性能可靠的大功率开关电源电路图

合集下载

38V100A开关电源的设计

38V100A开关电源的设计

38V/100A可直接并联大功率AC/DC变换器引言随着电力电子技术的发展,电源技术被广泛应用于计算机、工业仪器仪表、军事、航天等领域,涉及到国民经济各行各业。

特别是近年来,随着IGBT的广泛应用,开关电源向更大功率方向发展。

研制各种各样的大功率,高性能的开关电源成为趋势。

某电源系统要求输入电压为AC220V,输出电压为DC38V,输出电流为100A,输出电压低纹波,功率因数>0.9,必要时多台电源可以直接并联使用,并联时的负载不均衡度<5%。

设计采用了AC/DC/AC/DC变换方案。

一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。

系统的主要环节有DC/DC电路、功率因数校正电路、PWM控制电路、均流电路和保护电路等。

1 有源功率因数校正环节由于系统的功率因数要求0.9以上,采用二极管整流是不能满足要求的,所以,加入了有源功率因数校正环节。

采用UC3854A/B控制芯片来组成功率因数电路。

UC3854A/B是Unitrode 公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进。

其特点是:采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%[1]。

图1是由UC3854A/B 控制的有源功率因数校正电路。

该电路由两部分组成。

UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。

功率部分由L2,C5,V等元器件构成Boost升压电路。

开关管V选择西门康公司的SKM75GB123D模块,其工作频率选在35kHz。

升压电感L2为2mH/20A。

C5采用四个450V/470μF的电解电容并联。

因为,设计的PFC电路主要是用在大功率DC/DC电路中,所以,在负载轻的时候不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。

此部分控制由图1中的比较器部分来实现。

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。

电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。

当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

3.单端正激式开关电源单端正激式开关电源的典型电路如图四所示。

这种电路在形式上与单端反激式电路相似,但工作情形不同。

当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。

为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。

由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。

大功率、宽范围调压开关电源的方案

大功率、宽范围调压开关电源的方案

⼤功率、宽范围调压开关电源的⽅案Vol.19No.3红 外 技 术43 <新电源>⼤功率、宽范围调压开关电源林 燕 林杰才(汕头⼤学电教中⼼,汕头,515063)(汕头⼤学电⼦信息⼯程系)【摘要】介绍⼀种⼤功率、调压范围宽的开关稳压电源。

主电路采⽤单端正激式结构,控制电路简单,⼯作可靠,维修⽅便。

【关键词】场效应管变换器脉宽调制图1 ⼤功率、宽调压开关电源电路原理框图Fig.1Block 2diagram of a high 2power ,wide 2range regulationswitching power supply收稿⽇期:1996-09-191 概述开关电源具有体积⼩,重量轻、效率⾼、成本低等优点,因此,在航天、计算机、汽车、现代化家电、仪表、通讯和⾃动控制等⽅⾯获得⼴泛应⽤。

然⽽⽬前市售开关电源,多系输出电压固定,或者调节范围⼩,为此我们研制了⼤功率直流输出电压稳定、⼤范围连续可调(0~150V ),主电路结构和控制电路简单,⼯作安全可靠,具有过流和短路保护、开关频率为20kHz 的稳压电源。

电路原理框图如图1。

由图可见,来⾃电⽹的220V 单相交流电,经晶闸管单相半控桥式整流、LC 滤波,再经DC/AC 变换器、整流、LC 滤波(称DC/DC 变换器),获得0~150V 连续可调的直流稳定输出电压U o ,此外,本机还由辅助电源,PWM 控制器,放⼤、隔离驱动电路,过流和短路保护等部分组成。

2 主电路为提⾼⼤范围可调输出电压稳定度,降低主开关元件耐压要求,⼜能减⼩整机体积和重量,本机采⽤晶闸管单相半控桥式整流滤波(此实⽤电路,见作者发表于本刊1995年第6期39页⼀⽂),为DC/DC 开关电源变换器提供直流稳定输⼊电压U i 。

