机械设计 滑动轴承
合集下载
机械设计8—滑动轴承

3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)
机械设计第十二章滑动轴承

常用运动粘度来标定。
不完全液体润滑轴承润滑油牌号参看P285表12-4
液体动压轴承润滑油牌号参看P53表4-1
润滑油选择原则
1)外载大 — 难形成油膜 — 选粘度高的油 2)速度高 — 摩擦大 — 选粘度低的油 3)温度高 — 油变稀 — 选粘度高的油 4)比压大 — 油易挤出 — 选粘度高的油
三. 固体润滑剂 石墨、MoS2 、聚四氟乙烯树脂等。 f 小,用于特殊场合,如高温介质中、或低速重载条件下。
为了向摩擦表面间 加注润滑剂,在轴承 上方开设注油孔
二.轴瓦的结构要素 • 壁厚 • 定位唇:防止轴瓦在轴承中移动
• 油室(腔):存油 • 油孔和油槽:将油引入轴承
油槽 油孔 油室 壁厚 定位唇
油槽的位置: 不要开在轴承的承载区内,否则将急剧降低轴承的承载能力。
油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
摩擦系数小、耐磨、耐腐蚀、承载低、热变形大
常用轴瓦及轴承材料的性能见P280表12-2
§12-4 轴瓦结构
一.轴瓦的形式和构造: 双金属轴瓦,三金属轴瓦,厚瓦,薄瓦。
双(三)金属轴瓦:节省贵重金属
单金属轴瓦:结构简单,成本低
双金属轴瓦的瓦背和轴承衬的联接形式见下表
瓦背 轴承衬 材料 材料
钢 轴承合 或 金或 铸 铅青铜 铁 轴承
钙基
钠基 锂基 铝基
抗水性好、耐热性差、价廉
润滑脂选择参
抗水性差、耐热性好、防腐性较好 看P284表12-3
抗水性和耐热性好
抗水性好、有防锈作用、耐热性差
选 择
1.压力高、速度低时,选针入度小一些的;反之…。 2.轴承的工作温度应低于滴点温度的 2030 ℃ 。
机械设计(10.5.1)--滑动轴承的结构类型

10-5 滑动轴承的结构类型
一、向心滑动轴承的结构轴瓦
轴承座
骑缝螺
钉油孔
1. 整体式●结构简单,沿轴向装配,中小型;磨损后间隙不能调节,更换轴瓦/套。
2. 剖分式
轴承座
上
轴承座下
轴瓦
上,下
连接螺
栓
油孔
●上下结构,螺栓连接,沿径向装配,大中型;磨损后间隙可调节——更换垫片或重刮瓦修复。
安装方便,应用广●可以斜剖分,适应斜向载荷
.
3. 间隙可调
式
轴套/瓦调节间隙轴套/瓦调节间隙轴颈移动调节间隙
4. 自位式轴套/瓦外缘为球形,适应轴颈偏斜,避免边缘接触。
5. 多油楔式
固定瓦块三油
楔可倾动瓦块三油楔
形成多个油膜
压力区,提高
运转稳定性
.两油楔椭圆轴承
二、推力滑动轴承的结构1. 普通推力滑动轴承
F a
轴 止推环
F a 止推环
面
轴
2. 液体动力润滑推力轴承
固定瓦块可倾动瓦块
F
a F
a。
《机械设计基础》第15章 滑动轴承

τ
P+dp τ+dτ
雷诺耳实验(1883年)——层流与湍流的现象
雷诺方程:
h0 - h dp = 6ηv dx h3
其中:p——油膜压力 η——润滑油粘度 V——速度 h——间隙厚度(油膜厚度) h0——油膜压力为极限值时的间隙厚度
分析雷诺方程:
(1)当相对运动的两表面 形成收敛油楔时。即能保 证移动件带着油从大口走 u 向小口。 o
形成动压润滑的条件: (1)相对运动的两表面形成收敛油楔时。 (2)两表面必须有一定的相对速度。
(3)润滑油必须有一定的粘度,并供油充分。
(4)油膜的最小厚度应大于两表面不平度之和。
例:试判断下列图形能否建立动压润滑油膜?
