循环流化床技术

合集下载

循环流化床烟气再循环技术方案

循环流化床烟气再循环技术方案

循环流化床烟气再循环技术方案引言循环流化床烟气再循环技术是一种应用于燃煤电厂的先进烟气净化技术。

它通过对烟气中的污染物进行循环流化床内的再循环,实现了烟气净化和能源回收的双重效果。

本文将详细介绍循环流化床烟气再循环技术方案的原理、工艺流程和应用前景。

原理循环流化床烟气再循环技术的原理是将烟气中的污染物与再循环的固体颗粒进行接触和反应,通过循环流化床内的物理和化学作用,达到净化烟气的目的。

具体原理如下:1. 循环流化床:循环流化床是一种颗粒物料与气体的流化床,通过气体的上升和颗粒物料的循环运动,形成了高度混合的流动床层。

在循环流化床中,颗粒物料具有较大的比表面积和良好的热传递性能,能够有效地与烟气中的污染物进行接触和反应。

2. 催化剂添加:循环流化床烟气再循环技术中常使用催化剂,催化剂可以加速污染物的转化和去除过程。

催化剂的选择应根据烟气中的污染物种类和浓度进行优化,以提高烟气的净化效果。

3. 再循环系统:循环流化床烟气再循环技术中,通过再循环系统将循环流化床中的颗粒物料和烟气进行分离,并将再循环的颗粒物料重新注入循环流化床。

再循环系统的设计应考虑颗粒物料与烟气的分离效果、颗粒物料的再循环率以及系统的稳定性等因素。

工艺流程循环流化床烟气再循环技术的工艺流程包括烟气净化和能源回收两个主要部分。

1. 烟气净化:烟气净化是循环流化床烟气再循环技术的核心部分。

烟气首先进入循环流化床,与循环流化床内的固体颗粒进行接触和反应,污染物被吸附、转化或吸收到颗粒物料表面。

经过一段时间的循环,被吸附的污染物与颗粒物料一同进入再循环系统,在再循环系统中与其他处理设备相结合,进一步被去除。

2. 能源回收:循环流化床烟气再循环技术能够实现对烟气中的能源进行回收利用。

在循环流化床中,烟气与颗粒物料的接触和反应产生了大量的热量,这部分热量可以通过烟气余热锅炉等设备进行回收,用于发电或供热等用途。

同时,循环流化床烟气再循环技术还可以降低烟气中的二氧化碳排放量,实现低碳环保发展。

循环流化床燃烧技术

循环流化床燃烧技术

循环流化床燃烧技术循环流化床燃烧技术是最近20多年来发展起来的新一代高效、低污染的清洁燃烧技术,也是目前商业化程度最好,应用前景最广的洁净煤燃烧技术,它的燃烧技术比较简单,当进炉的燃料粒度循环流化床锅炉独特的流体动力特性和结构使其具备有许多独特的优点。

1、燃料适应性甚广这是循环流化床锅炉的主要优点之一。

在循环流化床锅炉中按重量计,燃料仅占床料的1%~3%,其余是不可燃的固体颗粒,如脱硫剂、灰渣或砂。

循环流化床锅炉的特殊流体动力特性使得气~固和固~固混合非常好,因此燃料进人炉膛后很快与大量床料混合,燃料被迅速加热至高于着火温度,而同时床层温度没有明显降低。

只要燃料的热值大于加热燃料本身和燃烧所需的空气至着火温度所需的热量,上述特点就可以使得循环流化床锅炉不需辅助燃料而燃用任何燃料。

循环流化床锅炉既可燃用优质煤,也可燃用各种劣质燃料,如高灰煤、高硫煤、高灰高硫煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、石油焦、尾矿、炉渣、树皮、废木头、垃圾等。

