遗传算法总结【精品毕业设计】(完整版)

合集下载

grasshopper-galapagos遗传算法【精品毕业设计】(完整版)

grasshopper-galapagos遗传算法【精品毕业设计】(完整版)

Evolutionary Principles applied toProblem Solving遗传算法There is nothing particularly new about Evolutionary Solvers or Genetic Algorithms. The first references to this field of computation stem from the early 60's when Lawrence J. Fogel published the landmark paper "On the Organization of Intellect" which sparked the first endeavours into evolutionary computing. The early 70's witnessed further forays with seminal work produced by -among others- Ingo Rechenberg and John Henry Holland. Evolutionary Computation didn't gain popularity beyond the programmer world until Richard Dawkins' book "The Blind Watchmaker" in 1986, which came with a small program that generated a seemingly endless stream of body-plans called "Bio-morphs" based on human selection. Since the 80's the advent of the personal computer has made it possible for individuals without government funding to apply evolutionary principles to personal projects and they have since made it into the common parlance.其实在遗传算法和基因算法里并什么特别新的理论出现,该领域的第一篇文献出现在六十年代由Lawrence J. Fogel 出版的具有里程碑意义的论文“智能组织”,这篇论文使人们开始致力于研究遗传算法。

遗传算法解决TSP问题【精品毕业设计】(完整版)

遗传算法解决TSP问题【精品毕业设计】(完整版)
2.2遗传算法原型:
GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述

遗传算法解释及代码(一看就懂)【精品毕业设计】(完整版)

遗传算法解释及代码(一看就懂)【精品毕业设计】(完整版)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

基本遗传算法【精品毕业设计】(完整版)

基本遗传算法【精品毕业设计】(完整版)

基本遗传算法【精品毕业设计】(完整版)遗传算法1、遗传算法⽣物学基础和基本理论达尔⽂⾃然选择学说认为,⽣物要⽣存下去,就必须进⾏⽣存⽃争。

⽣存⽃争包括种内⽃争、种间⽃争以及⽣物跟⽆机环境之间的⽃争三个⽅⾯。

在⽣存⽃争中,具有有利变异(mutation)的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产⽣后代的机会也少得多。

因此,凡是在⽣存⽃争中获胜的个体都是对环境适应性⽐较强的。

达尔⽂把这种在⽣存⽃争中适者⽣存,不适者淘汰的过程叫做⾃然选择。

达尔⽂的⾃然选择学说表明,遗传和变异是决定⽣物进化的内在因素。

遗传是指⽗代与⼦代之间,在性状上存在的相似现象。

变异是指⽗代与⼦代之间,以及⼦代的个体之间,在性状上或多或少地存在的差异现象。

在⽣物体内,遗传和变异的关系⼗分密切。

⼀个⽣物体的遗传性状往往会发⽣变异,⽽变异的性状有的可以遗传。

遗传能使⽣物的性状不断地传送给后代,因此保持了物种的特性,变异能够使⽣物的性状发⽣改变,从⽽适应新的环境⽽不断地向前发展。

⽣物的各项⽣命活动都有它的物质基础,⽣物的遗传与变异也是这样。

根据现代细胞学和遗传学的研究得知,遗传物质的主要载体是染⾊体(chromsome),染⾊体主要是由DNA(脱氧核糖核酸)和蛋⽩质组成,其中DNA⼜是最主要的遗传物质。

现代分⼦⽔平的遗传学的研究⼜进⼀步证明,基因(gene)是有遗传效应的⽚段,它储存着遗传信息,可以准确地复制,也能够发⽣突变,并可通过控制蛋⽩质的合成⽽控制⽣物的性状。

⽣物体⾃⾝通过对基因的复制(reproduction)和交叉(crossover),即基因分离、基因⾃由组合和基因连锁互换)的操作使其性状的遗传得到选择和控制。

同时,通过基因重组、基因变异和染⾊体在结构和数⽬上的变异产⽣丰富多采的变异现象。

需要指出的是,根据达尔⽂进化论,多种多样的⽣物之所以能够适应环境⽽得以⽣存进化,是和上述的遗传和变异⽣命现象分不开的。

自然计算遗传算法【精品毕业设计】(完整版)

自然计算遗传算法【精品毕业设计】(完整版)

