最新三极管作为开关电路的设计及应用上课讲义

合集下载

三极管工作原理(详解)课件

三极管工作原理(详解)课件

动态范围是指三极管能够放大的最小 信号和最大信号范围。在实际应用中, 三极管需要在一定的动态范围内工作, 以保证其正常性能。
放大பைடு நூலகம்数
三极管的放大倍数称为β值,它表示 集电极电流变化量与基极电流变化量 之比。放大倍数是三极管性能的重要 指标之一。
载流子的传
空穴与电子
在半导体材料中,空穴和电子是两种重要的载流子。空穴实际上是半导体原子缺失的电子 ,而电子则是自由移动的负电荷。
注意散热
对于大功率三极管,需要特别注意散热问题,采取适当的散热措施, 以防止过热损坏。
三极管的常见故障与排除方法
常见故障
三极管常见的故障包括开路、短路、性能不良等。
排除方法
针对不同的故障,可以采用相应的排除方法,如更换、调试 、修复等。同时,还需要注意检查外围电路,以确定故障是 否由外围电路引起。
超大规模集成电路的发展,三 极管的应用更加广泛,涉及到 通信、计算机、消费电子等多
个领域。
三极管的研究现状与进展
新材料
新型半导体材料如硅碳化物、氮化镓等具有更高的电子迁移率和 耐压能力,能够提高三极管的性能。
新结构
新型三极管结构如FinFET、GaN HEMT等能够提高三极管的开 关速度和降低能耗。
04
三极管的应用
放大电路中的应用
01
02
03
信号放大
三极管作为放大元件,通 过输入信号控制三极管的 电流放大,实现信号的线 性放大。
功率放大
利用三极管的电流放大作 用,将微弱的信号放大为 较大的功率信号,用于驱 动负载。
集成放大器
将多个三极管集成在一个 芯片上,实现多级放大, 提高放大倍数和稳定性。
06

三极管 开关电路 设计

三极管 开关电路 设计

三极管开关电路设计三极管是一种常用的电子元件,广泛应用于各种电路中。

其中,三极管开关电路是三极管的一个重要应用之一。

本文将从三极管开关电路的基本原理、工作方式以及设计要点等方面进行介绍和分析。

一、三极管开关电路的基本原理三极管开关电路是利用三极管的放大和截止特性来实现信号的开关控制。

三极管有三个引脚,分别为基极(B)、发射极(E)和集电极(C)。

在三极管开关电路中,通过控制基极电压的变化来控制三极管的导通和截止。

二、三极管开关电路的工作方式三极管开关电路有两种基本工作方式,分别为共发射极和共集电极。

1. 共发射极方式在共发射极方式的三极管开关电路中,输入信号通过一个电阻连接到三极管的基极,输出信号则从集电极获取。

当输入信号为低电平时,三极管处于截止状态,输出信号为高电平;当输入信号为高电平时,三极管处于饱和状态,输出信号为低电平。

这种工作方式适用于需要较大输出电流的场合。

2. 共集电极方式在共集电极方式的三极管开关电路中,输入信号通过一个电阻连接到三极管的基极,输出信号则从发射极获取。

当输入信号为低电平时,三极管处于饱和状态,输出信号为低电平;当输入信号为高电平时,三极管处于截止状态,输出信号为高电平。

这种工作方式适用于需要较大输入电阻的场合。

三、三极管开关电路的设计要点设计三极管开关电路时需要考虑以下几个要点:1. 选择合适的三极管型号:不同型号的三极管具有不同的最大电流和功率特性,需要根据具体应用场景选择合适的型号。

2. 确定电源电压和负载要求:根据电路的供电电压和负载要求来确定三极管的工作点和电路参数。

3. 设置合适的偏置电路:为了确保三极管在合适的工作区间内,需要设计合适的偏置电路。

4. 控制输入信号的幅度和频率:根据实际需求确定控制输入信号的幅度和频率,以确保三极管能够正常工作。

5. 考虑温度和可靠性问题:三极管在工作过程中会产生一定的热量,需要考虑散热和可靠性等问题,以确保电路的正常运行。

三极管作为开关电路的设计与应用

三极管作为开关电路的设计与应用

第一节基本三极管开关基本电路设计三极管除了可以当做交流信号放大器之外,也可以做为开关之用。

严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。

图1所示,即为三极管电子开关的基本电路图。

由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上,图1 基本的三极管开关输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。

