一元一次方程的讲义

合集下载

《一元一次方程的应用》 讲义

《一元一次方程的应用》 讲义

《一元一次方程的应用》讲义一元一次方程是数学中的重要基础知识,在我们的日常生活和实际问题中有着广泛的应用。

通过建立一元一次方程,可以将一些看似复杂的问题转化为数学语言,从而找到解决问题的方法。

一、行程问题行程问题是一元一次方程常见的应用场景之一。

比如,甲乙两人分别从 A、B 两地同时出发相向而行,甲的速度为每小时 5 千米,乙的速度为每小时 4 千米,经过 3 小时两人相遇,求 A、B 两地的距离。

我们设 A、B 两地的距离为 x 千米。

甲走的路程为 5×3 = 15 千米,乙走的路程为 4×3 = 12 千米。

由于两人是相向而行,所以他们走过的路程之和等于两地的距离,即 15 + 12 = x,解得 x = 27 千米。

再比如,一辆汽车以每小时 60 千米的速度从甲地开往乙地,4 小时后到达。

返回时由于路况不好,速度变为每小时 48 千米,求返回时需要的时间。

设返回时需要的时间为 x 小时。

根据路程相等,去时的路程为 60×4 = 240 千米,返回的路程为 48x 千米,所以 48x = 240,解得 x = 5 小时。

二、工程问题工程问题也是经常用到一元一次方程的领域。

例如,一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?设两人合作需要 x 天完成。

把这项工程的工作量看作单位“1”,甲每天的工作效率为 1/10,乙每天的工作效率为 1/15,两人合作每天的工作效率为 1/10 + 1/15。

根据工作量=工作效率×工作时间,可得(1/10 + 1/15)x = 1,解得 x = 6 天。

又如,一个水池,有甲、乙两个进水管,单开甲管8 小时可以注满,单开乙管 12 小时可以注满,现在两管同时打开,多少小时可以注满水池?设 x 小时可以注满水池。

甲管每小时的注水量为 1/8,乙管每小时的注水量为 1/12,两管同时开每小时的注水量为 1/8 + 1/12,所以(1/8 + 1/12)x = 1,解得 x = 48 小时。

(完整)一元一次方程复习讲义

(完整)一元一次方程复习讲义

一元一次方程复习讲义1.方程的有关概念2.等式的基本性质3.解一元一次方程的基本步骤:4.应用一元一次方程解决实际问题的一般步骤(1)审 (2)找 (3)设 (4)列 (5)解 (6)验 (7)答1.下列方程是一元一次方程的有哪些? x+2y=9 x 2-3x=111=x x x 3121=- 2x=1 3x –5 3+7=10 x 2+x=12、解下列方程:⑴ 103.02.017.07.0=--x x ⑵16110312=+-+x x⑶03433221=-+++++x x x ⑷2362132432⎪⎭⎫ ⎝⎛+--=+--x x x x x(5)|5x 一2|=33、8=x 是方程a x x 2433+=- 的解,又是方程 ()[]b x b x x x +=⎥⎦⎤⎢⎣⎡---913131的解,求 b4、小张在解方程1523=-x a (x 为未知数)时,误将 - 2x 看成 2x 得到的解为3=x ,请你求出原来方程的解5、已知关于x 的方程 ()()x n x m 121232+=-+无穷多解,求m 、n1、(本题7分)按要求完成下面题目:323221+-=--x x x解:去分母,得424136+-=+-x x x ……① 即 8213+-=+-x x ……②移项,得 1823-=+-x x ……③合并同类项,得 7=-x ……④∴ 7-=x ……⑤上述解方程的过程中,是否有错误?答:__________;如果有错误,则错在__________步。

如果上述解方程有错误,请你给出正确的解题过程:2、(本题7分)请阅读下列材料:让我们来规定一种运算:bcad dc ba -=,例如:5432=2×5-3×4=10-12=-2. 按照这种运算的规定,若2121x x-=23,试用方程的知识求x 的值。

