第3节 全称量词与存在量词

合集下载

全称量词和存在量词

全称量词和存在量词
3全称命题,是真命题. 4全称命题,是假命题,因为只有x=2或x=1 时满足.
例题讲解
类型二、全称命题与特称命题的表述 例21设集合S=四边形,px:内角和为360°. 试用不同的表述写出全称命题∀x∈S,px. 2设qx:x2=x,试用不同的表达方法写出特 称命题∃x∈R,qx.
解1依题意可得以下几种不同的表述: 对所有的四边形x,x的内角和为360°; 对一切四边形x,x的内角和为360°; 每一个四边形x的内角和为360°; 任一个四边形x的内角和为360°; 凡是四边形x,它的内角和为360°.
有的正方形都是矩形的否定为至少存在一个正方形 不是矩形.其中,把全称量词所有的变为存在量词至 少存在一个.
2.特称命题的否定:
一般地,对于含一个量词的特称命题的否定,有下 面的结论:特称命题p:∃x0∈M,px0,它的否定綈p: ∀x∈M,¬px.特称命题的否定是全称命题.如:存 在一个实数x,使得x2+x+1≤0的否定为对所有实数 x,都有x2+x+1>0,其中,把存在量词存在一个变为 全称量词对所有的.
1.4全称量词 和存在量词
一、全称量词 和存在量词
新课讲解
1.全称量词和全称命题
1全称量词: 短语所有的、任意一个在逻辑中通常叫做全称 量词,并用符号∀表示.
2全称命题: ①定义:含有全称量词的命题,叫做全称命题. ②一般形式:全称命题对M中任意一个x,有px成立 可用符号简记为∀x∈M,px,读作对任意x属于M,有px成 立.其中M为给定的集合,px是一个关于x的命题.
解析:如x=0时,x2=0,满足x2≤0. 答案:B
3.下列命题是假命题的是( ) A.∀x∈R,3x>0 B.∀x∈N,x≥1 C.∃x∈Z,x<1 D.∃x∈Q, x∉Q

全称量词与存在量词 课件

全称量词与存在量词   课件

2.存在量词 特称命题
(1)短语“ 存在一个 ”、“至少有一个”在逻辑中通常
叫做存在量词,用符号∃表示,含有存在量词的命题叫做
特称命题 .
(2) 常 见 的 存 在 量 词 有 : “ 存 在 一 个 ” “ 至 少 有 一
个”“有些”“有一个”“某个”“有的”.
(3)特称命题的形式:存在M中的一个x0,使p(x0)成立,
[例2] 给出下列四个命题: ①∀x∈R,x2+2>0; ②∀x∈N,x4≥1; ③∃x0∈Z,x<1; ④∃x0∈Q,x=3. 其中是真命题的是________(把所有真命题的序号都填 上).
[答案] ①③ [分析] 由题目可获取以下主要信息: ①四个命题中有两个全称命题,两个特称命题; ②要求判断命题的真假.解答本题首先正确理解命题 的含义,再采用举反例等方法给予判断. [解析] ①由于∀x∈R,都有x2≥0, 因而有x2+2≥2>0,即x2+2>0. 所以命题“∀x∈R,x2+2>0”是真命题. ②由于0∈N,当x=0时,x4≥1不成立. 所以命题“∀x∈N,x4≥1”是假命题.
(1)有一个实数α,tanα无意义; (2)任何一条直线都有斜率吗? (3)所有圆的圆心到其切线的距离都等于半径; (4)圆内接四边形,其对角互补; (5)对数函数都是单调函数.
[分析] → 判断真假
判断含有量词类型 → 判断命题类型
[解析] (1)特称命题.α=π2时,tanα 不存在,所 以,特称命题“有一个实数 α,tanα 无意义”是真命题.
③由于-1∈Z,当 x=-1 时,x3<1 成立. 所以命题“∃x0∈Z,x30<1”是真命题. ④由于使 x2=3 成立的数只有± 3,而它们都不是有理 数. 因此,没有任何一个有理数的平方等于 3. 所以命题“∃x0∈Q,x20=3”是假命题.

全称量词与存在量词课件.ppt经典实用

全称量词与存在量词课件.ppt经典实用
自主探究
活动:请同学们阅读课本P11—p12中,3.1,3.2的思考下列 问题:
1、说一说:全称量词有哪些?全称量词的含义。 2、说一说:存在量词有哪些?存在量词的含义。 3、想一想:如何判断一个全程命题的真假?
如何判断一个特称命题的真假?
时间:4分钟+3分钟 (4分钟自学+3分钟)
全称量词与存在量词课件.ppt
3)x R, x2 2x 1 0
x M,p(x)
全称量词与存在量词课件.ppt
10
从形式看,特称命题的否定都变成了全称命题. 含有一个量词的特称命题的否定,有下面的结论
特称命题 p :x M,p(x)
它的否定 p : x M,p(x)
想写一出想下?列命题的否定 1)有些实数的绝对值是正数;
全称量词与存在量词课件.ppt
7
合作探究
活动2:自学阅读课本第12-13页,思考下列问题: 1、写一写:(1)“所有的自然数都是正整数”的否定;
(2)“存在一个素数是偶数”的否定。
2、看一看:这两个命题和它们的否定在形式上有什么变化
3、想一想:(1)全称命题“x M ,有P(x)”的否定是什么? (2)特称命题“x M ,有P(x)”的否定是什么?
2)某些平行四边形是菱形; 3)x R, x2 1 0
全称量词与存在量词课件.ppt
11
想一想?
写出下列命题的否定 1)有些实数的绝对值是正数;
2)某些平行四边形是菱形; 3)x R, x2 1 0
否定: 1)所有实数的绝对值都不是正数; 2)每一个平行四边形都不是菱形;
3) x R, x2 1 0
全称量词与存在量词课件.ppt
9
想一想?
写出下列命题的否定

