汽车涡轮增压讲解
涡轮增压技术入门概论

排放过程
01
排放过程
燃烧产生的废气通过排气系统排出,其中还包含了未完全燃烧的颗粒物
和有害气体。这些废气需要经过催化转化器等净化装置进行处理,以减
少对环境的污染。
02
催化转化器
催化转化器利用催化剂的作用,将废气中的有害物质转化为无害物质,
如二氧化碳和水蒸气等。它能够有效地降低废气中的有害成分,如一氧
涡轮增压技术入门概论
• 涡轮增压技术简介 • 涡轮增压技术的工作流程 • 涡轮增压技术的优势与挑战 • 涡轮增压技术的实际应用案例 • 总结与展望
01
涡轮增压技术简介
定义与工作原理
定义
涡轮增压技术是一种通过涡轮增压器来增加发动机进气压力,从而提高发动机功率和扭矩的汽车技术 。
工作原理
涡轮增压器由涡轮和压缩机两部分组成,当发动机排出的废气通过排气歧管进入涡轮时,推动涡轮旋 转,从而带动同轴的压缩机旋转。压缩机将空气压缩后送入发动机气缸,使气缸内的空气压力和密度 增大,从而使发动机燃烧更充分、动力更强劲。
THANKS
感谢观看
动力提升
动力响应
经过压缩的空气进入发动机燃烧室后, 与燃料混合并充分燃烧,产生更大的 能量和动力,推动活塞下行,进而驱 动汽车前进。
由于涡轮增压技术能够迅速提高进气 压力和温度,发动机在低转速下即可 获得较大的扭矩输出,使车辆加速更 加迅速和流畅。
燃油效率
涡轮增压技术能够提高发动机的进气 压力和温度,使燃料更加充分地燃烧, 从而提高燃油效率。这有助于降低油 耗和减少废气排放。
02
03
04
汽车工业
广泛应用于各类汽车发动机中 ,提高汽车的动力性和燃油经
济性。
船舶工业
涡轮增压课件

可靠性
增压器在各种工作条件下稳定 运行的能力。
涡轮增压系统的优化方法
优化涡轮设计
通过改进涡轮的形状和材料, 提高其效率和响应速度。
采用可变几何涡轮
通过改变涡轮的入口面积或出 口角度,实现最佳的增压效果 。
使用高效的冷却系统
降低压缩空气的温度,减少功 率损失。
匹配发动机和增压器
确保发动机和增压器在性能和 可靠性方面达到最佳匹配。
和短途行驶。
废气涡轮增压系统
废气涡轮增压系统利用发动机 排出的废气驱动涡轮来压缩空 气,进而提高发动机的进气压 力。
废气涡轮增压系统的优点是能 够显著提高发动机的功率和扭 矩,同时对燃油经济性的影响 较小。
该系统适用于高速行驶和加速 等高负荷工况,能够提供更好 的动力性能。
双螺杆式增压系统
双螺杆式增压系统采 用双螺杆结构,通过 旋转压缩空气来增加 进气压力。
工作原理
涡轮增压器由涡轮和压缩机两部分组 成,通过废气驱动涡轮旋转,带动压 缩机将空气压缩后送入发动机气缸, 使发动机的功率和扭矩得到提升。
涡轮增压系统的组成
涡轮增压器
核心部件,由涡轮和压 缩机组成,实现空气的
压缩和输送。
中冷器
降低压缩后的空气温度 ,提高空气密度,从而 提高发动机的进气效率
。
旁通阀
该系统适用于需要兼顾城市道路和高速公路行驶的车辆,如豪华轿车和SUV等。
CHAPTER 03
涡轮增压系统的性能与优化
涡轮增压系统的性能指标
01
02
03
04
压力比
衡量增压器将空气压缩的程度 ,通常用增压比来表示。
效率
增压器将发动机功率转化为压 缩空气的有效程度。
汽车涡轮增压工作原理

汽车涡轮增压工作原理引言汽车涡轮增压是一种常见的引擎增压技术,通过利用废气能量驱动涡轮,提高进气量和压力,从而增加发动机的功率和扭矩。
本文将详细解释汽车涡轮增压的工作原理。
涡轮增压器的组成汽车涡轮增压器由两个主要部分组成:涡轮和压气机。
涡轮由排气流驱动,而压气机则将空气压缩并送入发动机。
此外,还有一个废气流动系统,用于驱动涡轮。