3、检修一处住宅区的自来水管,甲单独完成需要14天,乙单独完成需18天,丙单独完成需要12天。

一元一次方程教学课件

一元一次方程教学课件
意义的数。
解的实际意义
总结词
解的实际意义是指解在现实生活中的应用价 值。
详细描述
一元一次方程通常用于解决实际问题,如路 程、速度和时间的关系,商品价格和销售量 的关系等。因此,解必须具有实际意义,能 够解释现实生活中的现象和问题。同时,解 的实际意义也有助于学生更好地理解和应用
一元一次方程。
THANKS
总结词
解的唯一性是一元一次方程的重要特性,确 保方程只有一个解。
详细描述
一元一次方程只有一个解,这是由于方程中 的变量只受一个等式约束。解的唯一性是方 程的基本属性,也是判断方程解的标准。
解的合理性
总结词
解的合理性是指解必须符合实际情况和数学原理。
详细描述
在求解一元一次方程时,得到的解必须符合实际情况和数学原理。例如,如果方程涉及 到距离、速度或时间等物理量,解必须符合物理定律。此外,解不能是负数、分数或无
谢谢
试值法
总结词
通过尝试不同的数值代入方程,找到满 足方程的解。
VS
详细描述
对于一些特殊的一元一次方程,可以通过 尝试不同的数值代入方程,找到满足方程 的解。例如,对于形如 (ax + b = 0) 的方 程,可以尝试将不同的数值代入x,找到满 足方程的解。
05
CHAPTER
一元一次方程的注意事项
解的唯一性
详细描述
对于一些简单的一元一次方程,可以通过观察方程的形式,直接得出方程的解,无需进行复杂的计算。例如,对 于形如 (ax = b) 的方程,可以直接得出解为 (x = frac{b}{a})(当a≠0)。
代数法
总结词
通过对方程进行变形,将其转化为标准形式,然后求解。
详细描述

(完整版)一元一次方程讲义

(完整版)一元一次方程讲义
【例09】解方程:
去分母,得;根据等式的性质( )
去括号,得;
移 项,得;根据等式的性质( )
合并同类项,得;
系数化为 ,得;根据等式的性质( )
【例10】解方程:
(3)含有多层括号的一元一次方程的解法
【例11】解方程:
(4)一元一次方程的技巧解法
【例12】解方程:
五、一元一次方程的实际应用
(一)行程问题:
最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式.
注意:
(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证,如方程 是一元一次方程。如果不变形,直接判断就出会现错误。
(2)方程 与方程 是不同的,方程 的解需要分类讨论完成.
教学准备
课本,5年中考3年模拟,历年中考真题
教学过程
知识详解
一、等式的概念和性质小四
1、等式的概念
楷体五号用等号“=”来表示相等关系的式子,叫做等式。
在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边。等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则。号
2、等式的性质
注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个
待确定的数即未知的字母,二者缺一不可。
2、方程的次和元
楷体五号方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.号
3、方程的已知数和未知数
楷体五号已知数:一般是具体的数值,如 中( 的系数是1,是已知数.但可以不说)。5和0
【例06】下列各式中:① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ 。哪些是一元一次方程?