新高考数学复习考点知识讲义课件3---全称量词与存在量词

新高考数学复习考点知识讲义课件3---全称量词与存在量词

解析 当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时, g(x)min=g(2)=14-m,由题意得 f(x)min≥g(x)min, 即 0≥14-m,所以 m≥14.
引申探究 本例中,若将“∃x2∈[1,2]”改为“∀x2∈[1,2]”,其他条件不变,则 实数m的取值范围是__12_,__+__∞__ _.
D选项中当x1=0时,结论不成立.
题型二 含有一个量词的命题的否定
1.已知命题p:“∃x0∈R,ex0 -x0-1≤0”,则綈p为 A.∃x0∈R,ex0-x0-1≥0 B.∃x0∈R,ex0-x0-1>0
√C.∀x∈R,ex-x-1>0
D.∀x∈R,ex-x-1≥0
解析 根据全称命题与特称命题的否定关系, 可得綈p为“∀x∈R,ex-x-1>0”,故选C.
思维升华
对全称命题、特称命题进行否定的方法 (1)找到命题所含的量词,没有量词的要结合命题的含义先加上量词, 再改变量词; (2)对原命题的结论进行否定.
题型三 根据命题的真假命题p:∀x∈R,x2-a≥0;命题q:∃x∈R,x2+2ax+2 -a=0.若命题p,q都是真命题,则实数a的取值范围为_(_-__∞__,__-__2_]_.
跟踪训练1 (1)下列命题中的假命题是 A.∀x∈R,2x-1>0
√B.∀x∈N*,(x-1)2>0
C.∃x0∈R,lg x0<1 D.∃x0∈R,tan x0=2
解析 当x∈N*时,x-1∈N,可得(x-1)2≥0,当且仅当x=1时取等号, 故B不正确; 易知A,C,D正确,故选B.
1
(2)已知函数f(x)=x2 ,则
跟踪训练2 (1)由命题“∃x0∈R, x20+2x0+m≤0”是假命题,求得实数 m的取值范围是(a,+∞),则实数a=__1__.

高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词

高三数学人教版A版数学(理)高考一轮复习教案简单的逻辑联结词、全称量词与存在量词

第三节简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.知识点一简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p,q有一假为假,p∨q有一真为真,p与非p必定是一真一假.必备方法逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.[自测练习]1.(2015·枣庄模拟)如果命题“p∨q”与命题“綈p”都是真命题,则()A.命题q一定是真命题B.命题p不一定是假命题C.命题q不一定是真命题D.命题p与命题q真假相同解析:由綈p是真命题,则p为假命题.又p∨q是真命题,故q一定为真命题.答案:A知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”、“任意一个”在逻辑中通常叫作全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫作全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫作存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫作特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为∃x 0∈M ,P (x 0),读作“存在M 中的元素x 0,使p (x 0)成立”.3.含有一个量词的命题的否定命 题 命题的否定 ∀x ∈M ,p (x ) ∃x 0∈M ,綈p (x 0) ∃x 0∈M ,p (x 0)∀x ∈M ,綈p (x )易误提醒(1)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.(2)p 或q 的否定易误写成“綈p 或綈q ”;p 且q 的否定易误写成“綈p 且綈q ”. 必备方法 不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.[自测练习]2.(2015·郑州预测)已知命题p :∀x >2,x 3-8>0,那么綈p 是( ) A .∀x ≤2,x 3-8≤0 B .∃x >2,x 3-8≤0 C .∀x >2,x 3-8≤0D .∃x ≤2,x 3-8≤0解析:本题考查全称命题的否定.依题意,綈p 是“∃x >2,x 3-8≤0”,故选B. 答案:B3.下列命题为真命题的是( ) A .∃x 0∈Z,1<4x 0<3 B .∃x 0∈Z,5x 0+1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0解析:1<4x 0<3,14<x 0<34,这样的整数x 0不存在,故A 为假命题;5x 0+1=0,x 0=-15∉Z ,故B 为假命题;x 2-1=0,x =±1,故C 为假命题;对任意实数x ,都有x 2+x +2=⎝⎛⎭⎫x +122+74>0,故D 为真命题.答案:D考点一 含有逻辑联结词的命题的真假判断|1.(2016·石家庄一模)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p 或qB .p 且qC .qD .綈p解析:取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故綈p 为真命题,p 或q 是真命题,p 且q 是假命题,故选B.答案:B2.给定下列三个命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数; p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ). 则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∧p 3 C .p 1∨綈p 3D .綈p 2∧p 3解析:对于p 1:令y =f (x ),当a =12时,f (0)=⎝⎛⎭⎫120+0=1,f (-1)=⎝⎛⎭⎫12-1-1=1,所以p 1为假命题;对于p 2:a 2-ab +b 2=⎝⎛⎭⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3:由cos α=cos β,可得α=2k π±β(k ∈Z ),所以p 3是真命题,所以綈p 2∧p 3为真命题,故选D.答案:D判断一个含有逻辑联结词的命题的真假的三个步骤(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据含有“或”、“且”、“非”的命题的真假判断方法,作出判断即可.考点二 全称命题与特称命题真假判断|1.下列命题中,真命题是( )A .存在x 0∈R ,sin 2x 02+cos 2x 02=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2+1>xD .存在x 0∈R ,x 20+x 0=-1解析:对于A 选项:∀x ∈R ,sin 2x 2+cos 2x2=1,故A 为假命题;对于B 选项:存在x=π6,sin x =12,cos x =32,sin x <cos x ,故B 为假命题;对于C 选项:x 2+1-x =⎝⎛⎭⎫x -122+34>0恒成立,C 为真命题;对于D 选项:x 2+x +1=⎝⎛⎭⎫x +122+34>0恒成立,不存在x 0∈R ,使x 20+x 0=-1成立,故D 为假命题.答案:C2.下列命题中,真命题是( )A .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是偶函数B .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是奇函数C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是偶函数D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )为偶函数”是真命题.答案:A全称命题与特称命题真假的判断方法 命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假存在一个对象使命题假否定为真考点三 利用命题的真假求参数范围|(2015·高考山东卷)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.[解析] 由已知可得m ≥tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4恒成立.设f (x )=tan x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π4,显然该函数为增函数,故f (x )的最大值为tan π4=1,由不等式恒成立可得m ≥1,即实数m 的最小值为1.[答案] 1根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)然后再求出每个命题是真命题时参数的取值范围; (3)最后根据每个命题的真假情况,求出参数的取值范围.已知命题p :∃m ∈R ,m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题.则实数m 的取值范围为________.解析:易知命题p 为真命题, 若命题q 为真命题,则Δ=m 2-4<0, 即-2<m <2.当p ∧q 为真时,有⎩⎪⎨⎪⎧m +1≤0,-2<m <2.∴-2<m ≤-1, ∴p ∧q 为假时,m 的取值范围为{m |m ≤-2,或m >-1}. 答案:(-∞,-2]∪(-1,+∞) 2.全称命题的否定不当致误【典例】 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B[解析] “∀x ∈A ”的否定为“∃x ∈A ”,“2x ∈B ”的否定为“2x ∉B ”,故原命题的否定为“∃x ∈A,2x ∉B ”,故选D.[答案] D[易误点评] 此类题目常易犯下列三种错误:(1)否定了结论,并没有否定量词. (2)否定了条件与结论,没有否定量词. (3)否定了条件,没有否定结论.[防范措施] (1)弄清楚是全称命题还是特称命题,尤其是省略了量词的命题.(2)全(特)称命题的否定应从两个方面着手:一是量词变化,“∀”与“∃”互换;二是否定命题的结论,但不是否定命题的条件.[跟踪练习] (2015·高考全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:命题p 是一个特称命题,其否定是全称命题,故选C. 答案:CA 组 考点能力演练1.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0. 答案:C2.已知命题p :∃x ∈R ,x 2-3x +4≤0,则下列说法正确的是( ) A .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为真命题 B .綈p :∃x ∈R ,x 2-3x +4>0,且綈p 为假命题 C .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题 D .綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为假命题解析:因为x 2-3x +4=⎝⎛⎭⎫x -322+74≥74,所以命题p 为假命题,所以綈p :∀x ∈R ,x 2-3x +4>0,且綈p 为真命题,故选C.答案:C3.(2016·珠海一模)命题p :5的值不超过2,命题q :2是无理数,则( )A .命题“p 或q ”是假命题B .命题“p 且q ”是假命题C .命题“非p ”是假命题D .命题“非q ”是真命题解析:因为5≈2.236>2,故p 为假命题,2是无理数,故q 是真命题,由复合命题的真假判断法则可知B 正确.答案:B4.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真命题解析:A 中命题的否定是:∀x ∈R ,x 2-x >0,故A 不对;B 中当p 为假命题、q 为真命题时,p ∨q 为真,p ∧q 为假,故B 不对;C 中当m =0时,a ,b ∈R ,故C 的说法正确;D 中命题“在△ABC 中,若sin A <12,则A <π6”为假命题,所以其逆否命题为假命题.故选C.答案:C5.(2016·太原模拟)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .[0,2]C .RD .∅解析:若p ∨(綈q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.答案:B6.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是________.解析:本题考查了特称命题与全称命题.命题“存在x ∈R ,使得|x -1|-|x +1|>3”的否定是“对任意的x ∈R ,都有|x -1|-|x +1|≤3”.答案:对任意的x ∈R ,都有|x -1|-|x +1|≤37.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件;命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”、“p ∧q ”、“綈p ”中为真命题的是________.解析:依题意知p 假,q 真,所以p ∨q ,綈p 为真. 答案:p ∨q ,綈p8.命题:“存在实数x ,满足不等式(m +1)x 2-mx +m -1≤0”是假命题,则实数m 的取值范围是________.解析:依题意,“对任意的实数x ,都满足不等式(m +1)x 2-mx +m -1>0”是真命题,则必须满足⎩⎪⎨⎪⎧m +1>0,(-m )2-4(m +1)(m -1)<0,解得m >233.答案:⎝⎛⎭⎫233,+∞ 9.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,求实数a 的取值范围.解:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4; 命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假. 若p 真q 假,则a <-12; 若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4). 10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围. (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:由x 2-4ax +3a 2<0,a >0得a <x <3a , 即p 为真命题时,a <x <3a ,由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0,得⎩⎪⎨⎪⎧-2≤x ≤3,x >2或x <-4,即2<x ≤3,即q 为真命题时2<x ≤3.(1)a =1时,p :1<x <3.由p ∧q 为真知p ,q 均为真命题,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3,得2<x <3, 所以实数x 的取值范围为(2,3).(2)设A ={x |a <x <3a },B ={x |2<x ≤3},由题意知p 是q 的必要不充分条件, 所以B A ,有⎩⎪⎨⎪⎧0<a ≤2,3a >3,∴1<a ≤2, 所以实数a 的取值范围为(1,2].B 组 高考题型专练1.(2014·高考辽宁卷)设a ,b ,c 是非零向量,已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )解析:对命题p 中的a 与c 可能为共线向量,故命题p 为假命题.由a ,b ,c 为非零向量,可知命题q 为真命题.故p ∨q 为真命题.故选A.答案:A2.(2014·高考安徽卷)命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0 D .∃x 0∈R ,|x 0|+x 20≥0解析:全称命题的否定是特称命题,否定结论. 答案:C3.(2015·高考浙江卷)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:全称命题的否定为特称命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”.答案:D4.(2015·高考湖北卷)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是()A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:该命题的否定是将存在量词改为全称量词,等号改为不等号即可,故选A.答案:A。