涡轮涡轮通常由一个或多个小型可旋转叶片组成。
这些叶片固定在一个中心轴上,并且可以随着排气流的进入而旋转。
当排气通过涡轮时,它将叶片推向旋转方向,并转化为动能。
压气机压气机是位于涡轮后面的一个部件,它包含一系列可旋转和固定的叶片。
当排气流驱动了涡轮后,它会传递给压气机,压气机的旋转叶片将空气压缩,并将其送入发动机。
废气流动系统废气流动系统由排气歧管、涡轮和排气管组成。
当发动机燃烧燃料时,产生的废气通过排气歧管进入涡轮。
废气的高温和高速度驱动涡轮旋转,从而提供动力给压气机。
工作原理汽车涡轮增压器的工作原理可以分为四个步骤:吸入、压缩、混合和排出。
1.吸入:当发动机工作时,活塞向下移动并打开进气阀门。
此时,活塞上方形成了一个低压区域。
外部空气将通过进气道流入汽缸内。
2.压缩:在活塞向上移动并关闭进气阀门后,空气被压缩。
然而,在非增压引擎中,空间有限,无法将更多空气送入汽缸。
这就是涡轮增压器的作用。
3.混合:当活塞开始下降时,排汽阀打开并释放废弃物。
同时,排出阀门关闭,阻止废气的流动。
废气通过排气歧管进入涡轮,使其旋转并驱动压气机。
压气机将大量空气压缩并送入汽缸。
这样,发动机可以在相同体积下混合更多的空气和燃料。
4.排出:燃烧后的废弃物通过排出阀门排出。
同时,涡轮继续旋转,并且压气机仍然向发动机提供增压空气。
优势涡轮增压技术具有多个优势:1.提高功率和扭矩:通过增加进气量和压力,涡轮增压可以显著提高发动机的功率和扭矩输出。
2.提高燃油经济性:由于更多空气被送入汽缸中,每个燃油单位可以更完全地燃烧,从而提高燃油经济性。
汽车涡轮增压工作原理

汽车涡轮增压工作原理
汽车涡轮增压是一种利用废气能量来提高发动机进气密度和增加功率输出的技术。
在涡轮增压系统中,主要包括涡轮增压器、废气涡轮和增压空气冷却器。
工作原理如下:
1. 发动机排气进入涡轮增压器:废气通过排气管流入涡轮增压器的涡轮轮胎,在喷嘴的作用下将涡轮轮胎推动转动。
2. 涡轮增压器压缩空气:涡轮轮胎转动带动增压器的压气轮通过压缩空气进而提高进气密度。
3. 压缩空气进入发动机:增压的空气通过冷却器冷却后进入发动机气缸内,与燃料混合后进行燃烧,从而产生更大的动力输出。
4. 控制系统调节压力:涡轮增压器的增压程度由控制系统根据发动机转速、负荷和需要的功率输出调节,确保引擎正常运行。
5. 提高燃烧效率和动力输出:通过增加进气密度,涡轮增压系统能够提高燃烧效率,并使发动机在相同体积下输出更大的功率,从而提高汽车的加速性能和行驶性能。
总之,涡轮增压通过利用废气能量来提高进气密度,进而提高发动机的燃烧效率和功率输出,使汽车在保持轻便结构的同时获得更高的性能表现。
汽车发动机的涡轮增压原理

汽车发动机的涡轮增压原理在汽车领域,发动机的性能一直是人们关注的焦点。
而涡轮增压技术的出现,极大地提升了发动机的动力输出和燃油效率,成为了现代汽车发动机的一项重要技术。
那么,涡轮增压到底是怎么一回事呢?让我们一起来揭开它的神秘面纱。
要理解涡轮增压的原理,首先得知道发动机是如何工作的。
简单来说,发动机是通过燃烧燃料产生能量,推动活塞运动,从而带动曲轴旋转输出动力。
而涡轮增压就是在这个过程中发挥作用,通过增加进气量来提高发动机的功率和扭矩。
涡轮增压系统主要由涡轮增压器和中冷器两部分组成。
涡轮增压器又包括涡轮和压气机,它们通过一根轴连接在一起。
涡轮位于发动机的排气歧管处,当发动机排出高温高压的废气时,废气冲击涡轮叶片,使其高速旋转。
而与涡轮同轴的压气机叶轮也跟着一起旋转,将新鲜空气压缩后送入发动机的进气歧管。
