八年级上数学动点问题

合集下载

八年级上册数学动点知识点

八年级上册数学动点知识点

八年级上册数学动点知识点在八年级上学期的数学学习中,动点是一个十分重要的知识点。

动点的理解和应用是解决许多数学问题的关键,下面将对动点的相关知识点进行具体阐述。

一、动点的概念在平面几何中,动点指的是图形中移动的点,可表示点在图形彼此相邻的位置之间移动。

动点可以帮助我们理解几何问题和计算面积等相关问题。

二、动点的轨迹动点的轨迹是动点在图形中移动产生的图形形状。

轨迹在解决许多数学问题中具有重要的作用,在计算问题中提供了有效的方法。

三、动点的应用1. 动点计算周长在计算周长时,可以将动点设置在图形中的边缘,然后将点按一定规律移动,最终得到图形的周长。

2. 动点计算面积在计算面积时,可以将动点设置在图形的内部或边缘,然后将点按一定规律移动,最终得到的面积是图形的实际面积。

3. 动点解决图形问题通过运用动点的概念,我们可以应用动点来解决许多数学问题。

例如,在计算等腰三角形的高度时,可以设想在三角形的底边上放一个动点,使其逐渐上移,当动点到达三角形的顶点时,由于等腰三角形两侧边的长度相等,所以动点的轨迹就是一条线段。

当这个线段长度等于三角形底边的长度时,就可以得到三角形的高度。

四、动点的常见问题在学习动点的过程中,会遇到一些常见的问题,包括动点的轨迹、动点的速率、动点的位置等问题。

在解决这些问题时,需要注意动点的位置和移动的规律,以便正确地解决问题。

五、动点在生活中的应用动点不仅仅只在数学学习中有应用,也可以在生活中得到应用。

例如,在设计新建筑时,可以运用动点的知识,得出建筑物的周长和面积等数据以及建筑物的空间结构等方面的问题。

总之,动点是数学学习中一个重要的知识点,熟练掌握动点的概念和应用可以帮助我们更好地解决问题和实现生活中的应用。

八年级动点问题解题技巧和方法

八年级动点问题解题技巧和方法

八年级动点问题解题技巧和方法嘿,同学们!今天咱就来唠唠八年级的动点问题。

这动点问题啊,就像是个调皮的小精灵,一会儿在这儿,一会儿又跑到那儿,让人有点摸不着头脑。

咱先来说说解题技巧。

遇到动点问题,可别慌,就把它当成是在和你玩捉迷藏的小伙伴。

你得静下心来,仔细观察它的行动轨迹。

比如说,它是沿着直线跑呢,还是在一个图形里蹦跶。

这就像是你知道了小伙伴喜欢藏在哪个角落一样重要。

然后呢,咱得把那些不变的量给找出来。

就好比是游戏里的固定规则,不管这个动点怎么调皮,这些不变的量就是你的法宝。

你抓住了它们,就等于抓住了解题的关键。

再讲讲方法。

画个图那是必须的呀!把题目里的条件都在图上标出来,这样不就一目了然了嘛。

就好像给这个调皮的小精灵画了个活动范围,你能更清楚地看到它的一举一动。

还有啊,设未知数也是个好办法。

给这个动点取个名字,让它不再神秘。

然后根据题目里的关系,列出方程或者不等式,这就像是给小精灵套上了个小笼子,让它乖乖就范。

咱举个例子吧,就说一个动点在一个长方形里跑来跑去。

那咱就先把长方形的边长啥的都标清楚,然后看这个动点是怎么跑的。

要是告诉你它的速度,那咱就能算出它在一定时间内跑了多远。

再结合其他条件,是不是就能找到解题的思路啦?动点问题其实没那么可怕,就像你第一次骑自行车,觉得很难,但多骑几次就熟练啦。

只要你多练习,多琢磨,就一定能把这个小精灵给收服。

同学们,想想看,要是你能轻松搞定动点问题,那得多有成就感啊!以后再遇到这种题,你就可以胸有成竹地说:“哼,我可不怕你这个小精灵!”别小看了这些解题技巧和方法,它们可是你在数学世界里的秘密武器呢!加油吧,让我们一起征服动点问题这个小调皮!动点问题就像是一场刺激的冒险,每一个题目都是一个新的挑战。