2、冷却效率高循环流化床锅炉的燃烧效率要比鼓泡流化床锅炉高,燃烧效率通常在97.5%~99.5%范围内,可与煤粉锅炉相媲美.循环流化床锅炉燃烧效率高是因为有下述特点:气~固混合良好;燃烧速率高,特别是对粗粒燃料;绝大部分未燃尽的燃料被再循环至炉膛。

与齿槽流化床锅炉相同,循环流化床锅炉能够在较宽的运转变化范围内维持低的冷却效率,甚至燃用细粉含量低的燃料时也就是如此。

循环流化床锅炉的脱硫比鼓泡流化床锅炉更加有效。

典型的循环流化床锅炉达到90%脱硫效率时所需的脱硫剂化学当量比为1.5~2.5,鼓泡流化床锅炉达到90%脱硫效率则需脱硫剂化学当量比为2.5~3,甚至更高,有时即使ca/s比再高,鼓泡流化床锅炉也不能达到90%的脱硫效率。

与冷却过程相同,烟气反应展开得较为缓慢。

为了并使氧化钙(研磨石灰石)充份转变为硫酸钙,烟气中的二氧化硫气体必须与脱硫剂存有充份短的碰触时间和尽可能小的面积。

循环流化床锅炉技术

循环流化床锅炉技术

循环流化床锅炉技术循环流化床锅炉技术是一种高效、环保、节能的燃烧技术。

该技术利用循环流化床的高速气流把燃料物料悬浮在床层中,使其充分混合和燃烧,有效地保证了燃烧的充分程度和热能的利用率。

与传统锅炉相比,循环流化床锅炉具有热效率高、燃烧效率高、废气排放少、灰渣利用价值高等优点,因此在能源领域得到广泛应用。

一、循环流化床锅炉的基本原理循环流化床锅炉是一种利用循环流化床燃烧技术的锅炉,其基本原理是利用高速气流产生的快速搅拌作用,在床层中形成“气固两相流”,使燃料和空气充分混合并燃烧。

在循环流化床锅炉中,床层上方的空气被强制送入到床层中,形成了高速气流,使床层中的燃料物料悬浮在气流中并产生强烈的搅拌,从而形成了“气固两相流”。

床层下方设置有回料装置,将燃烧后的废渣回收到床层中,实现了废渣的循环利用。

二、循环流化床锅炉的优点1、热效率高:循环流化床锅炉可以利用燃料中的所有热能,强化了燃烧过程中的传热和传质,从而提高了锅炉的热效率。

2、燃烧效率高:循环流化床锅炉中燃烧完成度高,因为床料悬浮在气流中,使空气与燃料充分混合,从而实现了高效、充分的燃烧。

3、废气排放少:循环流化床锅炉的废气排放量低,废气中的二氧化硫和氮氧化物排放量远低于其他锅炉,对环境的影响小。

4、燃料适应性强:循环流化床锅炉可使用各种燃料,如煤、燃气、油、生物质等,具有一定的燃料适应性。

5、灰渣利用价值高:循环流化床锅炉中的灰渣细化程度高,易于回收利用,在土地改良、水泥生产和道路建设等领域具有广泛的使用价值。

三、循环流化床锅炉的应用领域循环流化床锅炉技术广泛应用于各个领域,如煤炭、石油、天然气、化工、冶金、烟草、食品、纺织等。

在煤炭领域,循环流化床锅炉可用于煤的燃烧,实现高效、低排放、节能的目的。

在化工、冶金、烟草等行业,循环流化床锅炉可用于燃烧废弃物、废气等,实现废物资源化、减少污染的目的。

综上所述,循环流化床锅炉技术是一种高效、环保、节能的燃烧技术,具有热效率高、燃烧效率高、废气排放少、灰渣利用价值高等优点,广泛应用于煤炭、石油、天然气、化工、冶金、烟草、食品、纺织等不同领域。