本机变换器采⽤两功率场效应管、⼆极管箝位的单端正激式结构,主开关元件为功率V 2MOSFET 模块,电路如图2所⽰。

功率场效应管驱动功率⼩,⼯作速度⾼,⽆⼆次击穿,安全⼯作区宽,管耗⼩。

一种大功率可调开关电源的设计方案

一种大功率可调开关电源的设计方案

一种大功率可调开关电源的设计方案早晨的阳光透过窗帘洒在书桌上,一杯热咖啡散发着诱人的香气。

我坐在电脑前,开始构思这个大功率可调开关电源的设计方案。

这个方案可是我积累了十年经验的心血结晶,让我来一步步分解这个想法吧。

电源设计得满足高效率、高稳定性和可调性这三个核心需求。

想象一下,这个电源就像一位全能的厨师,不管你给它什么“食材”,它都能快速、高效地“烹饪”出你想要的“菜肴”。

那么,我们从哪里开始呢?一、拓扑结构选择电源的拓扑结构就像是建筑的基础框架,选择合适的拓扑结构,电源的性能才能得到保障。

考虑到大功率和可调性,我决定采用全桥LLC谐振变换器。

这种拓扑结构具有开关频率固定、效率高、输出电压可调等优点,就像是电源界的“瑞士军刀”,功能全面,可靠性强。

二、主电路设计主电路是电源的心脏,它负责将输入的电能转化为输出的电能。

在这个设计中,我选择了高性能的MOSFET和IGBT作为开关器件,它们就像是电源的“发动机”,提供强劲的动力。

同时,为了提高效率和减小开关损耗,我还采用了软开关技术,让开关过程更加平滑,就像是给发动机加了“润滑剂”。

三、控制策略控制策略就像是电源的“大脑”,它决定了电源的工作方式和性能。

在这个方案中,我采用了PID控制算法,它可以根据输出电压和电流的变化,自动调整开关器件的导通和关断时间,确保输出电压的稳定性和可调性。

PID控制算法就像是电源的“自动驾驶系统”,让电源在复杂环境下也能稳定运行。

四、保护措施电源的安全性能是至关重要的,就像汽车的安全气囊一样,关键时刻能救命。

在这个设计中,我增加了过压保护、过流保护、短路保护等多种保护措施,确保电源在各种异常情况下都能迅速做出响应,保护电路不受损害。

五、散热设计大功率电源在运行过程中会产生大量的热量,就像高性能的跑车在高速行驶时会产生热量一样。

为了防止电源过热,我采用了散热器加风扇的散热方式,确保电源在长时间运行过程中,温度始终保持在合理范围内。

利用TOP242N的开关电源电路设计

利用TOP242N的开关电源电路设计

利用TOP242N的开关电源电路设计开关电源基于自身的体积小巧和转换效率高的特点已在电子产品中得到了广泛的应用,特别是美国PI公司开发的TOPSwitch系列高频开关电源集成芯片的出现,使电路设计更为标准成熟、简洁便捷。

但该TOPSwitch系列的集成芯片其典型输入电压设计为不高于275V的情况下工作,在工业现场,电网的电压往往受用电负载的变化而变动,特别是负载较大时情况尤其严重,另外现场环境的干扰尖峰也会叠加在输入电压上一起进入电源电路,致使在恶劣环境下正常供电的电源芯片或其它的元件极其容易损坏。

超宽范围输入的电源可在输入80~400V的范围内正常工作,同时也为现场任意采用220V相电压或380V线电压,还是一次高压互感器出来的100V电压,均可直接使用提供了方便。

一、利用了TOP242N设计了一个实用的三路输出的开关电源,其输出分别为5V/0.6A、5V/0.1A、15V/0.15A,电路原理图如图1所示。

要求输入电压范围为交流80~400V,输出总功率约为6W左右。

1)前端电路设计当输入电压要求为AC400V时,考虑输入时电源的波动变化为±15%,则最高输入电压将达到460V左右,此输入电压经整流滤波后,其电压可达650V左右,再考虑加上输出反馈的电压Uor和漏感形成的尖峰电压叠加后其最高电压将超过800V,而该芯片的最高电压为700V,为了保证TOP242能正常安全工作,在设计前端电路时增加了一个MOS管,让MOS管与TOP242串接,并实现与TOP管同步开关来提高整体耐压。

本设计采用的MOS管是IR公司的IRFBC20,其耐压为600V,导通关断时间为几十个ns,这可以大大减少开关损耗。

MOS管的通断由TOP242N 控制,这样可以使MOS管和TOP242N内部的开关管时序保持一致,见图1。

2)外围控制电路设计该电路将TOP242N的极限电流设置为内部最大值,将TOP242N设为全频工作方式,开关频率为132kHz,把多功能脚M与S短接。

基于SG3525的开关电源设计

基于SG3525的开关电源设计

1 引言随着电子技术的高速发展,电子设备的种类与日俱增。

任何电子设备都离不开可靠的供电电源,对电源供电质量的要求也越来越高,而开关电源在效率、重量、体积等方面相对于传统的晶体管线性电源具有显着优势。

正是由于开关电源的这些特点,它在新兴的电子设备中得到广泛应用,已逐渐取代了连续控制式的线性电源。

图1 功率主电路原理图2 功率主电路本电源模块采用半桥式功率逆变电路。

如图1 所示,三相交流电经EM I 滤波器滤波,大大减少了交流电源输入的电磁干扰,同时防止开关电源产生的谐波串扰到输入电源端。

再经过桥式整流电路、滤波电路变成直流电压加在P、N 两点间。

P、N 之间接入一个小容量、高耐压的无感电容,起到高频滤波的作用。

半桥式功率变换电路与全桥式功率变换电路类似,只是其中两个功率开关器件改由两个容量相等的电容C1 和C2代替。

在实际应用中为了提高电容的容量以及耐压程度, C1 和C2 往往采用由多个等值电容并联组成的电容组。

C1、C2 的容量选值应尽可能大,以减小输出电压的纹波系数和低频振荡。

由于对体积和重量的限制, C1和C2 的值不可能无限大,为使输出电压的纹波达到规定的要求,该电容值有一个计算公式 , 即:式中, IL 为输出负载电流, V L 为输出负载电压,V M 为输入交流电压幅值, f 为输入交流电频率, VU为输出的纹波电压值。