v v v v
向心滑动轴承形成动压油膜的过程:
F F FF F
o
o1 o1 o o1 1 o1
润滑脂 (黄油) 固体润滑剂
钙基、钠基、铅基、锂基等。
石墨、二流化钼、聚氟乙烯树脂等 (用于高温下的轴承)。
空气、氢气等(只用于高速、高 温以及原子能工业等特殊场合)
气体润滑剂
●润滑剂的主要指标:
(1) 粘度——是润滑油最重要的物理性能指标,是选择润滑 油的主要依据,它标志着流体流动时内摩擦阻 力的大小。粘度越大,内摩擦阻力越大,即流 动性越差。 (2)凝点——是润滑油冷却到不能流动时的温度。凝点越低越好。 (3) 闪点——是润滑油在靠近试验火焰发生闪燃时的温度。 闪点是鉴定润滑油耐火性能的指标。在工作温度 较高和易燃环境中,应选用闪点高于工作温度 20°~30°C的润滑油。 (4) 油性——是指润滑油湿润或吸附在表面的能力。吸附能力 越强,油性越好。 (5) 滴点——是指润滑脂受热后开始滴落时的温度。润滑脂使 用工作温度应低于滴点20°~30°C,低于40°~ 60°更好。 (6)针入度(稠度)——是表征指润脂稀稠度的指标。针入度越 小,表示润滑脂越稠;反之,流动性越大。
机械设计课件 滑动轴承学习课件

偏心距:e OO
偏心率:
e e Rr
表示偏心程度0 1
最小油膜厚度:
hmin e r r (1 )(χ↑→hmin↓)
保证流体动力润滑:
hmin Rz1 Rz2 [hmin ]
S hmin 2 ~ 3 Rz1 Rz2
Rz1、Rz2— 轴颈、轴瓦表面微观不平度的十点高度,m
2. 剖分式轴承 剖分式轴承由轴承座、轴承盖、剖分轴瓦、轴承盖
螺柱等组成。
轴瓦是轴承直接和轴颈相接触的零件,常在轴瓦内表面 上贴附一层轴承衬。在轴瓦内壁不承担载荷的表面上开设油 沟,润滑油通过油孔和油沟流进轴承间隙。
R(球)
3.调心式滑动轴承
特点:轴瓦外表面做成球面形状,与轴承盖及轴承座的 球状内表面相配合,轴瓦可以自动调位以适应轴颈在轴弯 曲时所产生的偏斜。
X 0:
pdydz ( p p dx )dydz dxdz ( dy )dxdz 0
x
y
p
x y
由于:
u y
p x
2u y 2
二次积分
u
1
2
p x
y
2
C1y
C2
代入边界条件:y=0,u=v;y=h,u=0
流速方程:u v (h y ) 1 p (y h)y
h
2 x
pmax
盖
杯体 接头 油芯
20°
§5 非液体摩擦滑动轴承的计算
一、混合摩擦滑动轴承失效形式 胶合、磨损等 设计准则:至少保持在边界润滑状态, 即维持边界油膜不破裂。
计算方法:简化计算(条件性计算)
磨损
点蚀及金属剥落
二、向心轴承
1、限制轴承平均压强
p F p
机械设计课件 第17章滑动轴承1

Fn pv [ pv ] 20000 B
MPa
3) 限制滑动速度v
v
dn
60 1000
[v ]
轴承材料的最高许用〔p〕、〔v〕、〔pv〕 值见表17.1、17.2。常用机器径向轴承的 〔p〕、〔v〕,〔pv〕见表17.4。
17.7.2
推力轴承
结构如图17.12所示。用来承受轴向载荷。
润滑方式的选择:根据系数k选定。k
pv
3
p F /(dB) k 2 -用润滑脂,油杯润滑;
k=2~16-针阀式注油油杯润滑; k=16~32-油环或飞溅润滑; k>32-压力循环润滑。
17.7 滑动轴承的条件性计算
对于工作要求不高、v较低,载荷不大,难以 维护等条件下工作的轴承,往往设计成非流体摩
17.2.3 自动调心轴承 轴瓦可自动调位 适应轴颈在轴弯曲 时所产生的倾斜。
球
17.3 滑动轴承的材料
轴承材料:轴瓦和轴承衬的材料。
选用何种材料,取决于失效形式。
主要失效形式是轴瓦磨损、疲劳损坏及轴承 衬脱落。 17.3.1 对轴承材料的要求
1)强度、塑性、顺应性和嵌藏性;2)磨合性、 耐磨性、减摩性好;3)耐腐蚀;4)润滑性能 和热化学性;5)工艺性;6)经济性。
17.6.1
油润滑
间歇供油:用油壶或油杯供油,见图17.9。 连续:供油比较可靠,连续供油方法见图 17.10。
17.6.2 脂润滑 润滑脂只能间歇供油。润滑杯(黄油杯) 是应用最广的脂润滑装置。也常用黄油枪向轴 承补充润滑脂。