经过压缩的空气密度增大,单位体积内的氧气含量增加。
这样一来,在相同的气缸容积下,就能够燃烧更多的燃料,从而产生更强大的动力。
这就好比一个大力士,给他更多的食物(燃料)和氧气,他就能发挥出更大的力量。
但压缩后的空气温度会升高,如果直接进入气缸,不仅会影响燃烧效率,还可能导致发动机过热。
所以,这时候就需要中冷器来帮忙。
中冷器的作用是冷却经过压缩的高温空气,降低其温度,提高进气的密度和氧气含量,从而进一步提升发动机的性能。
涡轮增压技术的优势是显而易见的。
首先,它能够大幅提高发动机的功率和扭矩。
相比同排量的自然吸气发动机,涡轮增压发动机可以输出更高的动力,让汽车在加速和爬坡时更加轻松有力。
其次,涡轮增压可以提高燃油经济性。
虽然增加了涡轮增压器等部件,但由于发动机的燃烧效率提高,实际燃油消耗反而可能降低。
此外,涡轮增压还可以减小发动机的体积和重量,使汽车的布局更加紧凑。
然而,涡轮增压也并非完美无缺。
涡轮增压器存在一定的滞后现象,也就是我们常说的“涡轮迟滞”。
当驾驶员突然踩下油门时,由于涡轮需要一定时间来响应废气的推动,所以动力输出会有短暂的延迟。
涡轮增压的工作原理

涡轮增压的工作原理涡轮增压是一种通过利用废气压力来增加发动机进气压力的技术,从而提高发动机的输出功率和效率。
它是现代内燃机领域中常用的一种动力增压技术,被广泛应用于汽车、卡车和船舶等各种发动机中。
本文将详细介绍涡轮增压的工作原理,包括其结构组成、工作过程和优缺点等方面的内容。
涡轮增压器由涡轮和压气机两部分组成,涡轮部分安装在排气道上,压气机部分则连接在进气道上。
当发动机工作时,排出的废气进入涡轮增压器的涡轮部分,使涡轮旋转起来。
涡轮与压气机之间通过轴连接在一起,因此涡轮的旋转也会带动压气机旋转。
压气机将大气压缩后送入发动机,增加了进气压力和密度,从而提高了燃烧效率和输出功率。
涡轮增压的工作原理可以用来解释为什么它能够提高发动机的输出功率。
首先,通过增加进气压力,涡轮增压使得发动机能够在相同的缸容积下吸入更多的空气和燃料混合物,从而提高了燃烧效率。
其次,由于增加了进气压力,发动机在相同转速下能够产生更大的输出功率。
最后,涡轮增压还能够提高发动机的响应速度和动力输出,使得车辆在加速和爬坡时能够更加灵活和强劲。
涡轮增压技术的工作过程可以分为几个阶段,废气驱动、涡轮旋转和进气压缩。
在发动机工作时,排出的废气进入涡轮增压器的涡轮部分,使得涡轮产生动力并开始旋转。
涡轮的旋转驱动压气机旋转,将大气压缩后送入发动机。
这样就完成了涡轮增压器的工作过程,从而提高了发动机的输出功率和效率。
涡轮增压技术相比传统的自然吸气发动机具有许多优点。
首先,它能够在不增加发动机缸容积的情况下提高输出功率,从而降低了发动机的重量和体积。
其次,涡轮增压技术能够提高发动机的燃烧效率和动力输出,使得车辆在加速和爬坡时更加灵活和强劲。
最后,由于增加了进气压力,涡轮增压技术还能够提高发动机的燃油经济性,降低排放和环保。
然而,涡轮增压技术也存在一些缺点。
首先,由于涡轮增压器需要排出的废气来驱动,因此在低转速和负载下可能存在涡轮滞后和延迟响应的问题。
涡轮增压课件

涡轮增压课件涡轮增压课件涡轮增压技术是一种常见的汽车动力系统中的关键技术。
它通过增加发动机进气量,提高燃烧效率,从而提高发动机的功率输出。
本文将介绍涡轮增压的原理、优势和应用,并探讨一些相关的技术细节。
一、涡轮增压的原理涡轮增压是利用废气能量来推动涡轮转动,从而驱动压气机增加发动机进气量的一种技术。
当发动机工作时,废气通过排气管排出,其中的一部分能量被转化为涡轮的动力。