详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区 (saturation)。

838电子一、三极管开关电路的分析设计由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。

通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于 0.3伏特。

(838电子资源) 当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。

欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。

欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。

在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕因此,基极电流最少应为:(式1)上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。

三极管开关电路 设计

三极管开关电路 设计

三极管开关电路设计三极管开关电路设计引言:三极管是一种重要的电子元件,广泛应用于各种电路中。

其中,三极管开关电路具有重要的应用价值。

本文将介绍三极管开关电路的设计原理、特点以及应用领域。

一、设计原理三极管开关电路是利用三极管的放大特性和开关特性来实现电路的开关控制。

其基本原理是通过控制输入信号的大小,来控制三极管的工作状态,从而实现电路的开关功能。

设计步骤:1. 确定输入信号的大小和形式:根据所需的控制功能,确定输入信号的大小和形式,可以是直流电压或者脉冲信号。

2. 选择三极管型号:根据输入信号的大小和工作频率,选择合适的三极管型号,确保其具有足够的放大能力和开关速度。

3. 确定电路拓扑结构:根据具体需求,选择合适的电路拓扑结构,常见的有共射、共基和共集等。

4. 确定电路参数:根据三极管的数据手册和电路设计要求,确定电路的各种参数,如电阻、电容等。

5. 进行电路仿真:利用电路仿真软件进行电路仿真,验证电路设计的正确性和稳定性。

6. 进行实际电路搭建:根据仿真结果,进行实际电路的搭建,确保电路能够正常工作。

7. 进行测试和调试:对实际搭建的电路进行测试和调试,确保电路的性能符合设计要求。

二、特点三极管开关电路具有以下特点:1. 响应速度快:三极管具有较高的开关速度,可以实现快速的开关控制。

2. 控制灵活:通过改变输入信号的大小和形式,可以实现对电路的灵活控制。

3. 放大能力强:三极管具有较高的放大能力,可以放大输入信号的幅度。

4. 体积小:由于三极管本身体积小,因此三极管开关电路可以实现紧凑的设计。

三、应用领域三极管开关电路广泛应用于各个领域,以下是几个常见的应用领域:1. 电源开关:三极管开关电路可以用于电源开关控制,实现对电源的高效开关和调节。

2. LED驱动:三极管开关电路可以用于LED灯的驱动控制,实现对LED灯的亮度调节和开关控制。

3. 电机控制:三极管开关电路可以用于电机的控制,实现对电机的启停和速度调节。

三极管开关电路设计

三极管开关电路设计