《全称量词与存在量词》课件PPT

《全称量词与存在量词》课件PPT

总结:利用全称命题与存在性命题为真,研究含 参数的不等式问题,可以利用两个命题的特征把 含参数的不等式成立问题转化为求函数的最值问题。
巩固练习: 1.下列命题中的假命题是:( ) (A)x R,lgx=0 (B)x R,tanx=1 (C) x R,x3 >0(D)x R, 2 x >0 2.已知函数f(x)=ax +bx+c,不等式 1 2 x f(x) (x +1)对一切实数x都成立, 2 求a+b+c的值.
量词
教学目标: 1.理解全称量词与存在量词的意义 2.理解全称命题与存在性命题的特征,并会判断真假。 3.能利用两类命题的特征解决数学问题
问题: 1.哪些词是全称量词?哪些词是存在量词?
2.全称命题与存在性命题集合中的元素有什么特征? 如何判断两个命题的真假?
思考:
下列语句是命题吗?
1) x 1 0 2)5x-1是整数; 2 x 1 0 3)对所有的x∈R, 4)对任意一个x∈Z,5x-1是整数.
——只需在集合M中找到一个元素x0,使得p(
(1)x Z , x 1;
3
(2)x Q, x 3
2
解:(1)真命题; (2)假命题;
小 结:
——只需在集合M中找到一个元素x0,使得p(x0) 成立即可 (举例证明) 判断存在性命题"x0 M,p(x0 )"是假命题的方法: ——需要证明集合M中,使p(x)成立的元素x不存在。
注:课本P6-----全称命题为真时,意味着对限定集合中的 每一个元素都能使所给语句真。 思考:本章开头是因为引用哪个错误的全称命题?
例4.已知函数f(x)=x -2x+1

全称量词与存在量词


2
【名师点评】 量词的几种否定形式
至少 原语句 是 都是 > 有一 个 一个 不都 否定形式 不是 ≤ 也没 是 有 至多 对任意 有一 x∈A使p(x) 个 真 至少 存在x0∈A 有两 使p(x0)假 个
与逻辑联结词、全(特)称命题有关的参 数问题
解决这类问题时,应先根据题目条件,
推出每一个命题的真假(有时不一定只有
第3课时 全称量词与存在量词
1.全称量词与存在量词 (1)全称量词:短语“对所有的”、
“___________”逻辑中通常叫做全称量词,用 词的命题叫做_______ (2)存在量词:短语“存在一个”、 “___________”在逻辑中通常叫做存在量词, 至少有一个 用“∃”表示;含有存在量词的命题叫做 特称命题. ___________
【解】
Δ=m -4>0 p: ,解得 m>2. m>0
2 2
2
q:Δ=16(m-2) -16=16(m -4m+3)<0. 解得 1<m<3. ∵p 或 q 为真,p 且 q 为假.∴p 为真,q 为假, 或 p 为假,q 为真. m>2 m≤2 即 或 . m≤1或m≥3 1<m<3 解得 m≥3 或 1<m≤2. 综上,m 的取值范围是 m≥3 或 1<m≤2.
例2
【思路分析】
分析命题所 明确命题是全称命题还 → 是特称命题 含量词
→ 对命题否定并判断真假
【解】 (1)¬p:存在一个实数 m0,使方程 x +m0x-1=0 没有实数根.因为该方程的判别 2 式 Δ=m0+4>0 恒成立,故¬p 为假命题. (2)¬ p:所有的三角形的三条边不全相等. 显然¬p 为假命题. (3)¬ p:有的菱形的对角线不垂直. 显然¬p 为假命题. 2 (4)¬ p:∀x∈N,x -2x+1>0. 2 显然当 x=1 时,x -2x+1>0 不成立,故¬p 是 假命题.