《一元一次方程》 讲义

《一元一次方程》 讲义

《一元一次方程》讲义一、什么是一元一次方程在数学的世界里,一元一次方程是我们解决许多实际问题的有力工具。

那到底什么是一元一次方程呢?一元一次方程指的是只含有一个未知数,并且未知数的最高次数是1 的整式方程。

举个简单的例子,像 3x + 5 = 14 就是一个一元一次方程。

在这个方程中,只有一个未知数 x,而且 x 的最高次数是 1。

为了更清楚地理解一元一次方程,我们需要明白几个关键的概念。

首先是“元”,它表示未知数的个数;“次”则表示未知数的最高次数。

所以,“一元”就是一个未知数,“一次”就是未知数的最高次数是 1。

二、一元一次方程的形式一元一次方程的一般形式是:ax + b = 0(其中 a、b 是常数,且 a ≠ 0)。

在这个一般形式中,a 被称为方程的系数,x 是未知数,b 则是常数项。

例如,在方程 2x 7 = 0 中,2 是系数,-7 是常数项。

需要注意的是,当 a = 0 时,方程就不再是一元一次方程了。

比如0x + 5 = 0,因为 0x 等于 0,这个方程实际上就变成了 5 = 0,这显然是不成立的。

三、一元一次方程的解法接下来,我们来学习如何解一元一次方程。

解一元一次方程的基本步骤可以概括为:去分母、去括号、移项、合并同类项、系数化为 1。

(一)去分母如果方程中各项的分母不同,我们需要先找到分母的最小公倍数,然后将方程两边同时乘以这个最小公倍数,把分母去掉。

例如,方程(x + 1) / 2 +(x 1) / 3 = 6 ,分母 2 和 3 的最小公倍数是 6 ,方程两边同时乘以 6 ,得到 3(x + 1) + 2(x 1) = 36 。

(二)去括号如果方程中有括号,我们需要运用乘法分配律把括号去掉。

比如,在方程 3(x + 5) 2(2x 1) = 10 中,去括号得到 3x + 15 4x + 2 = 10 。

(三)移项把含有未知数的项移到方程的一边,常数项移到方程的另一边。

一元一次方程讲义

一元一次方程讲义

一元一次方程一、等式及其性质1、等式用等号表示相等关系的式子叫等式。

如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。

注意:等式中一定含有等号。

2、等式的性质等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。

a=b ,那么a ±c=b ±c等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。

a=b ,那么ac=bc ;如果a=b ,那么a /c=b /c (c ≠0)。

注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。

思考:回答下列问题:(1)从a+b=b+c ,能否能到a=c ,为什么?(2) 从a-b=b-c ,能否能到a=c ,为什么?(3) 从ab=bc ,能否能到a=c ,为什么?(4) 从a/b=c/b ,能否能到a=c ,为什么?(5)从xy=1,能否能到x=1/y ,为什么?二、解一元一次方程的步骤:①去分母; ⇐(没有分母的项不要漏乘;去掉分数线,同时要把分子加上括号) ②去括号; ⇐(当括号外面是负号,去掉括号后,要注意变号)③移项; ⇐(移项要注意变号)④合并同类项; ⇐(如果方程中有同类项,一定要合并同类项)⑤系数化为1; ⇐(记得每一项都要除系数) 例:解一元一次方程3122133---=+x x x三、一元一次方程解的实际应用1、列方程解应用题的步骤(1)审:明确已知什么,求什么及基本关系。