有时候你可能会觉得困难重重,但别灰心,就像爬山一样,一步一步往上爬,总会爬到山顶的。

而且,当你解决了一个难题后,那种喜悦是无与伦比的。

所以,同学们,别害怕动点问题,大胆地去尝试,去探索。

初二数学动点练习题

初二数学动点练习题

初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。

2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。

求证:无论点P在圆上如何移动,OP的长度始终为5。

3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。

当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。

4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。

求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。

5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。

求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。

6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。

当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。

7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。

求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。

8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。

点C是线段AB上的动点,其坐标为(x,y)。

求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。

练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。

- 对于圆上的动点问题,可以利用圆的半径性质来证明。

- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。

- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。

初二上册数学动点问题解题技巧

初二上册数学动点问题解题技巧

初二上册数学动点问题解题技巧动点问题是初中数学中的一个重要内容,通常涉及到数学中的各种运动和速度问题。

在初二上册数学中,动点问题的解题技巧是一个必须要掌握的重要知识点。

本文将就初二上册数学动点问题的解题技巧进行深入探讨,帮助同学们更好地理解和应用这一知识点。

一、了解动点问题的基本概念在解动点问题之前,首先要了解动点问题的基本概念。

动点问题通常涉及到两个物体之间的相对运动,或者某个物体在运动过程中的速度、时间、距离等相关问题。

两辆汽车同时从A地和B地出发相向而行,问它们相遇时的距离是多少?这就是一个典型的动点问题。

二、掌握动点问题的解题步骤解动点问题的基本步骤可以归纳为以下几点:1. 分析题目,明确问题。

要仔细阅读题目,理解清楚题目所描述的运动过程,明确问题所涉及的物体、速度、时间、距离等信息。

2. 建立坐标系。

在解动点问题时,通常需要建立一个适当的坐标系,以便更好地描述物体的运动过程。

3. 建立运动关系方程。

根据题目描述的运动过程,建立物体之间的运动关系方程,常用的有速度公式、位移公式等。

4. 解方程得答案。

根据建立的运动关系方程进行求解,得到问题的答案。

三、常见的动点问题类型及解题技巧在初二上册数学中,动点问题通常分为相遇问题、追及问题、并行问题等不同类型。

下面将针对这些常见的动点问题类型介绍解题技巧。

1. 相遇问题相遇问题通常描述两个物体相对运动,要求计算它们相遇时的距离、时间等。

解这类问题时,首先要明确两个物体的运动速度,然后建立它们之间的运动关系方程,从而求得相遇时的距离或时间。

2. 追及问题追及问题描述了两个物体之间的追及关系,通常要求计算它们追及的时间或距离。

解这类问题时,可以根据追及过程中两物体的位移关系建立方程,然后求解得到答案。

3. 并行问题并行问题通常描述了两个物体同时朝着同一方向运动,要求计算它们离开起点的距离。

解这类问题时,可以根据两物体的并行运动关系建立方程,然后求解得到离开起点的距离。

八年级数学动点题型归纳

八年级数学动点题型归纳

八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,求公式的长度。

解析:过点公式作公式于点公式。

因为公式,等腰三角形三线合一,所以公式。