高考数学第1章集合与常用逻辑用语第3节全称量词与存在量词、逻辑联结词“且”“或”“非”课件理北师大版


40
根据命题的真假求参数取值范围的策略 (1)全称命题可转化为恒成立问题,特称命题可转化为存在性问 题. (2)含量词的命题中参数的取值范围,可根据命题的含义,转化 为函数的最值解决.
41
1.已知f(x)=ln(x2+1),g(x)=
(2)由特称命题的否定可得綈p为“任意m∈R,f(x)=2x-mx不 是增函数”.]
20
全(特)称命题的否定方法:任意x∈M,p(x) 互否 存 在x0∈M,綈p(x0),简记:改量词,否结论.
21
全称命题、特称命题的真假判断 (1)下列命题中的假命题是( ) A.任意x∈R,x2≥0 B.任意x∈R,2x-1>0 C.存在x0∈R,lg x0<1 D.存在x0∈R,sin x0+cos x0=2
6
4.逻辑联结词
(1)命题中的_且___、_或___、__非__叫做逻辑联结词.
(2)命题 p 且 q、p 或 q、非 p 的真假判断
p
q
p且q
p或q
非p
真真
_真__
_真__
_假__
真假
_假__
_真__
_假__
假真
_假__
_真__
_真__
假假
_假__
_假__
_真__
7
[常用结论] 1.含有逻辑联结词的命题真假的判断规律 (1)p或q:p,q中有一个为真,则p或q为真,即有真即真. (2)p且q:p,q中有一个为假,则p且q为假,即有假即假. (3)綈p:与p的真假相反,即一真一假,真假相反.
10
二、教材改编 1.命题“任意x∈R,x2+x≥0”的否定是( ) A.存在x0∈R,x20+x0≤0 B.存在x0∈R,x20+x0<0 C.任意x∈R,x2+x≤0 D.任意x∈R,x2+x<0 B [由全称命题的否定是特称命题知选项B正确.故选B.]

全称量词与存在量词课件

全称量词与存在量词课件全称量词与存在量词课件在学习语言的过程中,我们经常会遇到一些量词,用来表示数量或者程度。

其中,全称量词和存在量词是两个重要的概念。

它们在句子中的使用方式和意义有一定的区别,下面我们就来详细了解一下这两种量词。

一、全称量词全称量词是指用来表示整体、全部的量词。

它们通常用于表示数量的确切大小或者程度的完全。

常见的全称量词有:所有、全部、每个、一切等。

下面是一些例句:1. 所有学生都参加了运动会。

2. 全部工作都已经完成了。

3. 每个人都应该为环境保护贡献自己的力量。

4. 一切都是最好的安排。

从以上例句中可以看出,全称量词强调的是整体、全部的概念。

它们在句子中的作用是限定范围,表示没有例外,每一个都符合条件。

全称量词通常与肯定句搭配使用,表示肯定的事实或者观点。

二、存在量词存在量词是指用来表示部分、个别的量词。

它们通常用于表示数量的不确定或者程度的相对。

常见的存在量词有:一些、几个、有些、有几个等。

下面是一些例句:1. 我们班有一些学生会弹吉他。

2. 他们家有几个孩子。

3. 有些人对这个问题持不同意见。

4. 这个城市有几个著名的景点。

从以上例句中可以看出,存在量词强调的是部分、个别的概念。

它们在句子中的作用是限定范围,表示有一些或者有几个符合条件。

存在量词通常与否定句或者疑问句搭配使用,表示不确定或者相对的事实或者观点。

三、全称量词与存在量词的区别全称量词和存在量词在使用上有一些区别,主要表现在以下几个方面:1. 强调程度不同:全称量词强调的是整体、全部的程度,而存在量词强调的是部分、个别的程度。

2. 用词方式不同:全称量词通常使用“所有、全部、每个、一切”等词语,而存在量词通常使用“一些、几个、有些、有几个”等词语。

3. 句子结构不同:全称量词通常与肯定句搭配使用,表示肯定的事实或者观点;而存在量词通常与否定句或者疑问句搭配使用,表示不确定或者相对的事实或者观点。

四、总结全称量词和存在量词是语言中常见的量词概念。

2023年高考数学总复习第一章 集合与常用逻辑用语 第3节:简单的逻辑联结词 (教师版)