三极管开关电路设计三极管是一种常用的电子器件,在电路设计中起着重要作用。

在设计开关电路时,三极管也可以用来实现信号放大和信号切换的功能。

本文将从开关电路的基本原理、三极管的工作原理和开关电路的设计要点几个方面进行详细介绍,以期帮助读者正确理解开关电路的设计原则和方法。

一、开关电路的基本原理开关电路是一种可以将电流或电压切换的电路,它通常由电源、开关和负载三部分组成。

当开关处于打开状态时,电流或电压可以通过负载,从而完成电路的通路;当开关处于关闭状态时,电流或电压无法通过负载,从而切断电路。

可以通过对开关的控制,实现电路的开关动作。

二、三极管的工作原理三极管是一种受控器件,它包含三个电极:发射极(Emitter)、基极(Base)和集电极(Collector)。

三极管的工作原理可以用两个PN结的导电性改变来解释。

当在基极-发射极间施加正向电压时,PN结的导电性将会改变,从而使电流从基极流向发射极。

这时,三极管处于饱和区,可以将电流从集电极流向负载,起到放大信号的作用。

当在基极-发射极间施加反向电压时,PN结间的阻断作用使得三极管不导电,这时,三极管处于截止区,电流无法从集电极流向负载,起到切断信号的作用。

三、开关电路设计要点1.选择适当的三极管。

在设计开关电路时,应根据实际需求选择适当的三极管。

一般来说,NPN型三极管适用于负载为正电压的电路,PNP型三极管适用于负载为负电压的电路。

此外,还需考虑三极管的最大功耗和最大电流等参数。

2.设置合适的电阻。

在三极管的基极和发射极之间设置一个合适的电阻,可以限制三极管的基极电流,避免损坏。

电阻的数值可以通过欧姆定律计算得出。

3.设置合适的输入信号电平。

在应用中,要合理设置输入信号的电平,以保证三极管工作在合适的工作区间。

若输入信号电平过低,可能无法使三极管完全饱和,导致开关电路不能正常工作;若输入信号电平过高,可能导致三极管工作在超过其额定电流和功耗的极限,从而缩短其使用寿命。

三极管PPT教学讲义

三极管PPT教学讲义

收集 载流
基区的少数载流子——ICBO

VBB
VCC
电流分配与控制 IE= IEN+ IEP 且有IEN>>IEP IEN=ICN+ IBN 且有ICN>>IBN IC=ICN+ ICBO
IB=IEP+ IBN-ICBO
IE =IC+IB
VBB
VCC
电流分配与控制
• 使晶体管具有电流分配与控制能力的两个重要条件
– ③集电结对非平衡载流子的收集作用漂移为主
4.1.3 三极管各电极的电流关系
集电极电流IC和发射极电流IE之间的关系定义:
ICN/IE
称为共基极直流电流放大系数。
表示集电极收集到的电子电流ICN与总发射极电流IE的比
值。ICN与IE相比,因ICN中没有IEP和IBN,所以 的值小
于1, 但接近1,一般为0.98~0.999 。
BJT 结构
从外表上看两个N区,或两个P区是对称的,实际上: 发射区的掺杂浓度大,发射载流子 集电区掺杂浓度低,且集电结面积大,收集载流子 基区得很薄,控制载流子分配,其厚度一般在几个微米至几十
个微米.
+
BJT的三种组态
CB Common Base :共基极,基 极为公共电极
CE Common Emitter :共发射极, 发射极为公共电极
强,IC增大. JC和JE都正偏, VCES约等于0.3V,
ic VCE=VBE