涡轮与压气机通过同一轴线相连,涡轮的旋转推动压气机将更多的空气压缩送入发动机燃烧室,从而提高燃烧效率和功率输出。
涡轮增压的原理可以类比为人体呼吸系统。
发动机的进气系统相当于人体的呼吸道,废气排出系统相当于呼气,而涡轮增压系统则相当于人体的肺部。
通过增加呼气的力度,人体可以吸入更多的氧气,从而提高体力活动的能力。
涡轮增压也是一样的道理,它增加了发动机进气量,使得发动机能够在相同排量下输出更大的功率。
二、涡轮增压的优势涡轮增压技术在汽车工业中被广泛应用,主要有以下几个优势:1. 提高动力输出:涡轮增压可以将更多的空气压缩送入发动机,提高燃烧效率,从而提高动力输出。
相比于自然吸气发动机,涡轮增压发动机在相同排量下可以输出更大的功率。
2. 提高燃油经济性:由于涡轮增压发动机的燃烧效率更高,相同功率下的燃油消耗量更低。
这使得涡轮增压发动机在燃油经济性方面具有明显的优势。
3. 减少尾气排放:涡轮增压发动机的燃烧效率提高,尾气排放也相应减少。
这符合现代社会对环保的要求,有利于减少环境污染。
4. 提高海拔适应性:涡轮增压发动机在高海拔地区的性能表现更好。
由于空气稀薄,自然吸气发动机的功率输出会受到限制,而涡轮增压发动机则可以通过增加进气量来弥补这一不足。
三、涡轮增压的应用涡轮增压技术广泛应用于汽车工业中,包括小型轿车、跑车、卡车和赛车等。
在小型轿车中,涡轮增压技术可以提供更好的动力输出,使得驾驶者能够享受到更强劲的加速感。
同时,由于涡轮增压发动机的燃油经济性更高,小型轿车也可以在保持动力的同时降低燃油消耗。
涡轮增压的名词解释

涡轮增压的名词解释涡轮增压是一种常用于内燃机中的动力增压技术,通过增加发动机的进气压力,从而提高其燃烧效率和功率输出。
一般来说,涡轮增压分为单涡轮增压和双涡轮增压两种类型。
1. 涡轮增压的原理涡轮增压器是通过使用废气能量来驱动的,废气由发动机燃烧过程中产生,其中包含着巨大的能量潜力。
涡轮增压器由一对叶轮组成,其中一个叶轮与发动机的排气管相连,另一个叶轮则与进气管相连。
当发动机运转时,废气通过排气管流过涡轮增压器的叶轮,使其高速旋转。
旋转的叶轮会驱动进气管中的叶轮转动,从而将大量空气吸入发动机中。
2. 单涡轮增压器在单涡轮增压系统中,涡轮增压器只有一对叶轮。
当废气经过排气管流过涡轮增压器叶轮时,叶轮旋转并通过轴将动力传输到进气管上的叶轮。
进气的叶轮旋转,使大量空气被强制进入发动机中,进而增加了发动机的燃烧效率。
由于动力由排气管中的废气提供,单涡轮增压系统存在一定的滞后性,即在发动机低油门时可能出现涡轮拉力不足的情况。
然而,一旦发动机运转速度提高,涡轮增压系统会迅速提高进气压力,从而提供更强大的动力。
3. 双涡轮增压器双涡轮增压系统由两对涡轮组成,其中一对主涡轮负责增压,另一对副涡轮则提供辅助增压。
主涡轮与排气管相连,副涡轮则与主涡轮相对称地放置在进气管上。
这种设计可以提供更高的进气压力,并平衡涡轮拉力的变化。
主涡轮在车辆低油门时提供动力,而在高油门时则由副涡轮提供额外的增压。
双涡轮增压系统可以显著提高发动机的动力输出,并且在动态响应和燃烧效率方面效果更佳。
4. 涡轮增压的应用涡轮增压技术广泛应用于汽车、船舶和航空领域。
在汽车中,涡轮增压可以提高发动机的输出功率,并减少燃油消耗,降低尾气排放。
由于增压器能提供额外的空气进入发动机,汽车在超过一定转速后会表现出更为迅猛的加速性能。
船舶和飞机上的涡轮增压系统可以提供更高的动力和提高燃烧效率,使其在高海拔或高速情况下仍能保持出色的性能。