在公式中,根据勾股定理公式。

当公式时,公式,则公式。

在公式中,根据勾股定理公式。

2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。

解析:已知公式,则公式,公式。

根据三角形面积公式公式,对于公式,底为公式,高为公式。

所以公式。

二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。

因为四边形公式是矩形,所以公式,公式。

则公式,公式。

在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。

因为公式且公式,所以四边形公式是梯形。

2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

求四边形公式的面积公式与公式的函数关系式。

解析:四边形公式的面积公式。

过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。

所以公式。

因为公式,则公式。

公式。

所以公式。

三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题
人教版 八年级上
第十二章 全等三角形
专题四 全等三角形中的动点问题
专题四
全等三角形中的动点问题
类型1 以 U 型框为背景的动点问题
1. [2024雅安月考]如图,做一个“U”字形框架
PABQ ,其中 AB =42 cm, AP , BQ 足够长, PA ⊥
AB , QB ⊥ AB ,点 M 从点 B 出发,向点 A 运动,
10厘米, BC =8厘米, CD =12厘米,∠ B =∠ C ,点 E
为 AB 的中点.如果点 P 在线段 BC 上以3厘米/秒的速度由
B 点向 C 点运动,同时,点 Q 在线段 CD 上由 C 点向 D 点
运动.(1)ຫໍສະໝຸດ 点 Q 的运动速度与点 P 的运动速度相等,经过1秒
后,△ BPE 与△ CQP 是否全等?请说明理由.
∴ BE =5厘米,∴ BE = PC ,
=,
在△ BPE 和△ CQP 中,ቐ∠=∠,
=,
∴△ BPE ≌△ CQP (SAS).
1
2
3
4
专题四
全等三角形中的动点问题
(2)当点 Q 的运动速度为多少时,能够使△ BPE 与△ CQP
全等?
【解】∵△ BPE 与△ CQP 全等,
∵∠ A =∠ B =90°,
∴使△ ACM 与△ BMN 全等,可分两种情况:
情况一:当 BM = AC , BN = AM 时,
∵ BN = AM , AB =42 cm,
∴4 t +3 t =42,解得 t =6,
∴ AC = BM =3×6=18(cm);
1
2
3
4
专题四
全等三角形中的动点问题

初二动点问题解题技巧

初二动点问题解题技巧初二动点问题是一个比较常见的数学问题,它涉及到运动和变化,需要学生运用数学知识和逻辑推理来解决。

以下是一些解题技巧,希望能帮助你更好地解决这类问题:1. 建立数学模型:首先,你需要将实际问题转化为数学模型。

这通常涉及到定义变量、建立方程或不等式,以及确定变量的取值范围。

2. 确定变量的关系:在动点问题中,你需要找出变量之间的关系,如距离、速度和时间的关系。

这些关系通常可以通过几何图形、物理定律或逻辑推理来得出。

3. 运用数学定理和公式:在解题过程中,你需要运用各种数学定理和公式,如勾股定理、三角函数、相似三角形等。

这些定理和公式可以帮助你解决各种复杂的数学问题。

4. 进行逻辑推理:动点问题往往涉及到多个因素和条件,你需要通过逻辑推理来分析它们之间的关系,并推断出正确的结论。

5. 进行计算和验证:最后,你需要进行计算和验证,以确保你的答案正确无误。

在计算过程中,要注意单位的统一和计算的准确性。

下面是一个具体的例子,以帮助你更好地理解如何解决初二动点问题:例题:一个圆形的跑道长为100米,甲、乙两人从同一起点出发,沿着跑道练习跑步。

甲每分钟跑10米,乙每分钟跑8米。

当甲第一次追上乙时,甲跑了多少米?解题思路:1. 首先,我们定义甲、乙两人的速度分别为10米/分钟和8米/分钟,跑道长度为100米。

2. 其次,我们需要找出甲追上乙的时间。

由于甲的速度比乙快,所以当甲追上乙时,甲比乙多跑了一圈(100米)。

因此,我们可以建立方程:10t -8t = 100,其中t是时间(分钟)。

3. 解这个方程,我们得到 t = 50 分钟。

这意味着甲追上乙需要50分钟。

4. 最后,我们计算甲跑了多少米。

甲的速度是10米/分钟,所以甲跑了 10 × 50 = 500 米。

通过以上步骤,我们可以得出结论:当甲第一次追上乙时,甲跑了500米。

八上动点题及答案40道

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4、刘军和张强付同样多的钱买了同一种铅笔,刘军要了13支,张强要了7支,刘军又给张强0.6元钱。