找出能表示题目全部含义的相等关系(2)设:设未知数。

可直接设,也可间接设,要尽量使列出的方程简单。

①直接设未知数:题目求什么就设什么。

②间接设未知数:设的未知数不是题目直接求的量。

③设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去(3)列:根据等量关系列方程。

(4)解:解方程(5)验:检验方程的解和解是否符合实际问题。

《一元一次方程的应用》 讲义

《一元一次方程的应用》 讲义

《一元一次方程的应用》讲义一元一次方程是数学中的重要基础知识,它在解决实际问题中有着广泛的应用。

掌握一元一次方程的应用,不仅能够提高我们的数学解题能力,还能培养我们用数学思维解决生活中各种问题的能力。

一、一元一次方程的基本概念在深入探讨一元一次方程的应用之前,我们先来回顾一下一元一次方程的基本概念。

一元一次方程指的是只含有一个未知数,并且未知数的最高次数是1 的整式方程。

其一般形式为:$ax + b = 0$(其中$a$,$b$为常数,且$a ≠ 0$)。

例如:$3x +5 =14$就是一个一元一次方程,其中$x$是未知数,$3$是$x$的系数,$5$是常数项。

二、一元一次方程的解法解一元一次方程的一般步骤为:1、去分母(如果方程中有分母):在方程两边同时乘以各分母的最小公倍数,去掉分母。

2、去括号:运用乘法分配律去掉括号。

3、移项:将含有未知数的项移到方程的一边,常数项移到方程的另一边,注意移项要变号。

4、合并同类项:将方程化为$ax = b$的形式。

5、系数化为 1:在方程两边同时除以未知数的系数$a$,得到方程的解$x =\frac{b}{a}$。

例如,解方程$2(x 3) + 3 = 5 (x + 1)$:首先去括号:$2x 6 + 3 = 5 x 1$然后移项:$2x + x = 5 1 + 6 3$合并同类项:$3x = 7$系数化为 1:$x =\frac{7}{3}$三、一元一次方程在行程问题中的应用行程问题是一元一次方程常见的应用场景之一。

基本公式:路程=速度×时间例如,甲、乙两人分别从 A、B 两地同时出发,相向而行。

甲的速度为每小时5 千米,乙的速度为每小时4 千米,经过3 小时两人相遇。

问 A、B 两地的距离是多少?设 A、B 两地的距离为$x$千米。

甲行驶的路程为$5×3 = 15$千米,乙行驶的路程为$4×3 = 12$千米。

由于两人相向而行,所以他们行驶的路程之和等于 A、B 两地的距离,即$15 + 12 = x$解得$x = 27$千米。

一元一次方程 讲义

一元一次方程 讲义

【一元一次方程 讲义】第一节 一元一次方程1.一元一次方程的有关概念一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. 训练题:1.判断下列各式哪些是一元一次方程:(1)43x=21; (2)3x -2; (3)71y -51=32x -1; (4)5x 2-3x+1; (5)3x+y=1-2y ; (6)1-7y 2=2y. 2.若关于x 的方程3x3a+1-5=0是一元一次方程,则a=____.3.写出一个解是-2的一元一次方程为____.4.若2x -a=3,则2x=3+__,这是根据等式的性质1,在等式两边同时__. 若-6a=4.5,则___=-1.5,这是根据等式的性质,在等式两边同时__ _____.5.下列方程中以x=21为解的是( ) A.-2x=4 B.-2x -1=-3 C.-21x -1=-43 D.-21x+1=43 6.已知5a -3b -1=5b -3a ,利用等式的性质比较a 、b 的大小.7.某钢铁厂今年5月份的某种钢产量是50吨,预计6月份产量是a 吨,比5月份增长x%,那么a 是( )A.50(1+x%)B.50x%C.50+x%D.50(1+x )%8.已知关于x 的方程5x+3k=24的解为3,求k 2-1+k 的值9.利用等式性质解方程:-23x+3=-10.10.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?直通中考下列方程是一元一次方程的是( ).A .-5x+4=3y 2B .5(m 2-1)=1-5m 2C .2-145n n -= D .5x-32.解一元一次方法(1)等式的基本性质(1)等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。