总结涡轮增压是通过利用废气能量来提高内燃机动力输出和燃烧效率的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车涡轮增压简称Turbo,如果在轿车尾部看到Turbo或者T,即表明该车采用的发动机是涡轮增压发动机。
涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。
它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。
当发动机转速增快,废气排出速度与祸轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。
涡轮增压器的最大优点是能在不加大发动机排量就能较大幅度地提高发动机的功率及扭力,一般而言,加装增压器后的发动机的功率及扭矩要增大20%—30%。
涡轮增压器的缺点是滞后,即由于叶轮的惯性作用对油门骤时变化反应迟缓,使发动机延迟增加或减少输出功率,这对于要突然加速或超车的汽车而言,瞬间会有点提不上劲的感觉。
涡轮增压器是一种利用内燃机(Internal Combustion Engine)运作所产生的废气驱动之空气压缩机(Air-compressor)。
与超级增压器(机械增压器, Super-Charger)功能相若,两者都可增加进入内燃机或锅炉的空气流量,从而令机器效率提升。
常见用于汽车引擎中,透过利用排出废气的热量及流量,涡轮增压器能提升内燃机的马力输出。
图为以气箔轴承为基础制造出来的涡轮增压器剖面图,图片来自Mohawk InnovativeTechnology Inc.一般车用内燃机在加装增压器后重量都会增加,所用作克服惯性(inertia)的能量会上升。
因涡轮增压器大部份时间都是利用引擎排出之废气驱动,所以较由引擎曲轴(Crankshaft)驱动之机械增压器占优。
但因引擎于低转运作时废气流量较低,涡轮增压器之表现未如理想,出现涡轮迟滞(Turbo-Lag)现象。
[编辑]物理机制一个冲程下,发动机做功的计算公式为V代表的是排气量,而P则是压强。
增大排气量和增大压强,均可以增加发动机做功。
增大压强则通过涡轮实现。
[1][编辑]引擎内部的燃烧涡轮增压器常使用于增加内燃机的进气量,进而增加马力输出量。
在飞航应用上涡轮增压器是为了能在高海拔的地方能够有自然进气引擎在低海拔的进气量,通常称之增压正常化(turbonormalizer)。
轴、轴承、轮叶与涡轮会以数万到数十万RPM运转。
许多种轴承在如此高的转速需要润滑与冷却系统。
涡轮增压器的润滑系统可以是独立系统或是从引擎供油系统提供。
提供润滑系统的冷却器可能为双重冷却系统,冷却剂可以是外来的,如引擎冷却系统,或是空冷机组。
通常汽车上涡轮增压器的润滑与冷却水系统是来自于机油与引擎冷却液。
有些特殊的轴承,像是箔轴承,能够减少或不需额外润滑且降低冷却系统的门槛。
CHRA的对面是涡轮机与轮叶,包含在它们折叠起来像是蜗牛壳的锥形风罩内。
这些风罩是在收集与导风流的方向。
而这个风罩的形状与大小可以很直接的影响涡轮增压器的整体特性与性能。
圆锥管道的每一处截面积(A), 和该处与风罩中心所成的半径(R) , 可以表示成一个比值(AR,A/R,A:R)。
通常基本的涡轮增压器拥有多种AR值的涡轮风罩可供选择。
这样便可允许设计者对整个动力系统去对性能、反应度与效率去做协调。
在加速型赛车内的一对涡轮增压器套用到直列六缸引擎上以相当高的速度旋转的压缩涡轮机会吸引大量的空气推进引擎内。
当涡轮增压机的输出流量超过汽缸容量,进气系统就会出现正压。
而组件旋转的速度是与压缩空气总质量的气流成比例。
为了防止涡轮产生的压力超出引擎的负荷,或是为了增加耐久度,转速必需要可以被控制住。