每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

人教版八年级上册数学期末动点问题训练题(含简单答案)

人教版八年级上册数学期末动点问题训练题(1)若点在线段上,如图所示,且,则______(2)若点在边上运动,如图所示,则、、之间的关系为(3)如图,若点在斜边的延长线上运动,请写出(1)求证:;(2)探究与的数量关系,并证明你的结论.(3)若,直接写出的值为__________P AB ①50α∠=︒12∠+∠=P AB ②α∠1∠2∠③P BA ()CE CD <α∠AF EF =AD CF 2AD CD =CF(1)求的面积;(2)如图1,若,,作交于,平分,平分交求出(用表示);(3)如图2.若,轴于,点从点出发,在射线(1)如图1,若,则_______°ABO V 60ACB ∠=︒180NFC FCN FNC ∠+∠+∠=︒GF AB ∥AC F FP GFC ∠FN AFP ∠BAC ∠α()36P ,PC x ⊥C M P 15α=︒CBA ∠'=(2)如图2,点P 在延长线上,且.①连接,试探究,,之间是否存在一定数量关系,猜想并说明理由.②连接,若,C ,P 三点共线,,,求的长.6.如图1,,,,.(1)求C 点的坐标;(2)如图2,P 为y 轴负半轴上一个动点,当P 点在y 轴负半轴上向下运动时,始终保持,,过D 作轴于E 点,求的值;(3)如图3,已知点F 坐标为,当G 在y 轴的负半轴上沿负方向运动时,作,始终保持,与y 轴负轴交于点,与x 轴正半轴交于点,当G 点在y 轴的负半轴上沿负方向运动时,求的值.7.如图,中,,,,,若动点从点开始,按的路径运动,且速度为每秒.设运动的时间为秒.(1)当点在上时,______时,把的周长分成相等的两部分?(2)当点在上时,______时,把的面积分成相等的两部分?(3)当点在所有运动过程中,连接或,求当为何值时,的面积为12?BD DAP DBC α∠=∠=CP AP BP CP CA 'A '10BP =1CP =CA '2OA =4OB =90BAC ∠=︒AB AC =PA PD =90APD ∠=︒DE x ⊥OP DE -(44)--,Rt FGH V 90GFH ∠=︒FG (0)G m ,FH (0)H n ,m n +ABC V 90C ∠=︒8cm AC =6cm BC =10cm AB =P C C A B C →→→2cm t P AB t =CP ABC V P AB t =CP ABC V P PC PB t BCP V(1)请直接写出,两点的坐标;(2)如图,分别以,为直角边向右侧作等腰交轴于点,连接,求证:;(3)如图,点为y 轴上一动点,点在直线侧作等腰,若连接E ,,三点按逆时针顺序排列B C 1AB BC Rt x M BM BM DE ⊥2F (),33G m m -+Rt BCE V F G ((1)如图1,当点D 在边上时.①求证:;②直接判断结论,,的关系 (2)如图2,当点D 在边的延长线上时,其他条件不变,请写出(1)求的度数;(2)当点运动到使时,求(3)当点运动时,与BC ABD ACE ≌△△BC DC CE BC CBD ∠P ACB ABD =∠∠P APB ∠ADB ∠(1)如图①,动点在轴负半轴上,且交于点、交于点,求证:.(2)如图,在(1)的条件下,连接,求证:.(3)如图③,E 为的中点,动点G 在轴上,,,连接,作交轴于F ,猜想,、之间的数量关系,并说明理由.13.已知中.(1)如图1、2,若点是上一点,且,点是上的动点,将沿对折,点的对应点为(点和点在直线的异侧),与交于点.①当时,求的度数.②当是等腰三角形时,求的度数.(2)如图3,若点是上一点,且,是线段上的动点,以为直角构造等腰直角(三点顺时针方向排列),在点的运动过程中,直接写出的最小值.14.在平面直角坐标系中,点B 、C 的坐标分别为、,点A 在第一象限,且是等边三角形.点D 的坐标为,E 是边上一动点,连接,以为边在右侧作等边,连接.(1)求出A 点坐标;(2)当点F 落在边上时,与全等吗?若全等,请给予证明;若不全等,请说明理由;(3)当以为腰的是等腰三角形时,的长为_________.C x AH BC ⊥BC H OB P △≌△AOP BOC ②OH 2OHP AHB ∠=∠AB y (0,)G n 0n <GE EF GE ⊥x GB OB AF Rt ABC △90930∠︒∠︒C BC B =,且=,=D CB 2CD =E AB DBE V DE B B'B'C AB 'DB AB H 20∠=︒'B EA EDB ∠B HE 'V DEB ∠D CB 2CD =M AC MDN ∠DMN V D M N ,,M CN NB +(0,0)(12,0)ABC V (4,0)AB DE DE DE DEF V CF AC CDF V BED V DF CDF V BE(1)若,① ,②判断线段,之间有怎样的位置关系并说明理由;(2)设,,则x ,y 之间的数量关系为(3)如图2,当时,若线段,90BAC ∠=︒BCA ∠=BC CE BAC x ∠=︒BCE y ∠=︒CE AB ∥3BC =ABC V______.17.已知:如图,在平面直角坐标系中,点B是x轴上的动点,点,点,轴于点D.(1)当点B坐标为时,求证:;(2)在(1)的条件下,探究并证明和的位置关系;(3)当的周长最小时,求点B的坐标.()0,2A()5,3CCD x⊥()3,0OAB DBC≌△△AB BCABCV参考答案:(4)17. (2),(3)CEP DBP BPB +∠∠=∠AB BC ⊥()2,0B。