用字母表示若a=b ,则a+m=b+m ,a-m=b-m(2)等式的两边都乘以同一个数或都除以同一个数(除数不为0),所得的 结果仍是等式.用字母表示:若a=b,则am=bm,n a =nb(n 不为0)(2)解一元一次方程的基本步骤:例1、解方程 (1)y-52221+-=-y y例2、由两个方程的解相同求方程中子母的值已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例3 、解方程知识与绝对值知识综合题型 解方程:73|12|=-x 训练题: 1.在1,-2,21这三个数中,是方程7x+1=10-2x 的解的是____. 2.当k=____时,方程5x -k=3x+8的解是-2. 3.若代数式21-x +612x +与31-x +1的值相等,则x=____. 4.如果2x5a -4-3=0是关于x 的一元一次方程,那么a=____,此时方程的解是____.5.如果x =-2是方程3x +5=4x -m 的解,那么m 2=____. 6.解方程:5x-|x|=8.7.今年儿子13岁,父亲40岁,多少年后父亲的年龄是儿子年龄的2.5倍?8.一群小孩分一堆梨,1人1个多1个,1人两个少2个,问有几个小孩、几个梨?9.一个三位数,三个数位上的和是17,百位上的数比十位上的数大7,个位上的数是十位上的3倍,求这个三位数.10.某市居民生活用电基本价格为每度0.40元,若每月用电量超过a 度,超出部分按基本电价的70%收费.(1)某户五月份用电84度,共交电费30.72元,求a.(2)若该户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元? 直通中考[2010年辽宁中考]已知关于x 的方程ax +2=2(a -x ),它的解满足|x +21|=0,则a =_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乐杰数理化 乐中学,学中杰乐杰数理化教师辅导讲义 课 题一元一次方程基础讲解教学目标1、了解方程的有关概念,会根据已知条件,设未知数,列出简单的方程;2、了解等式的概念和两条性质,并运用这两条性质解方程。

重点、难点难点:1、找出问题中的等量关系; 2、由具体实例抽象出等式的性质教学内容基础知识回顾:有理数1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.5.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,乐杰数理化 乐中学,学中杰S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h. 经典例题1、下列方程中,一元一次方程有几个?① 2210x x --= ② 223x y -= ③ 11x --= ④120x -= 2、若关于x 的方程3x 4n -7+5=17是一元一次方程,求n .3、.已知:y 1=4x -3,y 2=12-x ,当x 为何值时,(1)y 1=y 2;(2)y 1与y 2互为相反数;(3)y 1比y 2小4.4、已知关于y 的方程y +3m =24与y +4=1的解相同,则m 的值是( ).5、已知2232012x x +=,求代数式2466x x --+的值。

举一反三1、若3x +2a =12和方程3x -4=2的解相同,则a =______.2、已知x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =______.3、已知(m 2-1)x 2-(m -1)x +8=0是关于x 的一元一次方程,它的解为n .(1)求代数式200(m +n )(n -2m )-3m +5的值;(2)求关于y 的方程m |y |=n 的解.3.2 解一元一次方程(一)移项与合并1、.已知x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =______.2、 (1)21323-=-x (2)21132-=-x x3、k 为何值时,多项式x 2-2kxy -3y 2+3xy -x -y 中,不含x ,y 的乘积项.4、已知21=x 是方程x x a +=+21125的解,求关于x 的方程ax +2=a (1-2x )的解.5、学校暑期组织一些学生到外地做一项社会调查,每张车票原价50元,甲车主说:“乘我的车,可以八折优惠”;乙车主说:“乘我得车学生九折,老师不用买票”,负责的老师计算了一下不管乘谁的车,花费都一样,请问参加社会调查的学生有多少名?乐杰数理化 乐中学,学中杰举一反三1、下列说法中正确的是( ).(A)3x =5+2可以由3x +2=5移项得到(B)1-x =2x -1移项后得1-1=2x +x(C)由5x =15得515=x 这种变形也叫移项 (D)1-7x =2-6x 移项后得1-2=7x -6x2、一个邮递员骑自行车需要在规定的时间内把信件送到某地,如果每小时走15千米可以提早24分钟到达,如果每小时走12千米就要迟到15分钟。

