毕托管测流速原理图

合集下载

毕托管流量计

毕托管流量计

LG-PTB型毕托管流量计一、概述PTG型毕托管流量计是采用皮托管原理,根据ISO3966《封闭管道中流体流量的测量-采用皮托静压管的速度面积法》国际标准,依托先进风洞测试技术而设计制造的广泛适用于液体、蒸汽、气体等介质流量测量和在线比对的先进仪表。

大量实践证明本公司PTB型毕托管流量传感器从根本上解决了一、二次风速(量)防堵耐磨问题;解决了主蒸汽计量中存在压损大、耐高温、高压等问题;解决了焦炉煤气、焦油、原油易堵塞问题;解决了大管径、低流速、直管段不足等方面的特殊要求地方的流量测量问题。

二、基本原理PTG型毕托管流量传感器是采用皮托管原理获得管道中心流体流速(全压-静压=动压)再换算为流体体积流量或质量流量的动压式流量传感器。

其原理结构如下图:三、特点1、精度高:在20%~100%的量程范围准确度为0.5%。

2、节能:由于一次测量元件是由直径很小的不锈钢制成,其截面积很小在介质管道几乎无压力损失,使运行成本大大减小,与孔板等节流装置相比较有明显的节能效果。

3、耐高温高压:一次元件材质选用(可根据客户要求选用特殊钢)。

可耐介质最高温度650℃,介质最高压力32MPa。

4、可靠性高:因一次元件的构造非常简单,结构设计合理,导压管内介质不流动,杂志不容易进去,所以能长时间保持测量精度。

5、安装简单只需在管道合适的位置上打一个相当的孔,把一次元件探针插入管道中心,即可方便地进行安装。

6、无需维护:一次元件本身无需维护,只需按计量器具定期检定要求对差压变送器进行零点和满度的校验以及二次表输入相应电流进行校验。

7、测量范围广:可适用于低流速、小流量、大管径流量测量8、广泛用于气体,蒸汽和液体流量测量。

9、介质管道横截面形状适用范围广,可用于不规则很截面管道流量测量。

四、技术参数1、量程比量程比10:1,特殊场合可达65:12、通用管径:10mm~8000mm3、通用介质:满管、单向的气体、蒸汽以及粘度不大于10厘泊的液体4、直管段要求:通常情况下前7D、后3D保证测量精度0.5%~1.0%5、测量精度:±0.5%,±1.0%6、重复精度:±0.05%7、适用压力:0~25Mpa,特殊应用可达40Mpa8、适用温度:-100℃~500℃,特殊应用可达800℃9、测量上限:根据工艺要求和探头强度而定10、测量下限:取决于测量最小差压,低于最小差压时,可采用特殊设计来满足要求五、结构形式PTG型毕托管流量计由一次探针元件,差压变送器及流量积算部分组成。

一 测速管(毕托管) 1 原理及结构

一 测速管(毕托管) 1 原理及结构

p2
Vf
g( f Af
)
u2 CR
2Vf g( f ) Af
CR —流体系数
V u2 AR 由公式可看出,u2为常数,V只与 AR 有关,即可用位置表示
2. 特点:恒流速(环隙中) 恒压差(恒等于转子净重)
3. 转子流量计与孔板流量计不同 孔板是固定截面积,而随流量变化,压差变化
—压差流量计 转子是固定压差,而随流量变化,截面发生变化
动画
公式:上、下压差造成的力= ( p1 p2 ) Af 转子自重=Vf f g
转子受浮力=Vf g ( p1 p2 ) Af Vf f g Vf g
Af ——转子最大截面积
V f ——转子体积
f ——转子密度
——流体密度
z1g
p1
u12 2
z2 g
p2
u22 2
p1
p2
(z2
z1 ) g
校Re
u
u0
d0 d
2
3.0
78 150
2
0.806(m /
s)
Re
du
0.15 0.806880 0.67 103
1.59105
8 104
∴ 假设正确
V4d02u00.785 0.0782
3.0
0.01423(m3 / s) 51.2m3 / h
回目录页
2 Rg ( 0
)
4
d02
关于Co:
C0
f
(Re,
A0 ) A
当Re>Rec(限度Re)时
Co与Re无关,只和 A0 有关 A
设计都使Re>Rec
∴用孔板流量计测量时,先设Re>Rec,由 A0 查Co

毕托管的标定

毕托管的标定

实验指导书 实验1-7 毕托管的标定一、 实验原理在理想不可压流体中,毕托管测速的理论公式为:202U P P ρ-=此式表明:知道了流场中的总压(0P )和静压(P ),其压差即为动压;由动压,可算出流体速度。