循环流化床锅炉技术

循环流化床锅炉技术
根据锅炉运行工况和物料 特性,选择合适的返料装 置,如返料阀、返料器等。
返料系统控制
通过控制系统精确控制返 料量,以维持锅炉的稳定 运行。
辅助系统设计
供风系统
供风系统负责向燃烧室提供足够的空气,包括一次风、 二次风等。
给水系统
给水系统负责向锅炉提供软化水,维持蒸汽的产生和 供应。
排放系统
排放系统负责处理和排放锅炉运行过程中产生的灰渣 和烟气。
循环流化床锅炉技术
• 循环流化床锅炉技术概述 • 循环流化床锅炉的结构与设计 • 循环流化床锅炉的操作与控制 • 循环流化床锅炉的优缺点分析 • 循环流化床锅炉的应用与案例分析
01
循环流化床锅炉技术概述
定义与特点
高效燃烧
循环流化床锅炉具有较高的燃烧 效率,能够实现燃料的高效利用。
低污染排放
通过合理的燃烧调整,循环流化 床锅炉能够实现较低的NOx、 SOx和颗粒物排放,有利于环境 保护。
工业领域
循环流化床锅炉在工业领域中也有广泛应用,如 钢铁、化工、造纸等行业,可用于回收余热、提 供工业蒸汽和热水等。
废弃物处理
循环流化床锅炉还可用于废弃物处理,如城市垃 圾、废弃物等的焚烧处理,实现废弃物的减量化、 无害化和资源化。
案例一:某电厂的循环流化床锅炉改造
背景
01
某电厂原有常规煤粉炉,存在燃烧效率低、污染物排放高等问
技术要求高
循环流化床锅炉技术较为复杂,对操作人员的技能要求较高,同时 需要配备先进的控制系统和监测设备。
与其他锅炉技术的比较
与煤粉锅炉的比较
循环流化床锅炉具有燃料适应性广、燃烧效率高、污染物排放低等优点,但存在磨损问题和技术要求高的缺点。 煤粉锅炉则具有燃烧效率高、点火迅速、负荷调节范围广等优点,但燃料适应性较差,污染物排放较高。

循环流化床锅炉的技术特点(二篇)

循环流化床锅炉的技术特点(二篇)