这是一个理论上的计算公式,得到的满足要求的电容计算值比较大,实际取的电容应尽量大一些,由于输出端电压较小,也可以在二次整流滤波时加大电容,这样折算到该公式的电容值也不小。

C1 和C2 在这里实现了静态时分压,使V A= V in/2。

当VT1导通、VT2截止时,输入电流方向为图中虚线方向,向C2 充电,同时C1通过V T1 放电;当V T 2 导通、V T 1 截止时,输入电流方向为图中实线方向,向C1 充电,同时C2 通过V T 2 放电。

当V T1 导通、V T 2 截止时,V T 2 两端承受的电压为输入直流电压V in。

开关电源工作原理及电路图

开关电源工作原理及电路图

开关电源工作原理及电路图随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

开关电源常用保护电路图及软启动保护电路图

开关电源常用保护电路图及软启动保护电路图

开关电源常用保护电路-过热、过流、过压以及软启动保护电路1 引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源 . 同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间 . 但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便.为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路.2 开关电源的原理及特点2.1 工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成.功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能.它主要由开关三极管和高频变压器组成.图 1 画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V ,激励信号,续流二极管 Vp ,储能电感和滤波电容 C 组成.实际上,直流开关电源的核心部分是一个直流变压器.2.2 特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体( Mn-Zn )材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时 SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄.因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化.直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱.由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3 直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路.3.1 过电流保护电路在直流开关电源电路中,为了保护调整管在电路短路、电流增大时不被烧毁.其基本方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流.如图 2 所示,过电流保护电路由三极管 BG2 和分压电阻R4 、 R5 组成.电路正常工作时,通过 R4 与 R5 的分压作用,使得 BG2 的基极电位比发射极电位低,发射结承受反向电压.于是 BG2 处于截止状态(相当于开路),对稳压电路没有影响.当电路短路时,输出电压为零, BG2 的发射极相当于接地,则 BG2 处于饱和导通状态(相当于短路),从而使调整管 BG1 基极和发射极近于短路,而处于截止状态,切断电路电流,从而达到保护目的.3.2 过电压保护电路直流开关电源中开关稳压器的过电压保护包括输入过电压保护和输出过电压保护.如果开关稳压器所使用的未稳压直流电源(诸如蓄电池和整流器)的电压如果过高,将导致开关稳压器不能正常工作,甚至损坏内部器件,因此开关电源中有必要使用输入过电压保护电路.图 3 为用晶体管和继电器所组成的保护电路,在该电路中,当输入直流电源的电压高于稳压二极管的击穿电压值时,稳压管击穿,有电流流过电阻 R ,使晶体管 T 导通,继电器动作,常闭接点断开,切断输入.输入电源的极性保护电路可以跟输入过电压保护结合在一起,构成极性保护鉴别与过电压保护电路.3.3 软启动保护电路开关稳压电源的电路比较复杂,开关稳压器的输入端一般接有小电感、大电容的输入滤波器.在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍.这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断.另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏.为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电.为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,这种电路称之谓直流开关电源的“ 软启动” 电路 .如图 4 ( a )所示在电源接通瞬间,输入电压经整流桥( D1 ~ D4 )和限流电阻 R1 对电容器 C 充电,限制浪涌电流.当电容器 C 充电到约 80 %额定电压时,逆变器正常工作.经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻 R1 ,开关电源处于正常运行状态.为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图 4 ( b )所示电路替代 RC 延迟电路.3.4 过热保护电路直流开关电源中开关稳压器的高集成化和轻量小体积,使其单位体积内的功率密度大大提高,因此如果电源装置内部的元器件对其工作环境温度的要求没有相应提高,必然会使电路性能变坏,元器件过早失效.因此在大功率直流开关电源中应该设过热保护电路.本文采用温度继电器来检测电源装置内部的温度,当电源装置内部产生过热时,温度继电器就动作,使整机告警电路处于告警状态,实现对电源的过热保护.如图5 ( a )所示,在保护电路中将 P 型控制栅热晶闸管放置在功率开关三极管附近,根据 TT102 的特性(由 Rr 值确定该器件的导通温度, Rr 越大,导通温度越低),当功率管的管壳温度或者装置内部的温度超过允许值时,热晶闸管就导通,使发光二极管发亮告警.倘若配合光电耦合器,就可使整机告警电路动作,保护开关电源.该电路还可以设计成如图 5 ( b )所示,用作功率晶体管的过热保护,晶体开关管的基极电流被 N 型控制栅热晶闸管 TT201 旁路,开关管截止,切断集电极电流,防止过热.4 小结文中主要讨论了直流开关电源内部器件的各种保护方式,并介绍了一些具体电路.对一个给定的直流开关电源来说,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要.因为开关电源的保护方案和电路结构具有多样性,所以对具体电源装置而言,应选择合理的保护方案和电路结构.在实际应用中,通常选用几种保护方式加以组合的方式构成完善的保护系统,确保直流开关电源的正常工作.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档