6和 放
区 4


2
IC< IB 0
饱和时c、e间电压记为VCES,深 度饱和时VCES约等于0.3V.
截止区
246

《晶体三极管及其开关作用核心素养目标教学设计、教材分析与教学反思-2023-2024学年高中通用技术

《晶体三极管及其开关作用核心素养目标教学设计、教材分析与教学反思-2023-2024学年高中通用技术

《晶体三极管及其开关作用》导学案导学目标:1. 了解晶体三极管的基本结构和工作原理。

2. 掌握晶体三极管的放大和开关作用。

3. 能够应用晶体三极管进行电路设计和实验操作。

导学内容:一、晶体三极管的基本结构和工作原理1. 晶体三极管的结构:晶体三极管由三个掺杂不同的半导体材料组成,分别是发射极、基极和集电极。

2. 晶体三极管的工作原理:当在基极端加上一个小的输入信号时,就可以控制从发射极到集电极的电流,实现信号放大的功能。

二、晶体三极管的放大作用1. 放大作用:晶体三极管可以放大输入信号的幅度,使得输出信号比输入信号大很多倍。

2. 放大倍数:晶体三极管的放大倍数取决于其工作状态和外部电路的设计。

三、晶体三极管的开关作用1. 开关作用:晶体三极管可以在两个状态之间切换,即导通和截止状态,实现电路的开关功能。

2. 开关电路设计:通过合理设计晶体三极管的外部电路,可以实现各种不同的开关功能。

导学步骤:第一步:进修晶体三极管的基本结构和工作原理,了解其放大和开关作用。

第二步:通过实验操作,观察晶体三极管在不同工作状态下的电流变化,验证其放大和开关功能。

第三步:设计一个简单的晶体三极管电路,实现一个小型的LED灯的开关控制,体会晶体三极管在电路中的应用。

第四步:总结本节课的进修内容,回答相关问题,稳固对晶体三极管的理解和应用。

课后作业:1. 阅读相关资料,进一步了解晶体三极管的特性和应用。

2. 设计一个新颖的晶体三极管电路,实现一个有趣的功能。

3. 思考晶体三极管在摩登电子产品中的应用,并写出一篇小论文。

导学案参考资料:1. 《晶体管原理及应用》2. 《电子技术基础》3. 《晶体管电路设计手册》希望通过本节课的进修,同砚们能够深入了解晶体三极管的特性和应用,掌握其在电路设计中的重要作用,为将来的进修和钻研打下坚实的基础。

祝大家进修顺利!。

npn三极管开关电路

npn三极管开关电路

npn三极管开关电路一、引言npn三极管是一种常用的电子元件,广泛应用于各种电路中。

其中,npn三极管开关电路是其常见的一种应用。

本文将详细介绍npn三极管开关电路的原理、特点以及应用。

二、npn三极管开关电路的原理npn三极管开关电路是利用npn三极管的导通和截止特性来控制电路的通断。

其原理如下:1. 导通状态:当npn三极管的基极正极电压高于发射极时,基极发生正向偏置,此时电流流经集电极-发射极之间,三极管导通,电路通断由三极管的负载决定。

2. 截止状态:当npn三极管的基极正极电压低于发射极时,基极发生反向偏置,此时电流无法流经集电极-发射极之间,三极管截止,电路处于断开状态。

三、npn三极管开关电路的特点npn三极管开关电路具有以下特点:1. 快速响应:npn三极管的导通和截止转换速度非常快,使得开关电路能够迅速响应控制信号的变化。

2. 高可靠性:npn三极管具有较高的工作稳定性和可靠性,能够在长时间内稳定地工作。

3. 大电流承载能力:npn三极管可以承受较大的集电极电流,因此适用于需要大电流的开关电路。

4. 低功耗:npn三极管的开关电路在截止状态时几乎不消耗功率,因此能够节省能源。

四、npn三极管开关电路的应用npn三极管开关电路可以应用于各种电路中,常见的应用包括:1. 电源开关:利用npn三极管开关电路可以实现对电源的开关控制,从而实现对电路的通断控制。

2. 自动控制系统:npn三极管开关电路可以作为自动控制系统中的开关元件,用于控制各种设备的启停。

3. 电子计算机系统:npn三极管开关电路可以用于电子计算机系统中的存储器开关控制、信号传输等方面。

4. 传感器控制:npn三极管开关电路可以与传感器结合使用,实现对传感器信号的放大和控制。

五、总结npn三极管开关电路是一种常见且重要的电子电路应用。

通过对npn三极管的导通和截止特性的控制,可以实现对电路的通断控制。

npn三极管开关电路具有快速响应、高可靠性、大电流承载能力和低功耗等特点,广泛应用于电源开关、自动控制系统、电子计算机系统和传感器控制等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节基本三极管开关基本电路设计三极管除了可以当做交流信号放大器之外,也可以做为开关之用。

严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。

图1所示,即为三极管电子开关的基本电路图。

由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上,图1 基本的三极管开关输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。

详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。

838电子一、三极管开关电路的分析设计由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。

通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。

(838电子资源) 当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。

欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。

欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。

在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕因此,基极电流最少应为:(式1)上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。

欲使开关闭合,则其Vin值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。

由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解:(式2)一旦基极电压超过或等于(式2) 式所求得的数值,三极管便导通,使全部的供应电压均跨在负载电阻上,而完成了开关的闭合动作。

总而言之,三极管接成图1的电路之后,它的作用就和一只与负载相串联的机械式开关一样,而其启闭开关的方式,则可以直接利用输入电压方便的控制,而不须采用机械式开关所常用的机械引动(mechanical actuator)﹑螺管柱塞(solenoid plunger)或电驿电枢(relay armature)等控制方式。