循环流化床锅炉的技术特点由于大量灰粒子的稳定循环,新加入循环流化床锅炉的燃料(煤)将只占床料的很小份额。

由于循环流化床的特殊流体动力特性,使其中的质量和热量交换非常充分。

这就为新加入燃料的预热、着火创造了十分有利的条件。

而未燃尽的煤粒子通过多次循环既可增加其炉内停留时间又可多次参与床层中剧烈的质量和热量交换,十分有利于其燃尽。

这就使循环流化床锅炉不仅可高效燃用烟煤、褐煤等易燃煤种,同样可高效燃用无烟煤等难燃煤种,还可高效燃用各种低热值、高灰分或高水分的矸石、固体垃圾等废弃物。

2、截面热强度高同样由于流化床中剧烈的质量和热量交换,不仅使燃烧过程能在较小截面内完成,还使炉膛内床层和烟气流与水冷壁之间的传热效率也大大增加。

这就使循环流化床锅炉的炉膛截面和容积可小于同容量的链条炉,沸腾床锅炉甚至煤粉炉。

这一点对现有锅炉的改造尤其具有现实意义。

3、污染物排放少可利用脱硫剂进行炉内高效脱硫是循环流化床锅的突出优点。

常用的脱硫剂是石灰石。

通常循环流化床锅炉的床温保持在800-1000oC 之间,过高可能因床内产生焦、渣块而破坏正常流化工况,过低则难以保证必要的燃烧温度。

而这一区间正是脱硫反应效率最高的温度区间。

因而在适当的钙硫比和石灰石粒度下,可获得高达80%--90%的脱硫率。

同样由于较低的燃烧温度,加以分级送风,使循环流化床锅炉燃烧时产生的氮氧化物也远低于煤粉炉。

这样,燃煤循环流化床锅炉的二氧化硫和氮氧化物排放量都远低于不加烟气脱硫的煤粉炉,可轻易地控制到低于标准允许排放量的水平。

4、锅炉负荷适应性好循环流化床锅炉中床料绝大部分是高温循环灰,这就为新加入燃料的迅速着火和燃烧提供了稳定的热源。

因而循环流化床锅炉的负荷可以很低,如额定负荷的30%左右,无需辅助的液体燃料,也不会发生煤粉炉难于保持正常燃烧甚至熄火的情况。

由于同样原因,循环流化床锅炉能够适应负荷的快速变化。

5、燃料制备系统相对简单循环流化床锅炉无需煤粉炉的复杂的制粉系统,只需简单的干燥及破碎装置即可满足燃烧要求。

循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景循环流化床锅炉技术是一种先进的锅炉燃烧技术,具有节能、环保、高效、安全等特点,被广泛应用于发电、热水供应等领域。

