺的元件之一,不同类型的电阻都有着特定的用途和优势,选择适合的电阻可以有效地提高电路的性能和可靠性。

- 1 -。

贴片电阻的材料

贴片电阻的材料

贴片电阻的材料
贴片电阻的主要材料是炭膜和金属膜。

炭膜电阻采用炭粉与聚合物混合成薄膜,然后通过精确的切割和蚀刻工艺制成电阻元件。

它具有良好的电阻稳定性、低噪音、良好的频率特性和较高的功率容量。

金属膜电阻使用金属材料(如镍铬合金)在陶瓷基片上蒸镀成薄膜,然后通过光刻工艺和腐蚀工艺制成电阻元件。

金属膜电阻具有高精度、低温漂移、高稳定性和良好的频率特性。

除了炭膜和金属膜,还有其他材料如厚膜电阻(通过压印或喷涂工艺制成)、薄膜电阻(通过化学气相沉积或物理气相沉积工艺制成)等。

这些材料的选择取决于电阻元件的要求和应用领域。

精密电阻

精密电阻

山东航天正和电子有限公司 精密电阻何为精密电阻,一般指精度高(万分之一以上)、温漂低(10ppm 以下)及长期稳定性(年变化率小于50ppm )。

从品种上讲可以有金属膜电阻、线绕电阻、金属箔电阻。

但从整体指标上看,金属箔电阻明显要比其它几类电阻精密得多。

第一只金属箔电阻是1962年由物理学家 Felix Zandman 博士发明的,在随后发展的五十多年间,金属箔电阻在要求高精度、高稳定性、高可靠性的应用方面远远超越其他电阻技术,满足了各种行业的高端应用需求,如航空航天、军用装备、精密测量、医疗设备等领域。

目前世界上有三家公司掌握着这种电阻的生产技术,分别是以色列的Vishay (威世精密测量集团,包括被Vishay 收购的AE )、中国的山东航天正和电子有限公司(原济宁元器件三厂)、中国的北京718友晟电子有限公司(原北京718厂)。

从金属箔电阻的整体技术水平上来说,威士精密测量集团占有绝对的优势。

尤其是新研发的Z-Foil 金属箔电阻技术,使各项技术指标又有了大幅提高,如在-55℃~+125℃温度范围内、+25℃参考温度下,Z 箔电阻具有±0.2 ppm/°C 典型TCR 。

下面讲一讲其作为精密电阻的一些主要技术参数⏹ 温度系数(TCR)● ±5 ppm/ºC 典型(-55 ºC to +125 ºC, +25 ºC ref.)⏹ 额定功率● 1Wat +125 ºC⏹ 负载寿命稳定性: ±0.005 % (50ppm) at +70 ºC, 5000 小时⏹ 精度: 0.005 % (十万分之五)⏹ 阻值范围: 0.5Ω to 1 M Ω⏹ 静电放电负荷 (ESD) 至少25, 000 V⏹ 无感无容设计⏹ 上升时间: 1 ns 无振铃⏹ 热稳定时间< 1 sec (常规阻值的稳态值在10ppm 以内)⏹ 电流噪声: 0.010 μV (RMS)/Volt 加载电压(< - 40 dB)⏹ 热EMF: 0.05 µV/ºC⏹ 电压系数: < 0.1 ppm/V在图是一无封装外壳的金属箔电阻,阻值是由覆着在基板上的金属箔经过激光刻蚀形成的。