求原规定的时间是多少?他去某地的路程有多远?3、某地出租车计价规则如下:行程不超过3千米,收起步价6元,超过部分每千米的路程收费1.2元,某天老师去看望学生,坐出租车付了15.6元,问李老师乘车多少千米?3.3解一元一次方程(二)去括号与去分母1、今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x 岁,可列方程为( ).(A)2x +4=3(x -4) (B)2x -4=3(x -4)(C)2x =3(x -4) (D)2x -4=3x2、将3(x -1)-2(x -3)=5(1-x )去括号得( )(A)3x -1-2x -3=5-x (B)3x -1-2x +3=5-x(C)3x -3-2x -6=5-5x (D)3x -3-2x +6=5-5x3、已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ).(A)-2 (B)0 (C)32 (D)23 4、已知y =1是方程y y m 2)(312=--的解,那么关于x 的方程m (x -3)-2=m (2x -5)的解是( ) (A)x =10(B)x =0 (C)34=x (D)43=x 5、若关于x 的方程)1(422-=+x a x 的解为x =3,则a 的值为( ). (A)2(B)22 (C)10 (D)-26、解方程 (3)3.15.032.04-=--+x x (4)2]2)14(32[23=---x x乐杰数理化 乐中学,学中杰7.已知关于x 的方程27x -32=11m 多x +2=2m 的解相同,求221m m +的值. 8、若2|x -1|=4,则x 的值为_________.9、若|x +3|=x +3,则x 的范围为______________.10、有一批零件,甲单独做需要40小时完成,乙单独做需要30小时完成,现在甲做几小时后,其余任务由乙完成,乙比甲多做2个小时,则甲做了几个小时举一反三1、解方程 (1)454436+=-y y (2)62372345---=+-x x x x2、将103.001.05.02.0=+-x x 的分母化为整数,得( ). (A)1301.05.02=+-x x (B)1003505=+-x x (C)100301.05.020=+-x x (D)13505=+-x x 3、关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________. 4、已知方程mx +2=2(m -x )的解满足,0|21|=-x 则m 为________. 5、 方程|x |=3的解是______,|x -3|=0的解是______,3|x |=-3的解是______,若|x +3|=3,则x =______.6、机械厂加工车间有85名工人,平均每人每天加工16个大齿轮或者10个小齿轮,已知2个大齿轮与3个小齿轮刚好配成一套,问需要分别安排多少名工人加工大齿轮和小齿轮? 3.4 实际问题与一元一次方程1、(经济利润问题)一家商店将某种服装进价提高30%作为标价,又乙九折优惠卖出,结果每件仍可获利17元,这种服装每件进价是多少元?2、(方案选择问题)某同学在A ,B 两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元.(1)求该同学看中的英语学习机和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,A 超市所有商品打七五折销售;B 超市全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?乐杰数理化乐中学,学中杰3、(配套问题)某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4、(工程问题)检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?5、(数字问题)一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.6、(行程问题)某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.7、(实际问题)八年级三班在召开期末总结表彰会前,班主任安排班长李强去商店买奖品,下面是李强与售货员的对话:李强说:阿姨好!售货员:同学,你好,想买点什么?李强说:我只有100元,请您帮忙安排买10支钢笔和15本笔记本。

售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?1、选择题(1).篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为().(A)13.4元(B)13.5元(C)13.6元(D)13.7元(2).一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为().(A)3200元(B)3429元(C)2667元(D)3168元(3).某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电原价是()(A)2150元(B)2200元(C)2250元(D)2300元2、某商场节日酬宾,全场八折,一种DVD的利润率是10%,这种DVD的进价是1600元,那么它的标价是多少元?乐杰数理化乐中学,学中杰3、某中学组织初一同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.已知45座客车日租金为每辆220元,60座客车日租金为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?4、有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,求这个三位数.5、一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?7、某市居民生活用电基本价格为每度0.4元,若每月用电量超过a度,超过部分按基本电价的70%收取.(1)某户5月份用电84度,共交电费30.72元,求a是多少;(2)若6月份的电费平均为每度0.36元,求该户6月份共用多少度电,应交纳多少电费?8、某校组织10位教师和部分学生外出考察,全程票价为25元,对机体购票,客运公司有两种优惠方案可供选择:方案一,所有师生按票价的88%购票;方案二:前20位购全票,从第21人开始,每人按票价的80%购票。

相关文档
最新文档