本文将介绍循环流化床锅炉技术的现状以及未来发展前景。

1、技术特点循环流化床锅炉技术以煤炭、煤屑、废热、废料等非化石能源为主要燃料,通过高速风流使燃料在炉内均匀分布,从而使燃料的燃烧充分、热效率高。

该技术具有以下特点:(1)熄火、剧烈爆炸等现象很少发生,能够保证燃料的可靠燃烧,从而减少污染排放。

(2)燃料颗粒大小范围较广,可处理不同种类的燃料。

(3)含硫、含氯等有害成分的排放量明显降低,可以达到环保排放标准。

(4)炉内温度均匀,使用寿命长,可靠性高。

(5)锅炉采用循环式加料,自动控制,操作简便。

(6)应用范围广泛,可以用于发电、热水供应、工业锅炉、化工等领域。

2、技术应用循环流化床锅炉技术已经被广泛应用于国内外的发电和热水供应等领域。

在中国,国内已有一些大型发电厂采用循环流化床锅炉技术。

例如,湖南金山电厂、山西黄陵发电厂以及华能大兴发电厂等发电厂都采用了循环流化床锅炉技术。

3、技术进展随着技术的不断进步,循环流化床锅炉技术也在不断完善。

近年来,循环流化床锅炉技术的主要进展包括以下方面:(1)热效率提高:目前循环流化床锅炉技术的热效率已经达到了 85%以上,在很大程度上节约了能源。

(2)技术可靠性提高:现代循环流化床锅炉技术采用先进的控制系统,可以实现全自动化控制,使得技术可靠性大大提高。

(3)减少污染排放:近年来,循环流化床锅炉技术在减少污染排放方面也取得了重大进展。

例如,采用低氮燃烧技术和脱硝技术等措施可以大幅减少氮氧化物的排放量。

循环流化床锅炉技术应用范围十分广泛,可以应用于电力、冶金、化工、建材、纺织、食品等多个行业。

随着技术的不断发展,循环流化床锅炉技术将会在更多行业中得到应用。

2、技术创新推动行业进步循环流化床锅炉技术的不断创新和发展将推动整个燃热行业的进步。

循环流化床技术在能源领域应用的研究

循环流化床技术在能源领域应用的研究

循环流化床技术在能源领域应用的研究近年来,随着环保意识的提高和节能减排的要求,循环流化床技术在能源领域中得到了广泛应用。

循环流化床技术是一种通过高速气流将固体颗粒悬浮在气流中使之高度混合和物理化学变化的技术。

在能源领域中,循环流化床技术主要应用在以下几个方面。

一、煤炭气化煤炭气化是将煤炭等燃料在高温高压下加氢,通过化学反应将其转化为合成气的一种技术。

循环流化床技术在煤炭气化中具有快速气固两相混合、高效传热传质、自动控制等优点,能够有效提高反应效率和气化产物质量,降低气化成本。

目前,循环流化床煤气化技术已经成为我国煤气化产业发展的主流技术之一,应用于煤制氢、合成气、一次甲醇、合成二甲醚、合成石墨烯等领域。

同时,也可以利用煤气作为发电、燃气锅炉和燃气轮机的燃料,实现高效清洁的能源利用。

二、制备微米颗粒材料微米颗粒材料具有广泛的应用前景,如触媒、光学材料、磁性材料、生物医学材料等。

利用循环流化床技术可以制备出高品质、高纯度、高活性的微米颗粒材料。

根据不同的要求,可以采用不同的循环流化床反应器,如气固鼓泡床、气固旋转反应器、气固超声波反应器等。

通过控制反应条件,可以获得不同形态、大小和分布的微米颗粒,从而满足不同领域的需求。

三、焦化废气处理焦化是一种将煤炭加热至高温,使其中的可燃物质分解的工艺。

焦化的过程中会产生大量的废气,其中含有大量的有毒有害物质,对环境和人健康造成极大威胁。

循环流化床技术可以处理焦化废气中的有机物、硫氧化物和氮氧化物等有害物质,将其转化为无害的氮、二氧化碳和水等物质。

在焦化废气处理中,循环流化床技术具有高效率、低能耗、适应性好等优点。

目前,已经有多家企业应用此技术进行焦化废气处理,取得了良好的经济和环保效益。

总之,循环流化床技术在能源领域中有着广泛的应用前景。

技术的不断完善和创新,将有助于提高能源利用效率、保护环境和促进可持续发展。

循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景

循环流化床锅炉技术的现状及发展前景【摘要】循环流化床锅炉技术是一种高效和环保的燃烧技术,在能源领域具有重要的应用价值。

本文首先介绍了循环流化床锅炉技术的基本原理,包括气固两相流动和传热方式。

接着探讨了循环流化床锅炉技术的优势与特点,如燃烧效率高、烟尘排放少等。

然后分析了当前循环流化床锅炉技术的应用领域,如电力、化工等行业。

接下来讨论了循环流化床锅炉技术的发展趋势,以及在环保领域的应用前景。

最后总结了循环流化床锅炉技术的未来发展方向和市场前景,强调了其重要性和潜力。

循环流化床锅炉技术将在未来得到更广泛的应用,为我国能源结构转型和环保减排做出重要贡献。

【关键词】循环流化床锅炉技术、现状、发展前景、基本原理、优势、特点、应用领域、发展趋势、环保领域、应用前景、未来发展方向、市场前景、重要性。

1. 引言1.1 循环流化床锅炉技术的现状及发展前景循环流化床锅炉技术是一种先进的燃烧技术,具有高效、节能、环保等优点,在工业领域得到广泛应用。

随着环保意识的不断增强和能源结构的调整,循环流化床锅炉技术的发展前景备受关注。

循环流化床锅炉技术的基本原理是通过循环流动的流体化床,在适当的温度和压力下,使燃料在气流中燃烧,同时有效控制燃烧过程中产生的污染物排放。

这种独特的燃烧方式不仅提高了燃烧效率,还减少了污染物的排放,符合现代工业对能源利用效率和环保要求的双重标准。

当前循环流化床锅炉技术已经广泛应用于电力、化工、钢铁等领域,为企业节能减排提供了有效手段。

未来,随着技术的不断创新和完善,循环流化床锅炉技术将更加普及和深入,成为工业领域不可或缺的重要技术之一。

循环流化床锅炉技术在环保领域的应用前景广阔,可以有效减少大气污染物的排放,提高空气质量,助力生态环境保护。

未来,循环流化床锅炉技术将持续发展壮大,为实现清洁能源、节能减排做出更大贡献。

2. 正文2.1 循环流化床锅炉技术的基本原理循环流化床锅炉技术的基本原理是指在循环流化床内,通过气体或液体的流化作用将固体颗粒悬浮并使其呈现类似于液体的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环流化床燃烧技术循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术.循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入.石灰石受热分解为氧化钙和二氧化碳。

气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接触发生化学反应被脱除。

为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用.钙硫比达到2~2.5左右时,脱硫率可达90%以上。