2023年高考数学总复习第一章集合与常用逻辑用语第3节全称量词与存在量词、逻辑联结词“且”“或”“非”考试要求 1.了解逻辑联结词、“且”、“或”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)命题中的且、或、非叫作逻辑联结词.(2)命题p且q,p或q,非p的真假判断p q p且q p或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题和特称命题名称全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记任意x∈M,p(x)存在x0∈M,p(x0)否定存在x0∈M,非p(x0)任意x∈M,非p(x)1.含有逻辑联结词的命题真假判断口诀:p或q→见真即真,p且q→见假即假,p 与非p→真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.3.“p或q”的否定是“(非p)且(非q)”,“p且q”的否定是“(非p)或(非q)”.4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.1.思考辨析(在括号内打“√”或“×”)(1)命题“5>6或5>2”是假命题.()(2)命题非(p且q)是假命题,则命题p,q中至少有一个是假命题.()(3)“长方形的对角线相等”是特称命题.()(4)存在x0∈M,p(x0)与任意x∈M,非p(x)的真假性相反.()答案(1)×(2)×(3)×(4)√解析(1)错误.命题p或q中,p,q有一真则真.(2)错误.p且q是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.2.(2021·全国乙卷)已知命题p:存在x∈R,sin x<1;命题q:任意x∈R,e|x|≥1,则下列命题中为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.非(p或q)答案A解析由正弦函数的图象及性质可知,存在x∈R,使得sin x<1,所以命题p为真命题.对任意的x∈R,均有e|x|≥e0=1成立,故命题q为真命题,所以命题p 且q为真命题,故选A.3.(2017·山东卷)已知命题p:任意x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p且qB.p且(非q)C.(非p)且qD.(非p)且(非q)答案B解析由已知得p真,q假,故非q真,所以p且(非q)真,故选B.4.(易错题)命题p:“有些三角形是等腰三角形”,则非p是________.答案所有三角形都不是等腰三角形5.(易错题)命题“任意x∈R,ax2-ax+1>0”为真命题,则实数a的取值范围为________.答案[0,4)解析①当a=0时,1>0恒成立;②当a≠0a>0,Δ=a2-4a<0,∴0<a<4.综上0≤a<4.6.(2021·合肥调研)能说明命题“任意x∈R且x≠0,x+1x≥2”是假命题的x的值可以是________(写出一个即可).答案-1(任意负数)解析当x>0时,x+1x≥2,当且仅当x=1时取等号,当x<0时,x+1x≤-2,当且仅当x=-1时取等号,∴x的取值为负数即可,例如x=-1.考点一含有逻辑联结词的命题1.(2021·成都调研)已知命题p:函数y=2sin x+sin x,x∈(0,π)的最小值为22;命题q:若a·b=0,b·c=0,则a·c=0.下列命题为真命题的是()A.(非p)且qB.p或qC.p且(非q)D.(非p)且(非q)答案D解析命题p:函数y=2sin x+sin x,x∈(0,π),由基本不等式成立的条件可知,y>22sin x·sin x=22,等号取不到,所以命题p是假命题.命题q:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以命题q是假命题.所以非p为真,非q为真.因此,只有(非p)且(非q)为真命题.2.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(非p)或(非q)B.p且(非q)C.(非p)且(非q)D.p或q答案A解析命题p是“甲降落在指定范围”,则非p是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则非q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”.所以命题“至少有一位学员没有降落在指定范围”可表示为(非p)或(非q).3.(2022·洛阳质检)设a,b,c均为非零向量,已知命题p:a=b是a·c=b·c的必要不充分条件,命题q:x>1是|x|>1的充分不必要条件.则下列命题中为真命题的是()A.p且qB.p或qC.(非p)且(非q)D.p或(非q)答案B解析由a=b⇒a·c=b·c,但a·c=b·c⇒/a=b,故p为假命题.命题q:∵|x|>1,∴x>1或x<-1,∴由x>1⇒|x|>1,但|x|>1⇒/x>1,故q为真命题.故选B.4.(2020·全国Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1且p4②p1且p2③(非p2)或p3④(非p3)或(非p4)答案①③④解析p1是真命题,两两相交不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p1为真命题;p2是假命题,因为空间三点在一条直线上时,有无数个平面过这三个点;p3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知非p2,非p3,非p4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.感悟提升 1.“p或q”,“p且q”,“非p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p或q”“p且q”“非p”形式命题的真假.2.p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p与p的真假性相反.考点二全称量词与存在量词例1(1)(2021·江南十校联考)已知f(x)=sin x-tan x,命题p:存在x0∈0,π2f(x0)<0,则()A.p是假命题,非p:任意x 0π2,f(x)≥0B.p是假命题,非p:存在x0∈0,π2f(x0)≥0C.p是真命题,非p:任意x 0,π2,f(x)≥0D.p是真命题,非p:存在x0∈0,π2f(x0)≥0(2)已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.任意x∈R,f(-x)≠f(x)B.任意x∈R,f(-x)≠-f(x)C.存在x0∈R,f(-x0)≠f(x0)D.存在x0∈R,f(-x0)≠-f(x0)答案(1)C(2)C解析(1)当x π4,π2sin x<1,tan x>1.此时sin x-tan x<0,故命题p为真命题.由于命题p为特称命题,所以命题p 的否定为全称命题,则非p 为:任意x f (x )≥0.(2)∵定义域为R 的函数f (x )不是偶函数,∴任意x ∈R ,f (-x )=f (x )为假命题,∴存在x 0∈R ,f (-x 0)≠f (x 0)为真命题.感悟提升1.全称命题与特称命题的否定与一般命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“任意x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立即可.训练1(1)设命题p :所有正方形都是平行四边形,则非p 为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形(2)下列四个命题:p 1:存在x 0∈(0,+∞)00;p 2:存在x 0∈(0,π),sin x 0<cos x 0;p 3:任意x ∈R ,e x >x +1;p 4:任意x <log 13x .其中真命题是()A.p 1,p 3B.p 1,p 4C.p 2,p 3D.p 2,p 4答案(1)C(2)D解析(1)“所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即非p 为有的正方形不是平行四边形.(2)对于p 1,当x 0∈(0,+∞)00成立,故p 1是假命题;对于p 2,当x0=π6时,sin x0<cos x0,故p2为真命题;对于p3,当x=0时,e x=x+1,故p3为假命题;对于p4,结合指数函数y=12与对数函数y=log13x0,13上的图象(图略)可以判断p4为真命题.考点三由命题的真假求参数例2(1)已知命题p:任意x∈[1,2],x2-a≥0;q:存在x0∈R,x20+2ax0+2-a =0,若(非p)且q是真命题,则实数a的取值范围是________________.(2)(经典母题)已知f(x)=ln(x2+1),g(x)12-m,若对任意x1∈[0,3],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________________.