为了避免混淆起见,本文所介绍的三极管开关均采用NPN三极管,当然NPN三极管亦可以被当作开关来使用,只是比较不常见罢了。

例题1试解释出在图2的开关电路中,欲使开关闭合(三极管饱和) 所须的输入电压为何?并解释出此时之负载电流与基极电流值?解:由2式可知,在饱和状态下,所有的供电电压完全跨降于负载电阻上,因此由方程式(1) 可知因此输入电压可由下式求得﹕图2 用三极管做为灯泡开关由例题1-1得知,欲利用三极管开关来控制大到1.5A 的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。

此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。

二、三极管开关与机械式开关的比较截至目前为止,我们都假设当三极管开关导通时,其基极与射极之间是完全短路的。

事实并非如此,没有任何三极管可以完全短路而使VCE=0,大多数的小信号硅质三极管在饱和时,VCE(饱和) 值约为0.2伏特,纵使是专为开关应用而设计的交换三极管,其VCE(饱和) 值顶多也只能低到0.1伏特左右,而且负载电流一高,VCE(饱和) 值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和) 值可以不予考虑,但是在测试交换电路时,必须明白VCE(饱和) 值并非真的是0。

虽然VCE(饱和)的电压很小,本身微不足道,但是若将几个三极管开关串接起来,其总和的压降效应就很可观了,不幸的是机械式的开关经常是采用串接的方式来工作的,如图3(a)所示,三极管开关无法模拟机械式开关的等效电路(如图3(b)所示)来工作,这是三极管开关的一大缺点。

图3 三极管开关与机械式开关电路幸好三极管开关虽然不适用于串接方式,却可以完美的适用于并接的工作方式,如图4所示者即为一例。

三极管开关和传统的机械式开关相较,具有下列四大优点﹕图4三极管开关之并联联接(1)三极管开关不具有活动接点部份,因此不致有磨损之虑,可以使用无限多次,一般的机械式开关,由于接点磨损,顶多只能使用数百万次左右,而且其接点易受污损而影响工作,因此无法在脏乱的环境下运作,三极管开关既无接点又是密封的,因此无此顾虑。

(2)三极管开关的动作速度较一般的开关为快,一般开关的启闭时间是以毫秒(ms)来计算的,三极管开关则以微秒(μs)计。

(3)三极管开关没有跃动(bounce) 现象。

一般的机械式开关在导通的瞬间会有快速的连续启闭动作,然后才能逐渐达到稳定状态。

(4)利用三极管开关来驱动电感性负载时,在开关开启的瞬间,不致有火花产生。

反之,当机械式开关开启时,由于瞬间切断了电感性负载样上的电流,因此电感之瞬间感应电压,将在接点上引起弧光,这种电弧非但会侵蚀接点的表面,亦可能造成干扰或危害。

三、三极管开关的测试三极管开关不像机械式开关可以光凭肉眼就判断出它目前的启闭状态,因此必须利用电表来加以测试。

在图5所示的标准三极管开关电路中,当开关导通时,VEC 的读值应该为0,反之当开关切断时,VCE应对于VCC。

三极管开关在切断的状况下,由于负载上没有电流流过,因此也没有压降,所以全部的供应电压均跨降在开关的两端,因此其VCE值应等于VCC,这和机械式开关是完全相同的。

如果开关本身应导通而未导通,那就得测试Vin的大小了。

欲保证三极管导通,其基极的Vin电压值就必须够高,如果Vin值过低,则问题就出自信号源而非三极管本身了。

假使在Vin的准位够高,驱动三极管导通绝无问题时,而负载却仍未导通,那就要测试电源电压是否正常了。

在导通的状态下,硅三极管的VBE值约为0.6伏特,假使Vin值够高,而VBE值却高于和低于0.6伏特,例如VBE为1.5伏特或0.2伏特,这表示基射极接面可能已经损坏,必须将三极管换掉。

当然这一准则也未必百分之百正确,许多大电流额定的功率三极管,其VBE值经常是超过1伏特的,因此即使VBE的读值达到1.5伏特,也未必就能肯定三极管的接面损坏,这时候最好先查阅三极管规格表后再下断言。