17.6.2 脂润滑
润滑杯(黄油杯)是应用最广的脂润滑装置。也
常用黄油枪向轴承补充润滑脂。
(17.6)
17.7.2
MPa
3) 限制滑动速度v
v
dn
60 1000
[v ]
轴承材料的最高许用〔p〕、〔v〕、〔pv〕 值见表17.1、17.2。常用机器径向轴承的 〔p〕、〔v〕,〔pv〕见表17.4。
17.7.2
推力轴承
结构如图17.12所示。用来承受轴向载荷。
润滑方式的选择:根据系数k选定。k
pv
3
p F /(dB) k 2 -用润滑脂,油杯润滑;
k=2~16-针阀式注油油杯润滑; k=16~32-油环或飞溅润滑; k>32-压力循环润滑。
17.7 滑动轴承的条件性计算
对于工作要求不高、v较低,载荷不大,难以 维护等条件下工作的轴承,往往设计成非流体摩
17.2.3 自动调心轴承 轴瓦可自动调位 适应轴颈在轴弯曲 时所产生的倾斜。
球
17.3 滑动轴承的材料
轴承材料:轴瓦和轴承衬的材料。
选用何种材料,取决于失效形式。
主要失效形式是轴瓦磨损、疲劳损坏及轴承 衬脱落。 17.3.1 对轴承材料的要求
1)强度、塑性、顺应性和嵌藏性;2)磨合性、 耐磨性、减摩性好;3)耐腐蚀;4)润滑性能 和热化学性;5)工艺性;6)经济性。
17.6.1
油润滑
间歇供油:用油壶或油杯供油,见图17.9。 连续:供油比较可靠,连续供油方法见图 17.10。
17.6.2 脂润滑 润滑脂只能间歇供油。润滑杯(黄油杯) 是应用最广的脂润滑装置。也常用黄油枪向轴 承补充润滑脂。
17.6.2 脂润滑
润滑杯(黄油杯)是应用最广的脂润滑装置。也
常用黄油枪向轴承补充润滑脂。
(17.6)
17.7.2
机械设计-滑动轴承PPT课件精选全文

第6页/共54页
4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。
4.调心式径向滑动轴承(自位轴承)
特点:轴瓦能自动调整位置,以适应轴的偏斜。
注:调心式轴承必须成对使用。
当轴倾斜时,可保证轴颈与轴承配合表面接触良好,从而避免产生偏载。
主要用于轴的刚度较小,轴承宽度较大的场合。
滑动轴承的结构
观看动画
第7页/共54页
二、止推滑动轴承的结构
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
◆设计准则 :维持边界膜不破裂。
◆条件性计算内容:限制压强 p 、pv 值、滑动速度v不超过许用值
失效形式:
磨损胶合
第18页/共54页
§12-6 滑动轴承的条件性计算
一、径向滑动轴承的计算
已知条件:径向载荷F (N)、 轴颈转速n (r/mm)轴颈直径d (mm)
1.限制轴承的平均压强 p
2.工作平稳,噪音低;
3.结构简单,径向尺寸小。
第3页/共54页
§12-2 滑动轴承的主要结构形式
一、径向滑动轴承的结构
1.整体式径向滑动轴承
特点:结构简单,成本低廉。
应用:低速、轻载或间歇性工作的机器中
磨损后间隙无法调整;只能沿轴向装拆。
常用的滑动轴承已经标准化,可根据使用要求从有关手册中合理选用。
-考虑油槽使承载面积减小的系数,其值=0.85~0.95。
Z-止推环数。
滑动轴承的条件性计算
第21页/共54页
注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
2.限制 值
vm-止推环平均直径dm=(d2+d1)/2 处的圆周速度。
1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。
机械设计教程 第3版 第十章 滑动轴承设计

机械设计教程
第3版
第十章 滑动轴承设计
第一节 滑动轴承的主要类型和特点 第二节 滑动轴承的常用材料和结构 第三节 混合润滑滑动轴承的工作能力设计 第四节 流体动压润滑滑动轴承的工作能力设计
第十章 滑动轴承设计