答案(1)(1,+∞)(2)14,+∞解析(1)∵(非p)且q是真命题,∴p假q真.p:任意x∈[1,2],x2-a≥0为假命题,∴存在x∈[1,2],x2-a<0为真命题,即a>x2成立,∴a>1.q:存在x0∈R,x20+2ax0+2-a=0为真命题,所以Δ=(2a)2-4(2-a)≥0,∴a≥1或a≤-2.综上,a>1.(2)当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)min=g(2)=14-m,由f(x)min≥g(x)min,得0≥14-m,所以m≥14.迁移本例(2)中,若将“存在x2∈[1,2]”改为“任意x2∈[1,2]”,其他条件不变,则实数m的取值范围是________________.答案12,+∞解析当x∈[1,2]时,g(x)max=g(1)=12-m,对任意x1∈[0,3],任意x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)max,得0≥1 2-m,∴m≥1 2 .感悟提升 1.由含逻辑联结词的命题真假求参数的方法步骤:(1)求出每个命题是真命题时参数的取值范围;(2)根据每个命题的真假情况,求出参数的取值范围.2.全称命题可转化为恒成立问题.3.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.训练2(2022·许昌质检)已知p:关于x的方程e x-a=0在(-∞,0)上有解;q:函数y=lg(ax2-x+a)的定义域为R,若p或q为真命题,p且q为假命题,则实数a的取值范围是________.答案,12∪[1,+∞)解析p真:a=e x在(-∞,0)上有解,∴0<a<1.q真:ax2-x+a>0在R上恒成立,当a=0时,显然不成立;当a≠0>0,=(-1)2-4a2<0,∴a>12.又p或q为真,p且q为假,∴p真q假或p假q真.当p真qa<1,≤12,∴0<a≤12,当p假q≤0或a≥1,>12,∴a≥1.∴0<a≤12或a≥1.1.(2021·成都诊断)已知命题p:对任意的x∈R,2x-x2≥1,则非p为()A.对任意的x∉R,2x-x2<1B.存在x∉R,2x-x2<1C.对任意的x∈R,2x-x2<1D.存在x∈R,2x-x2<1答案D解析p:任意x∈R,2x-x2≥1,∴非p:存在x∈R,2x-x2<1.2.“p且q是真命题”是“p或q是真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A3.下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案B4.命题“任意x∈R,f(x)·g(x)≠0”的否定是()A.任意x∈R,f(x)=0且g(x)=0B.任意x∈R,f(x)=0或g(x)=0C.存在x0∈R,f(x0)=0且g(x0)=0D.存在x0∈R,f(x0)=0或g(x0)=0答案D解析根据全称命题与特称命题的互为否定的关系可得:命题“任意x∈R,f(x)g(x)≠0”的否定是“存在x0∈R,f(x0)=0或g(x0)=0”.故选D.5.命题p:甲的数学成绩不低于100分,命题q:乙的数学成绩低于100分,则p 或(非q)表示()A.甲、乙两人的数学成绩都低于100分B.甲、乙两人至少有一人的数学成绩低于100分C.甲、乙两人的数学成绩都不低于100分D.甲、乙两人至少有一人的数学成绩不低于100分答案D解析由于命题q:乙的数学成绩低于100分,因此非q:乙的数学成绩不低于100分,所以p或(非q)表示甲、乙两人至少有一人的数学成绩不低于100分. 6.已知命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为()A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)答案D解析因为命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,所以其否定为“任意x∈R,4x2+(a-2)x+14>0”是真命题.则Δ=(a-2)2-4×4×14=a2-4a<0,解得0<a<4.7.(2021·衡水检测)命题p:若向量a·b<0,则a与b的夹角为钝角;命题q:若cosα·cosβ=1,则sin(α+β)=0.下列命题为真命题的是()A.pB.非qC.p且qD.p或q答案D解析当a,b方向相反时,a·b<0,但夹角是180°,不是钝角,命题p是假命题;若cosαcosβ=1,则cosα=cosβ=1或cosα=cosβ=-1,所以sinα=sinβ=0,从而sin(α+β)=0,命题q是真命题,所以p或q是真命题.8.已知命题p:“任意x∈[0,1],a≥e x”;命题q:“存在x0∈R,使得x20+4x0+a=0”.若命题“p且q”是真命题,则实数a的取值范围为()A.[e,4]B.(-∞,e]C.[e,4)D.[4,+∞)答案A解析若命题“p且q”是真命题,那么命题p,q都是真命题.由任意x∈[0,1],a≥e x,得a≥e;由存在x0∈R,使x20+4x0+a=0,得Δ=16-4a≥0,则a≤4,因此e≤a≤4.9.命题:存在x0∈R,1<f(x0)<2的否定是________________________.答案任意x∈R,f(x)≤1或f(x)≥210.若“任意x∈0,π4,tan x≤m”是真命题,则实数m的最小值为________.答案1解析∵函数y=tan x在0,π4上是增函数,∴y max=tan π4=1,依题意,m≥y max,即m≥1.∴m的最小值为1.11.下列命题为真命题的是________(填序号).①存在x0∈R,x20+x0+1≤0;②任意a∈R,f(x)=log(a2+2)x在定义域内是增函数;③若f(x)=2x-2-x,则任意x∈R,f(-x)=-f(x);④若f(x)=x+1x,则∃x0∈(0,+∞),f(x0)=1.答案②③解析x20+x0+10+34>0,故①错误;∵a2+2≥2>1,∴f(x)=log(a2+2)x在(0,+∞)上是增函数,故②正确;f(x)为奇函数,所以任意x∈R,都有f(-x)=-f(x),故③正确;x0∈(0,+∞)时,f(x0)=x0+1x0≥2,当且仅当x0=1时取“=”,故④错误.综上有②③正确.12.(2022·周口调研)已知p:函数f(x)=x2-(2a+4)x+6在(1,+∞)上是增函数,q:任意x∈R,x2+ax+2a-3>0,若p且(非q)是真命题,则实数a的取值范围为________.答案(-∞,-1]解析依题意,p为真命题,非q为真命题.若p为真命题,则2a+42≤1,解得a≤-1.①若非q为真命题,则存在x0∈R,x20+ax0+2a-3≤0成立.∴a2-4(2a-3)≥0,解之得a≥6或a≤2.②结合①②,知a≤-1,即实数a的取值范围是(-∞,-1].13.已知命题p:任意x>0,e x>x+1,命题q:存在x∈(0,+∞),ln x≥x,则下列命题为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.(非p)且(非q)答案C解析令f(x)=e x-x-1,则f′(x)=e x-1,当x>0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,∴f(x)>f(0)=0,即e x>x+1,则命题p真;令g(x)=ln x-x,x>0,则g′(x)=1x-1=1-xx,当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0,即当x=1时,g(x)取得极大值,也是最大值,所以g(x)max=g(1)=-1<0,∴g(x)<0在(0,+∞)上恒成立,则命题q假,因此非q为真,故p且(非q)为真.14.(2019·全国Ⅲ卷)+y≥6,x-y≥0表示的平面区域为D.命题p:存在(x,y)∈D,2x+y≥9;命题q:任意(x,y)∈D,2x+y≤12.下面给出了四个命题①p或q;②(非p)或q;③p且(非q);④(非p)且(非q).这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④答案A 解析由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知p 为真命题,非p 为假命题,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 为假命题;命题非q 为真命题;∴p 或q 为真,(非p )或q 为假,p 且(非q )为真,(非p )且(非q )为假.故真命题的编号为①③.15.已知函数f (x )的定义域为(a ,b ),若“存在x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案0解析“存在x ∈(a ,b ),f (x )+f (-x )≠0”的否定是任意x ∈(a ,b ),f (x )+f (-x )=0,依题意:命题任意x ∈(a ,b ),f (x )+f (-x )=0为真命题,故函数y =f (x ),x ∈(a ,b )为奇函数,∴a +b =0,∴f (a +b )=f (0)=0.16.