一旦VBE正常且有基极电流流动时,便必须测试VCE值,假使VCE趋近于VCC,就表示三极管的集基接面损坏,必须换掉三极管。

假使VCE趋近于零伏特,而负载仍未导通,这可能是负载损坏,因此必须检换负载。

图5 三极管开关电路,各主要测试电的电压图当Vin降为低电压准位,三极管理应截止而切断负载,如果负载仍旧未被切断,那可能是三极管的集基极和集射极短路,必须加以置换。

第二节基本三极管开关之改进电路有时候,我们所设定的低电压准位未必就能使三极管开关截止,尤其当输入准位接近0.6伏特的时候更是如此。

想要克服这种临界状况,就必须采取修正步骤,以保证三极管必能截止。

图6就是针对这种状况所设计的两种常见之改良电路。

图6 确保三极管开关动作,正确的两种改良电路图6(a) 的电路,在基射极间串接上一只二极管,因此使得可令基极电流导通的输入电压值提升了0.6伏特,如此即使Vin值由于信号源的误动作而接近0.6伏特时,亦不致使三极管导通,因此开关仍可处于截止状态。

图6(b)的电路加上了一只辅助-截止(hold-off)电阻R2,适当的R1,R2及Vin值设计,可于临界输入电压时确保开关截止。

由图6(b)可知在基射极接面未导通前(IB0),R1和R2形成一个串联分压电路,因此R1必跨过固定(随Vin而变) 的分电压,所以基极电压必低于Vin值,因此即使Vin接近于临界值(Vin=0.6伏特) ,基极电压仍将受连接于负电源的辅助-截止电阻所拉下,使低于0.6伏特。

由于R1,R2及VBB值的刻意设计,只要Vin在高值的范围内,基极仍将有足够的电压值可使三极管导通,不致受到辅助-截止电阻的影响。

加速电容器(speed-up capacitors)在要求快速切换动作的应用中,必须加快三极管开关的切换速度。

图7为一种常见的方式,此方法只须在RB电阻上并联一只加速电容器,如此当Vin由零电压往上升并开始送电流至基极时,电容器由于瞬间充电,电容两端电压不变,即形同短路,然而此时却有瞬间的大电流由电容器流向基极,因此也就加快了开关导通的速度。

稍后,待充电完毕后,电容就形同开路,而不影响三极管的正常工作。

图7 加了加速电容器的电路一旦输入电压由高准位降回零电压准位时,电容器会在极短的时间内瞬间放电维持电压不变令基射极接面变成反向偏压,而使三极管开关迅速切断,这是由于电容器的左端原已充电为正电压,如图7所示,在输入电压下降的瞬间,电容器两端的电压无法瞬间改变仍将维持于定值,故输入电压的下降立即使基极电压随之而下降,因此令基射极接面成为反向电压,而迅速令三极管截止。

适当的选取加速电容值可使三极管开关的切换时间减低至几十分之微秒以下,大多数的加速电容值约为数百个微微法拉(pF) 。

有时候三极管开关的负载并非直接加在集电极与电源之间,而是接成图8的方式,这种接法和小信号交流放大器的电路非常接近,只是少了一只输出耦合电容器而已。

这种接法和正常接法的动作恰好相反,当三极管截止时,负载获能,而当三极管导通时,负载反被切断,这两种电路的形式都是常见的,因此必须具有清晰的分辨能力。

图8 将负载接于三极管开关电路的改进接法图腾式开关(Totem-pole switches)假使图8的三极管开关加上了电容性负载(假定其与RLD并联) ,那么在三极管截止后,由于负载电压必须经由RC电阻对电容慢慢充电而建立,因此电容量或电阻值愈大,时间常数(RC) 便愈大,而使得负载电压之上升速率愈慢,在某些应用中,这种现象是不容许的,因此必须采用图9的改良电路。

图9 图腾式三极管开关图腾式电路是将一只三极管直接迭接于另一三极管之上所构成的,它也因此而得名。

欲使负载获能,必须使Q1三极管导通,同时使Q2三极管截断,如此负载便可经由Q1而连接至VCC上,欲使负载去能,必须使Q1三极管截断,同时使Q2三极管导通,如此负载将经由Q2接地。

相关文档
最新文档