滑动轴承通过润滑剂作为中间介质将旋转的轴与固定的机架(座)分隔开,以达 到减少摩擦的目的,这是一种工作在滑动摩擦状态下的轴承。滑动轴承主要用于 滚动轴承难以满足工作要求的场合,如高转速、长寿命、低摩擦阻力、承受大的 冲击载荷、低噪声和无污染等条件。另外,为降低成本,一些极简单的回转支撑也 常采用滑动轴承。 滑动轴承设计的主要内容是:轴承材料的选择,轴承的结构设计,润滑剂与润滑方 式的选择,轴承工作能力设计计算等。
第二节 滑动轴承的常用材料和结构
三、推力滑动轴承结构
推力滑动轴承的承载面与轴线垂直,用以承受轴向载荷。 图10-6所示为常用的推力滑动轴承承载面的情况。图10-6a所示为实心端面推力滑动轴 承,这种轴承结构简单,但是承载面沿直径方向速度变化大,产生不均匀的磨损以后,导致压 强分布不均匀;图10-6b所示为空心端面推力滑动轴承,靠近中心处不承载,避免了实心式 结构的缺点;图10-6c所示为单环式推力滑动轴承,可承受单向轴向载荷,承载面可利用径向 滑动轴承(图10-2)的端面;图10-6d所示为多环式推力滑动轴承,承载面积增大,承载能力提 高,可承受双向轴向载荷,但是各环之间载荷分布不均匀,承载能力受各环加工误差的影响 较大。
图10-2所示为剖分式径向滑动轴承结构,轴承座沿轴线剖开,使轴系的装配与拆卸都很 方便。在剖开的轴承座与轴承盖之间设有止口结构,保证装配时轴承座与轴承盖的准确 定位。双头螺柱和螺母用于轴承座与轴承盖的连接。为便于轴承的润滑,轴承盖顶部设 有注油孔。
第3版
第十章 滑动轴承设计
第一节 滑动轴承的主要类型和特点 第二节 滑动轴承的常用材料和结构 第三节 混合润滑滑动轴承的工作能力设计 第四节 流体动压润滑滑动轴承的工作能力设计
第十章 滑动轴承设计
滑动轴承通过润滑剂作为中间介质将旋转的轴与固定的机架(座)分隔开,以达 到减少摩擦的目的,这是一种工作在滑动摩擦状态下的轴承。滑动轴承主要用于 滚动轴承难以满足工作要求的场合,如高转速、长寿命、低摩擦阻力、承受大的 冲击载荷、低噪声和无污染等条件。另外,为降低成本,一些极简单的回转支撑也 常采用滑动轴承。 滑动轴承设计的主要内容是:轴承材料的选择,轴承的结构设计,润滑剂与润滑方 式的选择,轴承工作能力设计计算等。
第二节 滑动轴承的常用材料和结构
三、推力滑动轴承结构
推力滑动轴承的承载面与轴线垂直,用以承受轴向载荷。 图10-6所示为常用的推力滑动轴承承载面的情况。图10-6a所示为实心端面推力滑动轴 承,这种轴承结构简单,但是承载面沿直径方向速度变化大,产生不均匀的磨损以后,导致压 强分布不均匀;图10-6b所示为空心端面推力滑动轴承,靠近中心处不承载,避免了实心式 结构的缺点;图10-6c所示为单环式推力滑动轴承,可承受单向轴向载荷,承载面可利用径向 滑动轴承(图10-2)的端面;图10-6d所示为多环式推力滑动轴承,承载面积增大,承载能力提 高,可承受双向轴向载荷,但是各环之间载荷分布不均匀,承载能力受各环加工误差的影响 较大。
图10-2所示为剖分式径向滑动轴承结构,轴承座沿轴线剖开,使轴系的装配与拆卸都很 方便。在剖开的轴承座与轴承盖之间设有止口结构,保证装配时轴承座与轴承盖的准确 定位。双头螺柱和螺母用于轴承座与轴承盖的连接。为便于轴承的润滑,轴承盖顶部设 有注油孔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
emax (n=0) emin 0 (n→∞)
hmin
e
e 偏心率=
三、向心滑动轴承承载能力计算
△
D
直径间隙:△=D-d
d
Δ δ 相对间隙: d r
偏心距e
Rr 半径间隙: 2
{
emax (n=0) emin 0 (n→∞)
e
相对间隙: d
F
V
V
V
形成动压油膜的必要条件:
1.两表面必须构成楔形; 2.两表面必须有一定的相对速度, 使大口带入油,小口带出油; 3.两表面间必须连续充满润滑油。
x
x
p (p dx )dydz x
v
t dxdz
y pdydz
z
y
τ (τ dy)dxdz y
t P pdydz tdxdz p dx dydz t dy dxdz 0 x y 2 u p τ p u τ η η 2 x y y x y
热平衡条件:
ti
H H1 H 2
t0