流化床燃烧方式的特点是:1.清洁燃烧,脱硫率可达80%~95%,NO x排放可减少50%;2.燃料适应性强,特别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。

负荷调节范围30%~100%.循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分.循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧. 燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力.循环流化床锅炉概述循环流化床锅炉是一种高效、低污染的节能产品.自问世以来,在国内外得到了迅速的推广与发展.但由于循环流化床锅炉自身的特点,在运行操作时不同于层燃炉和煤粉炉,如果运行中不能满足其对热工参数的特殊要求,极易酿成事故。

而目前有关循环流化床锅炉操作运行方面的资料还较少,笔者根据几年来锅炉设计及现场调试的经验,对循环流化床锅炉运行参数的控制与调整作了一下简述,希望能对锅炉运行人员有所启发。

1 循环流化床锅炉总体结构循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分.2 循环流化床锅炉燃烧及传热特性循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。

燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

3 循环流化床锅炉主要热工参数的控制与调整3。

1 料层温度料层温度是指燃烧密相区内流化物料的温度.它是一个关系到锅炉安全稳定运行的关键参数.料层温度的测定一般采用不锈钢套管热电偶作一次元件,布置在距布风板200—500mm左右燃烧室密相层中,插入炉墙深度15—25mm,数量不得少于2只.在运行过程中要加强对料层温度监视,一般将料层温度控制在850℃—950℃之间,温度过高,容易使流化床体结焦造成停炉事故;温度太低易发生低温结焦及灭火。

必须严格控制料层温度最高不能超过970℃,最低不应低于800℃。

在锅炉运行中,当料层温度发生变化时,可通过调节给煤量、一次风量及送回燃烧室的返料量,调整料层温度在控制范围之内。

如料层温度超过970℃时,应适当减少给煤量、相应增加一次风量并减少返料量,使料层温度降低;如料层温度低于80 0℃时,应首先检查是否有断煤现象,并适当增加给煤量,减少一次风量,加大返料量,使料层温度升高。

一但料层温度低于700℃,应做压火处理,需待查明温度降低原因并排除后再启动。

3.2 返料温度返料温度是指通过返料器送回到燃烧室中的循环灰的温度,它可以起到调节料层温度的作用.对于采用高温分离器的循环流化床锅炉,其返料温度较高,一般控制返料温度高出料层温度20-30℃,可以保证锅炉稳定燃烧,同时起到调整燃烧的作用。

在锅炉运行中必须密切监视返料温度,温度过高有可能造成返料器内结焦,特别是在燃用较难燃的无烟煤时,因为存在燃料后燃的情况,温度控制不好极易发生结焦,运行时应控制返料温度最高不能超过1000℃。

返料温度可以通过调整给煤量和返料风量来调节,如温度过高,可适当减少给煤量并加大返料风量,同时检查返料器有无堵塞,及时清除,保证返料器的通畅。

3。

3 料层差压料层差压是一个反映燃烧室料层厚度的参数。

通常将所测得的风室与燃烧室上界面之间的压力差值作为料层差压的监测数值,在运行都是通过监视料层差压值来得到料层厚度大小的。

料层厚度越大,测得的差压值亦越高.在锅炉运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,有可能引起流化不好造成炉膛结焦或灭火。

一般来说,料层差压应控制在7000—9000Pa之间。

料层的厚度(即料层差压)可以通过炉底放渣管排放底料的方法来调节。

用户在使用过程中,应根据所燃用煤种设定一个料层差压的上限和下限作为排放底料开始和终止的基准点。

3.4 炉膛差压炉膛差压是一个反映炉膛内固体物料浓度的参数。

通常将所测得的燃烧室上界面与炉膛出口之间的压力差作为炉膛差压的监测数值。

炉膛差压值越大,说明炉膛内的物料浓度越高,炉膛的传热系数越大,则锅炉负荷可以带得越高,因此在锅炉运行中应根据所带负荷的要求,来调节炉膛差压.而炉膛差压则通过锅炉分离装置下的放灰管排放的循环灰量的多少来控制,一般炉膛差压控制在500—2000Pa之间。