八年级上册数学动点问题三角形全等

一、动点问题概述动点问题是数学中的一个重要概念,它涉及到物体或点在特定条件下的运动轨迹和位置变化。

在数学中,我们常常会遇到关于动点问题的题目,通过对动点的运动进行分析和建模,从而得出数学解决方案。

在八年级上册数学学习中,动点问题也是一个重要的内容,尤其是在进行三角形全等的学习中,动点问题的应用更是凸显出其重要性。

二、三角形全等的概念1. 三角形全等是指在平面解析几何中,两个三角形在形状和大小上完全相同。

当两个三角形的对应边长相等,对应角度相等时,我们就可以认为它们是全等三角形。

2. 三角形全等的性质:全等的三角形,对应边相等,对应角相等,面积相等。

三、动点问题与三角形全等的联系1. 在动点问题中,三角形全等常常被用来描述动点的运动轨迹。

一个动点在平面内作定点旋转、平移等运动时,可以利用三角形全等的性质来描述动点的位置变化。

2. 通过观察动点在三角形内的运动,我们可以将动点与三角形全等的概念进行结合,从而更深刻地理解动点问题和三角形全等。

四、动点问题三角形全等的举例分析1. 假设动点A在平面内作匀速直线运动,点B、点C分别为该平面内两个定点,且直线AB与BC共线,以BC为直线方向。

如果C到A的距离等于B到A的距离,根据三角形全等的性质,我们可以推断出△ABC与△ACB是全等三角形,即两个三角形的三边和三个角都相等。

2. 再做一个动点问题的三角形全等的举例,如果A、B、C三个点共线,并且A点到B点的距离等于B点到C点的距离。

那么,如果D是AC 上的一个任意一点,那么我们可以得出△ABD与△BCD是全等三角形。

五、动点问题三角形全等的解题方法在解决动点问题与三角形全等的题目时,我们需要遵循以下步骤:1. 观察动点在平面内的运动轨迹,分析三角形的形状和位置变化。

2. 利用三角形全等的性质,建立动点与三角形全等的关系。

3. 根据题目给出的条件和要求,构建方程或等式,求解动点问题与三角形全等。

六、动点问题三角形全等的应用举例1. 在解析几何中,我们常常会遇到这样的动点问题:一个点以一定的规律在平面内作运动,问它经过的点的轨迹是什么形状?这种问题就可以通过分析三角形全等来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上数学动点问题
1.已知正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一个动点,求DN+MN的最小值。

在正方形ABCD中,DM=2,因此MC=6.由于N是AC
上的一个动点,因此可以将___表示为DN+NC+CM。

根据三
角不等式,有DN+NC+CM≥DC=8.因此,DN+MN的最小值为
8-6=2.
2.在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,几秒后四边形ABQP是平