泄压阀是最常见的机械式转速控制系统,通常也会另外增加压力控制器(boost controller)来辅助。
泄压阀的主要功能是当进气压达到设定的上限,一部分的废气就会绕过涡轮机,就会达到稳定压力的效果。
涡轮增压器能够提高输出引擎效率,但是需要解决它的缺点才能推广。
汽车的自然进气引擎为了吸取空气进汽缸,使用活塞创造一个低压区。
由汽缸容积与活塞速度来决定有多少空气能被"抽"入引擎里,因为大气是恒压的,最后进气量会被限制住。
而利用这个方式把空气吸入燃烧室内的多寡称之容积效率(volumetric efficiency)。
从涡轮增压器增加了空气进入汽缸的压力,与该空气量进入到汽缸内很大程度上取决于时间与压力,气体吸引造成压力增加。
吸收的压力大小,在缺乏涡轮增压器之下是决定于大气压力,但是加入涡轮增压器之后增加的压力就能控制。
利用压缩机增加进气缸的气压通常称为强制进气(forced induction)。
离心式机械增压器的运作方式与涡轮增压器相同;然而,让压缩机的旋转能量前者是引擎曲轴而后者是废气。
因此涡轮增压原则上是比较有效率的,因为涡轮的动力来自引擎的热能,把废气的能量转化成动能,不然就浪费掉能量了。
机械增压器的使用,是在牺牲一部分引擎产生的能量,产生了净增产值的能量。
[编辑] 燃油效率涡轮增压器虽让引擎增加可观的马力输出,但是引擎也产生更多的废热。
当车子本身设计无法承受高热环境,把涡轮增压器装进去可能会是一个难题。
额外的废热加上增压器提供较低的压缩比(扩张比)稍微有助于较低的热效率,但是却直接影响整体的燃油效率。
还有另种称为主管冷却型的冷却法会很大的影响到燃料效率。
即使中冷是有帮助的,但是燃烧室内的总压缩比还是比自然吸气引擎还大。
当引擎释放出最大能量时为避免爆震出现,通常会为了冷却目的会提供额外的燃料。
这看似不合常理,因为这部份的燃油不会燃烧。
但是这是利用额外燃油在液体雾化成气雾时把热量吸走。
而且,氮是燃烧室内相对密度高的物质,所以氮气能够承受比较高的热量。
氮气把持住这个热量直到经由废气排出来避免破坏性的爆震。
这使设计者经由牺牲燃油经济性取得燃油泵内较好的热力性能输出功率。
要完整燃烧汽油,最理想的空/燃比(A/F)是14.7:1。
通常一部拥有涡轮增压引擎车在最大的boost的A/F值大约是12:1。
设计系统时,较多杂质汽油在运转时有时会有瑕疵,像是触媒转化器不能在太高的温度下运作,或是引擎有太高的压缩比而无法与供油系统有效运作。
最后,高效率的涡轮增压器也会对自身影响到燃油效率。
使用较小的涡轮增压器在中低转速上会提供比较快的回应与较低的延迟(lag),但是会堵塞引擎的排气部位与转速提升时产生巨大的热量。
比较大的涡轮增压器在高转速的时候相当有效率,但是在正常行驶时并不实用。
可变式轮叶与滚珠轴承技术能使涡轮增压器在更大的运作范围内更有效率的运转,然而,不少汽车使用这类技术会产生额外的问题(参阅可变几何涡轮增压器(Variablegeometry turbocharger))。
目前使用这种涡轮增压器的汽油车只有Porsche 911 (997) Turbo,Saab 9-3 Aero/Opel Vectra-C 2.8T,以及Hyundai柴油车系,如SanTaFe tuson及i30。
目前只有连续式双涡轮增压器(sequential turbocharging)才能提供全面性的输出优势,因为它在低转速时用小涡轮,而高转速时用大涡轮。
大多数现今的汽车的引擎管理系统(engine management systems)能够根据当时温度、燃料品质、海拔高度及其他因素控制歧管压力与燃油压力。