用户根据燃用煤种的灰份和粒度设定一个炉膛差压的上限和下限作为开始和终止循环物料排放的基准点。

此外,炉膛差压还是监视返料器是否正常工作的一个参数.在锅炉运行中,如果物料循环停止,则炉膛差压会突然降低,因此在运行中需要特别注意。

4 需要特别说明的几个问题4。

1 返料量控制返料量是循环流化床锅炉运行操作时不同于常规锅炉之处,根据前面提到的循环流化床锅炉燃烧及传热的特性,返料量对循环流化床锅炉的燃烧起着举足轻重的作用,因为在炉膛里,返料灰实质上是一种热载体,它将燃烧室里的热量带到炉膛上部,使炉膛内的温度场分布均匀,并通过多种传热方式与水冷壁进行换热,因此有较高的传热系数,(其传热效率约为煤粉炉的4—6倍)通过调整返料量可以控制料层温度和炉膛差压并进一步调节锅炉负荷。

另一方面,返料量的多少与锅炉分离装置的分离效率有着直接的关系,也就是说,分离器的分离效率越高,分离出的烟气中的灰量就越大,从而锅炉对负荷的调节富裕量就越大,操作运行相对就容易一些.4。

2 风量的调整在锅炉运行过程中,许多用户往往只靠风门开度的大小来调节风量,但对于循环流化床锅炉来说,其对风量的控制就要求比较准确。

对风量的调整原则是在一次风量满足流化的前提下,相应地调整二次风和三次风量.因为一次风量的大小直接关系到流化质量的好坏,循环流化床锅炉在运行前都要进行冷态试验, 并作出在不同料层厚度(料层差压)下的临界流化风量曲线,在运行时以此作为风量调整的下限,如果风量低于此值,料层就可能流化不好,时间稍长就会发生结焦.对二次风量的调整主要是依据烟气中的含氧量多少,通常以过热器后的氧量为准,一般控制在3—5%左右,如含氧量过高,说明风量过大,会增加锅炉的排烟热损失q 2;如过小又会引起燃烧不完全,增加化学不完全燃烧损失q 3和机械不完全燃烧损失q 4。

如果在运行中总风量不够,应逐渐加大鼓引风量,满足燃烧要求,并不断调节一二三次风量,使锅炉达到最佳的经济运行指标。

循环流化床锅炉基本讲述循环流化床锅炉技术是近几十年来迅速发展起来的一项高效低污染清洁燃煤技术。

国际上这项技术在电站锅炉,工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦给规模的大型循环流化床锅炉发展。

国内在这方面的研究、开发和应用也是方兴未艾,已有上百台循环流化床锅炉投入运行或正在制造之中,可以预见,未来的几年将是循环流化床飞速发展的一个重要时期.现根据我国近几年来出版的关于循环流化床锅炉理论设计与运行中有关循环流化床锅炉的原理、特点、启动和运行等方面的情况介绍如下:一、循环流化床锅炉的工作原理:(一)流态化过程: 当流体向上流动流过颗粒床层时,其运行状态是变化的。

流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过.当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。

此时对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触面维持它的空间位置.相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;就整个床层面言,具有了许多类似流体的性质.这种状态就被称为流态化。

颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。

流化床类似流体的性质主要有以下几点(1)在任一高度的静止近似于在此高度以上单位床截面内固体颗粒的重量。

(2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状;(3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;(4)密度高于床层表观察的物体化床内会下沉,密度小的物体会浮在床面上;(5)床内颗粒混合良好,颗粒均匀分散于床层中,称之为“散式"流态化.因此,当加热床层时,整个床层的温度基本均匀.而一般的气、固体态化,气体并不均匀地流过颗粒床层。

相关文档
最新文档