行四边形?
由于AD∥BC,因此四边形ABCD是梯形。

设四边形ABQP是平行四边形,那么AP∥BQ且AQ∥BP。

根据速度和距离的关系,可以得到AP=AD-1t,BQ=BC-2t。

因此,当
AD-1t=BC-2t时,四边形ABQP是平行四边形。

解得t=2.
3.在梯形ABCD中,AD//BC,∠B=90°,AB=14cm,
AD=15cm,BC=21cm,点M从A点开始,沿AD边向D运动,速度为1cm/s,点N从点C开始沿CB边向点B运动,速度为
2cm/s,设四边形MNCD的面积为S。

1) 设时间为t,根据速度和距离的关系,可以得到AM=t,CN=21-2t。

因此,四边形MNCD的高为15,底为21-2t,面
积为S=15(21-2t)/2=157.5-15t。

2) 四边形MNCD是平行四边形,当且仅当MN∥CD,即
∠MAD=∠CBA。

根据正弦定理,有
sin∠MAD/15=sin∠CBA/21,解得sin∠MAD=sin∠CBA/7.因
为∠MAD和∠CBA都是锐角,所以当
sin∠MAD=sin∠CBA/7=1时,四边形MNCD是平行四边形。

解得t=0.5.
3) 四边形MNCD是等腰梯形,当且仅当MN=CD,即
∠MAD=∠BCD。

根据正弦定理,有
sin∠MAD/15=sin∠BCD/21,解得sin∠MAD=sin∠BCD/7.因
为∠MAD和∠BCD都是锐角,所以当
sin∠MAD=sin∠BCD/7=1时,四边形MNCD是等腰梯形。


得t=1.
4.在直角梯形ABCD中,∠ABC=90°,DC//AB,BC=3,DC=4,AD=
5.动点P从B点出发,由B→C→D→A沿边运动,则△ABP的最大面积为()
设BP=x,由于△ABP和△DCP相似,因此DP=4x/3,
PC=5x/3.根据海龙公式,△ABP的面积为S=sqrt[x(5x/3)(8/3-
x)(8/3+x)/3]。

对S求导并令其等于0,解得x=2/3.因此,
△ABP的最大面积为S=16/9.
5.在Rt△ABC中,∠C=90 °,AC=4cm,BC=6cm,动点
P从点C沿CA以1cm/s的速度向A运动,同时动点Q从点C
沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动。

则运动过程中所构成的△CPQ
的面积y与运动时间x之间的函数关系是。

自变量的取值范围是?
设CP=x,CQ=y,由于△CPQ和△ABC相似,因此
x/4=y/6.根据海龙公式,△CPQ的面积为y(x/2-y/2)/2=xy/8.将x 表示为y的函数,得到x=2y/3.因此,△CPQ的面积为y^2/12.自变量x的取值范围为[0,4],y的取值范围为[0,6]。

相关文档
最新文档