02()P P U ρ-=毕托管的头部通常为半球形或半椭球形。

直径应选用0.035d D ≤(D 为被测流体管道的内径总压孔开在头部的顶端),孔径为0.3d 。

静压孔开在距顶端(3~5)d 处,距支柄(8~10)d 的地方,一般为8个均匀分布的0.1d Φ小孔(NPL 为7孔)。

总压与静压分别由两个细管引出,再用胶皮管连接到微压计上,即可测出动压,从而可计算出流速。

图1毕托管测速原理图若要测量流场中某一点的速度,需将毕托管的顶端置于该点,并使总压孔正对来流方向,通过微压计就能得到该点的动压。

在来流是空气的情况下,有202U P P h ργ=-=,(ρ是空气的密度,γ是微压计中工作液体的重度,h 是微压计的读数)。

但是由于粘性及毕托管加工等原因,202U P P ρ-=不是正好满足的,需要进行修正。

根据1973年英国标准BS-1042:Part2A1973的定义:2012P P C U ρ-=C -毕托管系数。

所谓毕托管标定,就是要把C 的数值通过实验确定下来。

标定毕托管一般是在风洞中进行的,要求:(1)风洞实验段气流均匀,湍流度小于0.3%;(2)毕托管的堵塞面积小于实验段截面积的1/200;(3)毕托管插入深度h>2nd(n=8,d 为毕托管直径);(4)安装偏斜角小于2º;(5)以d 为特征长度的雷诺数必须大于250;(6)最大风速不能超过2000S d μρ(μ是空气动力粘度,S d 为静压孔直径)。

这几点如能得到满足,C 就决定于毕托管的结构,此时0C C =称为毕托管的基本系数。

流体力学实验室从英国进口了一支经过标定的NPL 毕托管,C=0.998。

毕托管进行标定时,将待标定的毕托管 与NPL 标准管安装在风洞实验段的适当位置上(总的原则是让两支管处于同一均匀气流区)因为是均匀流,则有22C U P h ργ=∆=标准标准标准 22C U P h ργ=∆=待标待标待标上面两式中,ρ、U 、γ均是同一的。

流速测量(毕托管)实验

流速测量(毕托管)实验

武汉大学教学实验报告
一、实验目的
1、通过本次实验,掌握基本的测速工具(毕托管)的性能和使用方法。

2、绘制垂线上的流速分布图,以加深对明槽水流流速分布的认识。

二、实验原理
毕托管是由两根同心圆的小管所组成。

A 管通头部顶端小孔,B 管与离头部顶端为3d 的断面上的环形孔相通。

环形孔与毕托管的圆柱表面垂直,因此它所测得的是水流的势能γ
p
z +
,在测压
牌上所反映的水面差g
u p z g u p
z h 2)()2(2
2=+-++=∆γγ即为测点的流速水头。

三、实验仪器
毕托管、比压计及水槽。

简图如下:
图1 毕托管测速示意图
为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为
L ∆,则有αsin L h ∆=∆,从而可以求得测点的流速表达式:。

毕托管测流速实验

毕托管测流速实验

毕托管测流速实验一、 实验目的1、 了解毕托管的构造和毕托管测流速的基本原理,掌握用毕托管测流速的方法。

2、 测定明渠过水断面上的流速分布,并绘制流速与水深的关系曲线。

二、 实验设备三、 实验原理毕托管前端和侧面都有小孔,它们分别由两根部相通的细管接入两根测压管。

即动压管与静压管,动压管通头部定端小孔,当小孔正对水流流向时,动压管所测得的是水流的全部机械能g v g p Z 22++ρ,而静压管所测的是同一点处水流的势能g pZ ρ+,所以两测压管的水面差)()2(2gp Z g v g p Z h ρρ+-++=∆,即为测点的流速水头,因此h g v ∆=2为提高测量的精度,用倾斜式比压计测定h∆,如倾角为α,两测压管水面间的读数差为时h∆,有α=h,考虑到毕托管对水流流场的扰动影响∆lsin⋅∆和动、静压孔的位置不同,引入点流速的修正系数C,C值由率定得到。