若f (x )=x 2-2x ,g (x )=ax +2(a >0),任意x 1∈[-1,2],存在x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案,12解析设f (x )=x 2-2x ,g (x )=ax +2(a >0)在[-1,2]上的值域分别为A ,B ,则A =[-1,3],B =[-a +2,2a +2],a +2≥-1,a +2≤3,∴a ≤12,又∵a >0,∴0<a ≤12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3节全称量词与存在量词知识梳理1.全称量词与存在量词(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.2.全称命题和特称命题1.含有一个量词的命题的否定规律是“改量词,否结论”.2.对省略了全称量词的命题否定时,要对原命题先加上全称量词再对其否定.3.命题p和綈p的真假性相反,若判断一个命题的真假有困难时,可判断此命题的否定的真假.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)至少有一个三角形的内角和为π是全称命题.()(2)“全等三角形的面积相等”是特称命题.()(3)写特称命题的否定时,存在量词变为全称量词.()(4)“长方形的对角线相等”是特称命题.()答案(1)×(2)×(3)√(4)×2.命题:“∃x0∈R,x20-ax0+1<0”的否定为________.答案∀x∈R,x2-ax+1≥03.命题“对于函数f(x)=x2+ax(a∈R),存在a∈R,使得f(x)是偶函数”为________命题(填“真”或“假”).答案真解析当a=0时,f(x)=x2(x≠0)为偶函数.4.(多选题)(2021·济南调研)下列命题的否定中,是全称命题且为真命题的有()A.∃x0∈R,x20-x0+14<0B.所有的正方形都是矩形C.∃x0∈R,x20+2x0+2=0D.至少有一个实数x,使x3+1=0答案AC解析由条件可知:原命题应为特称命题且为假命题,所以排除BD;又因为x2-x+14=⎝⎛⎭⎪⎫x-122≥0,x2+2x+2=(x+1)2+1>0,所以AC均为特称命题且为假命题,故选AC.5.(2020·合肥调研)能说明命题“∀x∈R且x≠0,x+1x≥2”是假命题的x的值可以是________(写出一个即可).答案-1(任意负数)解析当x>0时,x+1x≥2,当且仅当x=1时取等号,当x<0时,x+1x≤-2,当且仅当x=-1时取等号,∴x的取值为负数即可,例如x=-1.6.若命题“∃t0∈R,t20-2t0-a<0”是假命题,则实数a的取值范围是________.答案(-∞,-1]解析命题“∃t0∈R,t20-2t0-a<0”是假命题,等价于∀t∈R,t2-2t-a≥0是真命题,∴Δ=4+4a≤0,解得a≤-1.∴实数a的取值范围是(-∞,-1].考点一含有一个量词的命题的否定1.已知命题p:“∃x0∈R,e x0-x0-1≤0”,则綈p为()A.∃x0∈R,e x0-x0-1≥0B.∃x0∈R,e x0-x0-1>0C.∀x∈R,e x-x-1>0D.∀x∈R,e x-x-1≥0答案C解析根据全称命题与特称命题的否定关系,可得綈p为“∀x∈R,e x-x-1>0”,故选C.2.(2021·青岛模拟)设命题p:所有正方形都是平行四边形,则綈p为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形答案C解析“所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即綈p为有的正方形不是平行四边形.3.(2021·山东重点高中联考)已知集合A是奇函数集,B是偶函数集.若命题p:∀f(x)∈A,|f(x)|∈B,则綈p为()A.∀f(x)∈A,|f(x)|∉BB.∀f(x)∉A,|f(x)|∉BC.∃f(x)∈A,|f(x)|∉BD.∃f(x)∉A,|f(x)|∉B答案C解析全称命题的否定为特称命题:改写量词,否定结论.∴綈p:∃f(x)∈A,|f(x)|∉B.4.若命题p的否定是“对所有正数x,x>x+1”,则命题p是________________.答案∃x0∈(0,+∞),x0≤x0+1感悟升华 否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.考点二 全称命题、特称命题的真假判断【例1】 (1)(多选题)(2021·德州模拟)下列四个命题中为真命题的是( ) A.∃x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0<⎝ ⎛⎭⎪⎫13x 0B.∃x 0∈(0,1),log 12x 0>log 13x 0C.∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x>log 12xD.∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x<log 13x(2)以下四个命题既是特称命题又是真命题的是( ) A.锐角三角形有一个内角是钝角 B.至少有一个实数x ,使x 2≤0 C.两个无理数的和必是无理数 D.存在一个负数x ,使1x >2 答案 (1)BD (2)B解析 (1)对于A ,当x ∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x>⎝ ⎛⎭⎪⎫13x成立,故A 是假命题;对于B ,当x =12时,有1=log 1212=log 1313>log 1312成立,故B 是真命题;对于C ,当0<x <12时,log 12x >1>⎝ ⎛⎭⎪⎫12x,故C 是假命题;对于D ,∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x<1<log 13x ,故D 是真命题.(2)A 中锐角三角形的内角都是锐角,所以A 是假命题;B 中当x =0时,x 2=0,满足x 2≤0,所以B 既是特称命题又是真命题;C 中因为2+(-2)=0不是无理数,所以C 是假命题;D 中对于任意一个负数x ,都有1x <0,不满足1x >2,所以D 是假命题.感悟升华 判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立即可.【训练1】 (1)(多选题)下列命题中是真命题的有( ) A.∀x ∈R ,2x -1>0 B.∀x ∈N *,(x -1)2>0 C.∃x 0∈R ,lg x 0<1 D.∃x 0∈R ,tan x 0=2(2)已知定义域为R 的函数f (x )不是偶函数,则下列命题一定为真命题的是( ) A.∀x ∈R ,f (-x )≠f (x ) B.∀x ∈R ,f (-x )≠-f (x ) C.∃x 0∈R ,f (-x 0)≠f (x 0) D.∃x 0∈R ,f (-x 0)≠-f (x 0) 答案 (1)ACD (2)C解析 (1)当x =1时,(x -1)2=0,故B 为假命题,其余都是真命题,故选ACD. (2)∵定义域为R 的函数f (x )不是偶函数,∴∀x ∈R ,f (-x )=f (x )为假命题,∴∃x 0∈R ,f (-x 0)≠f (x 0)为真命题.考点三 由命题的真假求参数的取值范围【例2】 (1)已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x ∈R ,x 2+2ax +2-a =0.若命题p ,q 都是真命题,则实数a 的取值范围为________.(2)已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 (1)(-∞,-2] (2)⎣⎢⎡⎭⎪⎫14,+∞解析 (1)由命题p 为真,得a ≤0,由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a ≤-2. (2)当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m , 由f (x )min ≥g (x )min , 得0≥14-m ,所以m ≥14.感悟升华 (1)已知命题的真假,可根据每个命题的真假利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.【训练2】 (1)若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________.(2)(2020·潍坊调研)若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈ [-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________. 答案 (1)1 (2)⎝ ⎛⎦⎥⎤0,12解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π4,π3,得1≤tan x +2≤2+ 3.∵“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则m ≤1.∴实数m 的最大值为1.(2)由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],因为a >0,所以函数g (x )的值域是[2-a ,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.