厚膜电阻和金属膜电阻

厚膜电阻和金属膜电阻

厚膜电阻和金属膜电阻引言电阻是电学中常见的一个基本元件,用于控制电流的流动和调节电路的性能。

厚膜电阻和金属膜电阻是常用的两种电阻类型,它们在电子元器件中具有重要的应用。

本文将深入探讨厚膜电阻和金属膜电阻的特点、制造工艺、性能比较以及应用领域等方面的内容。

一、厚膜电阻1. 厚膜电阻的概念厚膜电阻是指将厚度在几个微米至数十微米之间的电阻膜沉积在非导电材料的基底上制成的电阻元件。

其特点是具有较高的电阻值,广泛应用于各类电子电路中。

厚膜电阻的制作工艺相对简单,成本较低,能够满足大批量生产的需求。

2. 厚膜电阻的制作工艺厚膜电阻的制作主要包括以下几个步骤: - 基底制备:选择非导电材料作为基底,如陶瓷、玻璃等。

基底的表面需要进行特殊处理,以提高膜层的附着力。

- 电阻膜的沉积:利用溶液或气相传送的方法,在基底表面沉积电阻膜,如采用丝网印刷、喷涂、蒸镀等技术。

沉积的膜层的厚度可以通过控制沉积时间和溶液浓度来实现。

- 烧结和热处理:将沉积的膜层进行烧结或热处理,使其结合更牢固,提高耐久性和稳定性。

- 电阻值调整:通过控制电阻膜的厚度和尺寸,以及选择适当的电阻材料,可以实现不同的电阻值。

3. 厚膜电阻的特点厚膜电阻相比其他类型的电阻具有如下特点: - 较高的电阻值:厚膜电阻的电阻值范围广泛,可以达到几欧姆至几兆欧姆,适用于不同的电路应用。

- 较好的稳定性:经过烧结和热处理后的厚膜电阻具有较好的耐久性和稳定性,在长期使用中电阻值变化较小。

- 较低的温度系数:厚膜电阻的温度系数一般较低,可以在一定范围内适应温度变化的要求。

- 较低的成本:相比于金属膜电阻等其他类型的电阻,厚膜电阻的制作成本较低。

二、金属膜电阻1. 金属膜电阻的概念金属膜电阻是将金属薄膜沉积在基底上制成的电阻元件。

金属膜电阻具有较高的精度和稳定性,广泛应用于高精度电子设备中。

2. 金属膜电阻的制作工艺金属膜电阻的制作工艺相对较为复杂,包括以下步骤: - 基底制备:选择适当的基底材料,如硅、玻璃等,并进行表面处理以提高金属薄膜的附着力。

电阻的分类与特点

电阻的分类与特点

1.薄膜类在玻璃或陶瓷基体上沉积一层碳膜、金属膜、金属氧化膜等形成电阻薄膜,膜的厚度一般在几微米以下。

(1)金属膜电阻(型号:RJ)。

在陶瓷骨架表面,经真空高温或烧渗工艺蒸发沉积一层金属膜或合金膜。

其特点是:精度高、稳定性好、噪声低、体积小、高频特性好。

且允许工作环境温度范围大(-55~+125℃)、温度系数低((50~100)×10-6/℃)。

目前是组成电子电路应用最广泛的电阻之一。

常用额定功率有1/8W、1/4W、1/2W、1W、2W等,标称阻值在10W~10MW之间。

(2)金属氧化膜电阻(型号:RY)。

在玻璃、瓷器等材料上,通过高温以化学反应形式生成以二氧化锡为主体的金属氧化层。

该电阻器由于氧化膜膜层比较厚,因而具有极好的脉冲、高频和过负荷性能,且耐磨、耐腐蚀、化学性能稳定。

但阻值范围窄,温度系数比金属膜电阻差。

(3)碳膜电阻(型号:RT)。

在陶瓷骨架表面上,将碳氢化合物在真空中通过高温蒸发分解沉积成碳结晶导电膜。

碳膜电阻价格低廉,阻值范围宽(10W~10MW),温度系数为负值。

常用额定功率为1/8W~10W,精度等级为±5%、±10%、±20%,在一般电子产品中大量使用。

2.合金类用块状电阻合金拉制成合金线或碾压成合金箔制成电阻,主要包括:(1)线绕电阻(型号:RX)。

将康铜丝或镍铬合金丝绕在磁管上,并将其外层涂以珐琅或玻璃釉加以保护。

线绕电阻具有高稳定性、高精度、大功率等特点。

温度系数可做到小于10-6/℃,精度高于±0.01%,最大功率可达200W。

但线绕电阻的缺点是自身电感和分布电容比较大,不适合在高频电路中使用。

(2)精密合金箔电阻(型号:RJ)。

在玻璃基片上粘和一块合金箔,用光刻法蚀出一定图形,并涂敷环氧树脂保护层,引线封装后形成。

该电阻器最大特点是具有自动补偿电阻温度系数功能,故精度高、稳定性好、高频响应好。

这种电阻的精度可达±0.001%,稳定性为±5×10-4%/年,温度系数为±10-6/℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子知识日前,Vishay Intertechnology, Inc.宣布,推出采用2012和4527外形尺寸的新系列表面贴装的高精度、高稳定性金属膜电阻--- PSF系列。

该系列电阻具有±5 ppm/℃的极低温度系数和0.01%的容差,在各种环境条件下均具有优异的稳定性。

PSF器件是Vishay的轴向引线PTF系列电阻的表面贴装版本,为精密测试和测量系统,以及军工、航天和工业设备和仪表中的高精度应用进行了优化。

PSF2012的尺寸为0.200英寸x 0.125英寸(5.08mmx 3.18mm),厚度为0.096英寸(2.44 mm),功率等级为0.125W,工作电压为200V。

PSF4527的尺寸为0.455英寸x 0.275英寸(11.56mmx6.98mm),厚度为0.167英寸(4.24 mm),具有0.25W的功率等级和300V的工作电压。

器件具有规范的包覆式接头,避免由于热膨胀系数不同而导致焊锡圆角破裂的风险,坚固耐用的模压密封优化了恶劣环境中的产品性能。

电阻工作温度范围:-55℃~+150℃。

器件规格表:IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。

欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。

可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。

IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。

非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。

实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。

大多数器件IBIS模型均可从互联网上免费获得。

可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。

欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。

可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。

IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。

非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。

实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。

大多数器件IBIS模型均可从互联网上免费获得。

可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。

欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。

可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。

IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。

非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。

实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。

大多数器件IBIS模型均可从互联网上免费获得。

可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。

欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。

可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。

IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。

非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。

实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。

大多数器件IBIS模型均可从互联网上免费获得。

可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。

欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。

可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。

IBIS模型核由一个包含电流、电压和时序方面信息列表组成。

IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。

非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。

实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。

大多数器件IBIS模型均可从互联网上免费获得。

可以在同一个板上仿真几个不同厂商推出器件。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。

欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。

相关文档
最新文档