所以四、实验步骤1、排出毕托管和比压计中空气,调平比压计,使比压计两测压管水面齐平。

2、打开水槽进水阀门,水深控制20cm左右,待水流稳定后,记录水深和比压计读数。

3、逐步将毕托管上提(每次2-3cm),记录水深和比压计读数。

4、测读水槽首部量水堰测针读数,计算流量Q。

5、实验完毕将小铁盒套住毕托管头部。

五、注意事项1、排气后毕托管头部勿露出水面。

2、毕托管头部需正对水流流向。

3、比压计中水位稳定后再读数。

六、数据记录及问题讨论1、观测数据量水堰测针水面读数=比压计倾角读数α=毕托管修正系数C=2、问题讨论1)使用毕托管前为什么要排气?2)实验过程中为什么毕托管头部不能露出水面?3)为什么必须将毕托管正对水流方向3、数据纪律表格及计算。

流速量测(毕托管)实验(完成)

流速量测(毕托管)实验(完成)

武汉大学教学实验报告学院:水利水电学院 专业:水利类 2011年12月20日 实验名称 流速量测(毕托管)实验 指导老师杨小亭 姓名赵亮年级10级学号2010301580103成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的要求1、通过本次实验,掌握基本的测速工具(毕托管)的性能和使用方法。

2、绘制各垂线上的流速分布图,点绘断面上的等流速分布曲线,以加深对明槽水流流速分布的认识。

3、根据实测的流速分布图,计算断面上的平均流速v 和流量Q 测,并与实验流量Q 实相比较。

二、主要仪器设备毕托管、比压计及水槽。

简图如下:毕托管测速示意图三、实验原理毕托管是由两根同心圆的小管所组成。

A 管通头部顶端小孔,B 管与离头部顶端为3d 的断面上的环形孔相通。

环形孔与毕托管的圆柱表面垂直,因此它所测得的是水流的势能γpz +,在测压牌上所反映的水面差gu p z g u pz h 2)()2(22=+-++=∆γγ即为测点的流速水头。

二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论为了提高量测的精度,将比压计斜放成α角,若两测压管水面之间的读数差为L ∆,则有αsin L h ∆=∆,从而可以求得测点的流速表达式:αsin 22L g C h g C u ∆=∆=式中 C —流速修正系数,对不同结构的毕托管,其值由率定得之。

本实验使用的毕托管,经率定C =1。

1、垂线流速分布图的画法,垂线平均流速的计算将所测得的同一垂线各点流速,按选定的比例尺画在坐标纸上。

槽底的底流为零,水面的流速矢端为水面以下各点流速矢端向上顺延与水面相交的那一点。

由水深线及各点流速矢端所围成的矢量图,即为垂线流速分布图。

显然,流速分布图的面积除以水深h ,就是垂线的平均流速u 。

垂线平均流速:hw u =式中 u —垂线平均流速(cm/s );w —垂线流速分布图的面积(cm 2); h —水深(cm )。

毕托管原理——精选推荐

毕托管测速原理1.为什么流速越大压强越小伯努利方程理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。

因D.伯努利于1738年提出而得名。

对于重力场中的不可压缩均质流体,方程为p+ρgz+(1/2)*ρv^2=常量,式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度。

上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。

但各流线之间总能量(即上式中的常量值)可能不同。

对于气体,可忽略重力,方程简化为p+ (1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。

显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。

飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。

据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。

在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。

在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项。

2.为什么压强越大沸点越高液体发生沸腾时的温度。

当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强的温度。

液体的沸点跟外部压强有关。

当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低。

例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上。

又如,在高山上煮饭,水易沸腾,但饭不易熟。

这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐浙下降。

毕托管测速实验完整版

毕托管测速实验Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】(四)毕托管测速实验一、实验目的和要求1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用毕托管测量点流速的技能;2.了解普朗特型毕托管的构造和适用性,并检验其量测精度,进一步明确传统流体力学量测仪器的现实作用。

二、实验装置本实验的装置如图所示。

图毕托管实验装置图1.自循环供水器;2.实验台;3.可控硅无级调速器;4.水位调节阀;5.恒压水箱;6.管嘴7.毕托管;8.尾水箱与导轨;9.测压管;10.测压计;11.滑动测量尺(滑尺);12.上回水管。

说 明:经淹没管嘴6,将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计10的测压管1、2用以测量低水箱位置水头,测压管3、4用以测量毕托管的全压水头和静压水头,水位调节阀4用以改变测点的流速大小。

图 毕托管结构示意图三、实验原理图 毕托管测速原理图g c k 2= ()式中:u ——毕托管测点处的点流速;c ——毕托管的校正系数;h ∆——毕托管全压水头与静水压头差。

H g u ∆'=2ϕ ()联解上两式可得 H h c ∆∆='/ϕ () 式中:u ——测点处流速,由毕托管测定;ϕ'——测点流速系数; H ∆——管嘴的作用水头。