故a 的取值范围是⎝ ⎛⎦⎥⎤0,12.A 级 基础巩固一、选择题1.命题p :“∀x >1,x 2-1>0”,则綈p 为( ) A.∀x >1,x 2-1≤0 B.∀x ≤1,x 2-1≤0 C.∃x 0>1,x 20-1≤0D.∃x 0≤1,x 20-1≤0答案C解析命题p:“∀x>1,x2-1>0”,则綈p为:∃x0>1,x20-1≤0.2.(多选题)(2020·重庆质检)下列命题中是真命题的有()A.∃x0∈R,log2x0=0B.∃x0∈R,cos x0=1C.∀x∈R,x2>0D.∀x∈R,2x>0答案ABD解析因为log21=0,cos 0=1,所以选项A,B均为真命题;02=0,选项C为假命题;2x>0,选项D为真命题.3.下列命题是真命题的为()A.所有的素数都是奇数B.∀x∈R,x2+1≥0C.对于每一个无理数x,x2是有理数D.∀x∈Z,1x∉Z答案B解析对于A,2是素数,但2不是奇数,A假;对于B,∀x∈R,总有x2≥0,则x2+1≥0恒成立,B真;对于C,π是无理数,(π)2=π还是无理数,C假;对于D,1∈Z,但11=1∈Z,D假,故选B.4.已知命题p:∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≥0,则綈p是()A.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0B.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0C.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0D.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)<0答案C解析已知全称命题p:∀x1,x2∈R,[f(x2)-f(x1)]·(x2-x1)≥0,则綈p:∃x1,x2∈R,[f(x2)-f(x1)]·(x2-x1)<0,故选C.5.(多选题)(2021·烟台调研)下列四个命题中是真命题的有()A.任意x∈R,3x>0B.存在x∈R,x2+x+1≤0C.任意x ∈R ,sin x <2xD.存在x ∈R ,cos x >x 2+x +1 答案 AD解析 ∀x ∈R ,3x >0恒成立,A 是真命题. 又x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴B 是假命题.由sin ⎝ ⎛⎭⎪⎫-32π=1>2-32π,知C 是假命题.取x =-12时,cos ⎝ ⎛⎭⎪⎫-12>cos ⎝ ⎛⎭⎪⎫-π6=32,但x 2+x +1=34<32,则D 为真.6.已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( ) A.(-∞,0) B.[0,4] C.[4,+∞) D.(0,4)答案 D解析 因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定为“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题.则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4.7.已知函数f (x )=x 12,则( ) A.∃x 0∈R ,f (x 0)<0 B.∀x ∈(0,+∞),f (x )≥0 C.∃x 1,x 2∈[0,+∞),f (x 1)-f (x 2)x 1-x 2<0D.∀x 1∈[0,+∞),∃x 2∈[0,+∞),f (x 1)>f (x 2) 答案 B解析 幂函数f (x )=x 12的值域为[0,+∞),且在定义域上单调递增,故A 错误,B 正确,C 错误;D 选项中当x 1=0,结论不成立.8.(2020·江南十校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)<0,则( )A.p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B.p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C.p 是真命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D.p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0答案 C解析 当x ∈⎝ ⎛⎭⎪⎫π4,π2时,sin x <1,tan x >1.此时sin x -tan x <0,故命题p 为真命题.由于命题p 为特称命题,所以命题p 的否定为全称命题, 则綈p 为:∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0. 二、填空题9.命题“∀x ∈R ,x 2+x +1>0”的否定是________. 答案 ∃x 0∈R ,x 20+x 0+1≤010.下列命题中的假命题是________(填序号).①∃x 0∈R ,lg x 0=1;②∃x 0∈R ,sin x 0=0;③∀x ∈R ,x 3>0;④∀x 1>x 2,2x 1>2x 2. 答案 ③解析 当x =10时,lg 10=1,则①为真命题; 当x =0时,sin 0=0,则②为真命题; 当x <0时,x 3<0,则③为假命题;由指数函数的性质知,∀x 1>x 2,2x 1>2x 2,则④为真命题.11.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1解析 ∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1,依题意,m ≥y max ,即m ≥1.∴m 的最小值为1.12.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 f (x )=sin x ,x ∈[0,2](答案不唯一,再如f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2)解析 根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).B 级 能力提升13.命题“∃n 0∈N *,f (n 0)∈N *,且f (n 0)≤n 0”的否定形式是( ) A.∀n ∈N *,f (n )∉N *且f (n )>n B.∀n ∈N *,f (n )∉N *或f (n )>n C.∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D.∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 答案 B解析 因为特称命题的否定是全称命题,所以命题“∃n 0∈N *,f (n 0)∈N *且f (n 0)≤n 0”的否定形式是“∀n ∈N *,f (n )∉N *或f (n )>n ”. 14.(多选题)(2021·青岛质检)下列说法正确的是( ) A.“x =π4”是“tan x =1”的充分不必要条件B.定义在[a ,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最大值为30C.命题“∃x 0∈R ,x 0+1x 0≥2”的否定是“∀x ∈R ,x +1x >2”D.“所有的分数都是有理数”的否定是“有的分数不是有理数” 答案 ABD解析 由x =π4,得tan x =1,但由tan x =1不一定推出x =π4,可知“x =π4”是 “tan x =1”的充分不必要条件,所以A 正确;若定义在[a ,b ]上的函数f (x )=x 2+(a +5)x +b 是偶函数,则⎩⎨⎧a +5=0,a +b =0,解得⎩⎨⎧a =-5,b =5,则f (x )=x 2+5,其在[-5,5]上的最大值为30,所以B 正确;显然C 错误,D 正确.15.若“∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立”是假命题,则实数λ的取值范围是________.答案 (-∞,22]解析 若“∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得2x 20-λx 0+1<0成立”是假命题, 即“∃x 0∈⎣⎢⎡⎦⎥⎤12,2,使得λ>2x 0+1x 0成立”是假命题, 则“∀x ∈⎣⎢⎡⎦⎥⎤12,2,使得λ≤2x +1x 成立”是真命题, x 0∈⎣⎢⎡⎦⎥⎤12,2,当x 0=22时,2x 0+1x 0取最小值22, 故实数λ的取值范围为(-∞,22].16.已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 解析 依题意知f (x )max ≤g (x )max .∵f (x )=x +4x 在⎣⎢⎡⎦⎥⎤12,1上是减函数, ∴f (x )max =f ⎝ ⎛⎭⎪⎫12=172. 又g (x )=2x +a 在[2,3]上是增函数,∴g (x )max =8+a , 因此172≤8+a ,则a ≥12.。

相关文档
最新文档