有些系统则是先进到能够提供更精确的燃料燃烧状况的数据。
像是Saab的Trionic-7 system使用电子式指示提供燃烧上更优秀的回应性。
Volkswagen/Audi的新2.0升FSI涡轮引擎结合了偏时点火与缸内直喷技术能在低负荷状态保有推进力在低负荷状态。
这个系统是非常复杂到包含许多移动性的零件与感应器去维持气室的气流特性,能够使用多段指示来提供更优秀的雾化。
缸内直喷系统同时拥有很大的影响,使发动机具有更佳的冷却效果,就能够使用较典型的气门式涡轮喷射引擎更高的压缩比。
[编辑] 汽车设计原理根据理想气体方程式,当其他变因保持不变,假设系统内部压力增加,温度会随之提升。
那使用涡轮增压器会产生负面影响,原因是空气被压缩机压缩而造成进入引擎之前空气温度就已经提升。
涡轮的转速视旋转部份的大小、重量、进气歧管的气压及压缩机的设计,通常快到80,000至200,000 RPM(惯性较低的可达150,000-250,000 RPM)。
在这么高的转速之下,滚珠轴承将会产生问题,所以大多的涡轮增压器使用液态轴承。
此轴承的特色是有一流动式的油层能够悬浮与冷却移动式零件。
这层油通常是来自于引擎机油循环系统。
有些涡轮增压器使用非常精确的滚珠轴承来提供比液态轴承更少摩擦,因此这种轴承是悬浮斥水性的洞里。
更少摩擦表示涡轮轴可以用较轻的材质制成,减少所谓的涡轮延迟(turbo lag或boost lag)。
有些设计人员使用水冷式涡轮增压器要借此提高轴承寿命。
开发使用箔轴承的涡轮增压器是为了排除使用轴承冷却与供油系统,借此排除大多数已知的失败,也意味能够降低延迟。
要维持气压恒定,涡轮增压器里多余的废气气流会经由泄压阀(wastegate)调节,使得这些气流不会经过涡轮。
这样便能调节涡轮的旋转速度,进而调整压缩机的输出能力。
泄压阀的开启时机是由涡轮产生的压缩空气来决定,并可以借着螺线管去控制压力施予废气阀薄膜的强度。
螺线管可以被自动性能管理系统(Automatic Performance Control)、引擎的电子控制单位(electronic control unit,ECU)或是微电脑压力控制器。
另一种提高增压的方法是透过利用排气阀随时检查压力并且放掉气门去维持薄膜承受的压力且低于系统的压力。
部分的涡轮增压器(通常为可变式几何涡轮增压器)利用一组叶片在废气槽(exhaust housing)去维持定量气体快速经过涡轮,这种控制机制也用于发电机的汽轮机。
这些涡轮增压器的延迟很小,拥有很小的气压临界值(1500 rpm即可达到最大增压),而且转速高的引擎上出现的效率也不差;这些增压器也用于柴油引擎。
[2]这些引擎大多都没有泄压阀。
这些叶片是被与泄压阀相同的薄膜控制,但是控制的等级需求是不太相同的。
第一部使用这种涡轮增压器的汽车是1989年份限量版的Shelby CSX-VNT,采用2.2L的汽油引擎。
Shelby CSX-VNT利用一颗Garrett的VNT-25型涡轮,因为它使用与Garrett T-25相同的本体和轴心。
这一涡轮机通常称之可变式喷嘴涡轮增压器(VNT)。
涡轮增压器的制造商 Aerocharger使用名为’可变区域涡轮喷嘴’(Variable Area Turbine Nozzle,VATN)来诠释这种涡轮喷嘴。
另外常见的说法包括’可变涡轮截面’(Variable Turbine Geometry,VTG)、’可变涡轮几何增压器’(VariableGeometry Turbo,VGT)与’可变配气相位’(Variable Vane Turbine,VVT)。