四、实验方法与步骤1、准备)(a熟悉实验装置各部分名称、作用性能,搞清构造特征、实验原理。

)(b用医塑管将上、下游水箱的测点分别与测压计中的测管1、2相连通。

)(c将毕托管对准管嘴,距离管嘴出口处约2~3cm,上紧固定螺丝。

2、开启水泵顺时针打开调速器开关3,将流量调节到最大。

3、排气待上、下游溢流后,用吸气球(如医用洗耳球)放在测压管口部抽吸,排除毕托管及各连通管中的气体,用静水匣罩住毕托管,可检查测压计液面是否齐平,液面不齐平可能是空气没有排尽,必须重新排气。

毕托管测流速流量要点

毕托管测流速流量实验指导书深圳大学土木工程学院2011.05毕托管测流速流量实验指导书一、实验目的1、了解毕托管测速的构造和测速原理,掌握用毕托管测量流速的方法。

2、测定管嘴淹没出流的测点流速和流速系数。

二、实验装置(见图1)经淹没管嘴将高低水箱水位差的位能转换成动能,并用毕托管测出其点流速值。

测压计的测压管用以测量高、低水箱位置水头,以及测量测点的总水头和测压管水头,水位调节阀用以改变测点的流速水头。

图 1三、实验原理1毕托管测试公式:(1)2g△hC =u式中:u —毕托管测点处的点流速 C —毕托管的校正系数h —毕托管总水头与测压管水头差 2管嘴出流测速公式:u=Φ2g△H(2)式中:u—测点处流速,由毕托管测定Ф—测点流速系数❒H—管嘴的作用水头四、实验方法与步骤1、准备:(A)熟悉实验装置各部分名称、作用性能和毕托管的构造特征、实验原理;(B)用软胶管将上、下游水箱的测点分别与测压计中的测管相连通;(C)将毕托管对准管嘴,距离管嘴出口处约2~3㎝,上紧固定螺丝。

2、开启水泵:将流量调节到最大处。

3、排气:待上、下游溢流后用吸气球放在测压管口部抽吸,排除毕托管及连通管中的气体,待其中气体全部排除干净后,方可开始下步实验。

4、测记各有关常数和实验参数,填入实验表格。

5、改变流速:操作调节阀,并,并相应调节水阀,使溢流量适中,共可获得三个不同恒定水位与相应的不同流速。

改变流速后,按上述方法重复测量。

6、完成下述实验项目(要求边实验、边观察分析):(1)分别沿垂向和纵向改变测点位置,观察管嘴淹没射流的流速分布;(2)在有压管道测量中,管道直径相对毕托管的直径在6~10倍以内,误差在(2~5)%以上,不宜使用。

试将毕托管头部伸入到管嘴中予以验证。

7、实验结束时,检查毕托管及联通管中是否有气体。

若有,则需要重新开始实验。

五、实验报告及成果要求实验记录及计算(见参考表格)六、讨论题1、利用测压管测量点压强时,为什么要排气?怎样检验是否羊净?2、毕托管的动压头❒h和上、下游水位差❒H之间的大小关系怎样?为什么3、你所测出的流速系数Ф说明了什么?4、分别沿垂向和纵向改变测点的位置时,管嘴淹没射流的流速分布如何?实验次序上.下游水位差(cm)毕托管水头差(cm)测点流速u=k△h(cm/s)测点流速系数△h/△HC=Φh1h2△H h3h4△h1 2 3 4实验次序毕托管水头差 (cm)△hh4h3△hk测点流速=u垂向纵向11 22 33 4 4。

毕托管测速实验

基本实验一(物理概念类):毕托管测速实验
通过本实验理解基本的测速方法,掌握毕托管测速原理
1.自循环供水器;
2.实验台;
3.可控硅无级调速器;
4.水位调节阀;
5.恒压水箱;
6.管嘴;
7.毕托管;
8.尾水箱与导轨; 9.测压计; 10.测压计; 11.上回水管
毕托管测速原理实验装置如上图所示。

5为水箱,水经淹没管嘴6以一定的速度流出;7为毕托管,测量流出的流速值。

毕托管的总压水头和静压水头分别连到测压计10和9。

调节阀4用以改变水箱中的水位,从而改变测点的流速大小。

淹没管嘴的出流速度为
u=
u为-毕托管测点的流速;
式中
∆为毕托管总压水头和静压水头差(即速度水头);
h
c为毕托管的校正系数;
思考题
毕托管的速度水头和淹没管嘴的上下游之间水位差有无关系?为什么?
毕托管的轴线若与淹没管嘴出流速度方向不平行对测速有何影响?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档