f p t t 0 t i as Q c( ) VBd V 耗油量系数☆
F
dp 6 ηV 3 ( h h0 ) dx h
φ
ω
0
h
h=rcos h0 rcos 0
V r
dx=rd φ
6 ηr[r(cos cos 0 )] dp 3 rd [r (1 cos 0 )]
dp (cos cos0 ) 6 2 3 d (1 cos )
dB F CP 2
Cp→轴承承载量系数
CP ∝(a, χ , B/d )
e =
e
e
Cp↑
返回
承 载 量 系
B/ d 0.4 0.6 0.65 0.7 承 0.7 0.9 1.0 1.2 1.5 0.36 0.51 0.58 0.72 0.89 0.81 1.10 1.25 1.48 1.76 1.01 1.37 1.52 1.79 2.09 1.31 1.74 1.92 2.2 2.60 0.75 载 1.72 2.24 2.46 2.8 3.24 量 2.39 3.06 3.37 3.78 4.26 0.80 系 0.85 数 3.58 4.46 4.81 5.4 5.94 0.90 Cp 6.03 7.29 7.77 8.5 9.30 10.0 9 14.1 4 16.3 7 17.1 8 18.4 19.6 31.8 35.6 37.0 39.0 41.0 88.9 0 96.3 5 98.9 5 102. 9 106. 8 100. 7 0.95 0.97 5 0.99
e
滑动轴承形成动压润滑的充分条件: hmin e [h] S ( RZ1 RZ 2)
五、轴承的热平衡计算
热平衡条件:摩擦功耗产生热量=轴承的散热量
摩擦功(发热量):H
fFV
散热量: 润滑油带走的热量:H1 Qct0 t i 轴承表面散发的热量:
H 2 a s dB t 0 t i
φa 求任意位置 φ 处的压力
F
φ φ1
dp p ( )d 1 d
求单位轴承宽度承载力F1
F1=
2
1
φ2
p r dφ cos(180o-(φ+ φa))
B/2
B/2
F=
z
z
B 2 B 2
2z 2 C'[1 ( ) ] F dz 1 B
(cos cos0 ) [ d] 3 1 B(1 cos )
数
Cp
返回例题
2.0
1.09
2.07
2.44
2.98
3.674.7765420.943.1
四、最小油膜厚度 设计时,已知F、d、n(ω),选择 B、ψ、η , 2 F 求所需要的承载量系数 C P dB C
P
查出偏心率☆ 求出偏心距 e =
hmin
计算出 hmin = - e = -
h 0
Uh h p Uh0 2 2 12 x
3
油膜压力 最大处的 油膜厚度
p 6U 3 h h0 x h
一维雷诺方程
p 6 v 动压润滑基本方程: h h0 3 x h
x
p 0 p p x 0 0 x x p max V
C p 3
B 2 B 2
{
2
1
2z 2 [ cos(a )]}C'[1 ( ) ]dz B
F1
2 (cos cos ) 6r B 0 2 F { [ d] 2 B 3 1 1 (1 cos) 2
2z 2 [ cos(a )]}C'[1 ( ) ]dz B
p u η 2 x y
2
p x
x
V
p max
u 1 p 2 y η x
2
h0
x
y h
v h y yh y p u h 2 x
y
2 润滑油的流量:
Q
h 0
v h y y h y p dy udy 2 x h
h
h0
x
h
y
二、向心滑动轴承动压油膜的形成过程
直径间隙△=D-d
△
D
F
F
F
d
f
n0 n0 边界摩擦 非液体摩擦 混合摩擦 形成动压油膜 液体摩擦
}
观看动画
ηn p
三、向心滑动轴承承载能力计算
△
D
直径间隙:△=D-d
d
Δ δ 相对间隙: d r
偏心距e
Rr 半径间隙: 2
e 偏心率=
hmin= δ – e = δ (1– χ ) = r ψ (1– χ )
F
h
φ
e r
0
φ
R
相对间隙: =δ /r
R r h e cos(180 ) r h e cos
p 6 ηV 3 ( h h0 ) x h
h
h R r e cos cos =rcos