自然计算大作业一.二进制编码在遗传算法中,首先要将数据进行编码,这里采用二进制的方式进行编码。

第一步,我们根据题目的介绍可以得知该函数含有两个变量,以及各自的定义域。

在二进制编码中,我们首先要先计算它的编码长度。

计算公式如下: $${2^{{m_j} - 1}} < ({b_j} - {a_j})*precision \le {2^{{m_j}}} - 1$$其中precision为精度,如小数点后5位,则precision=10^5,mj为编码长度,${x_j} \in [{a_j},{b_j}]$二.二进制解码解码即编码的逆过程:$${x_j} = {a_j} + {\rm{decimal}}(substrin{g_j}) \times \frac{{{b_j} - {a_j}}}{{{2^{{m_j}}} - 1}}$$三.种群初始化编码完成后,开始对种群初始化,为了简便采用随机地方式进行初始化。

初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。

GA以这N个串结构数据作为初始点开始进化。

def rand_init(self):for i in range(self.code_x1_length):self.code_x1 += str(random.randint(0, 1))for i in range(self.code_x2_length):self.code_x2 += str(random.randint(0, 1))四.适应度评估适应度表明个体或解的优劣性。

不同的问题,适应度函数的定义方式也不同。

def decoding(self, code_x1, code_x2):self.x1 = self.bounds[0][0] + int(code_x1, 2) * (self.bounds[0][1] - self.bounds[0][0]) / (2 ** self.code_x1_length - 1)self.x2 = self.bounds[1][0] + int(code_x2, 2) * (self.bounds[1][1] - self.bounds[1][0]) / (2 ** self.code_x2_length - 1)五.选择选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。

使用遗传算法求解函数最大值【精品毕业设计】(完整版)

使用遗传算法求解函数最大值【精品毕业设计】(完整版)

使用遗传算法求解函数最大值题目使用遗传算法求解函数f(x,y)=x∗sin(6∗y)+y∗cos⁡(8∗x)在x∈[1,2]及y∈[1,2]的最大值。

解答算法使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。

算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。

定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。

设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。

然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。

一选择操作首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。

对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。

实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。

二交叉操作首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。

三变异操作首先是根据变异概率probMutation选择要变异的个体。

遗传算法总结

遗传算法总结

遗传算法总结By xudong 内容提要遗传算法的实现过程遗传算法基本理论遗传算法的三个算例TSP问题装箱问题网络结构优化遗传算法的实现过程产生初始种群在适应度函数的基础上选择parents从parents中产生children有三种途径:将parents中最优秀的个体直接保留到children杂交变异遗传算法实现流程下面以一个函数优化的过程为例说明遗传算法的工作过程,材料来自matlab中遗传算法的算法说明。

【生成初始种群】这是函数的等值线图,图中的蓝点表示初始种群中的个体。

【生成下一代种群】图中的符号表示下一代个体,具体不同符号表示不同的产生途径。

【迭代过程】可以看出,随着迭代的增加,整个种群逐渐收敛到最优解。

遗传算法基本理论这里只叙述定理的内容和评价,定理中所涉及的概念和定理的推导过程大家感兴趣的话可以翻翻书。

【模式定理】内容:遗传算法中,在选择、交叉、变异算子的作用下,具有低阶、短的定义长度,并且平均适应度高于群体平均适应度的模式将按指数级增长。

评价:看到这个定理首先想到的就是《自私的基因中》的核心观点,基因是进化的基本单位。

短小,并且适应度高的基因在进化过程中被保留下来,并且在群体中不断增加。

【积木块假定】内容:基因能够互相拼接在一起,形成适应度更高的编码串。

评价:模式定理是说遗传算法能够产生高质量的建筑砖头(基因),积木块假定是说可以用这些高质量的建筑砖头建造高质量的大楼(编码串)。

需要注意的是,我们把上述内容称为假定,而并非定理,这是因为有时候积木块假定并不成立,也就是说高质量的转头不一定能够建成高质量的大楼。

出现这种情况的原因是1+1<2的现象,各个基因之间高度相关,适应度很高的两个基因之间存在很强的负交互作用,结果导致整体的适应度下降。

【遗传算法收敛性】内容1.不保留优秀个体,收敛于最优解的概率小于12.保留优秀个体,遗传算法收敛于最优解的概率等于1评价:这两个定理说明了我们为什么在遗传算法中保留优秀个体的一个原因,保留优秀个体的另外一个原因是保证遗传算法每一代的解总是单调减少的(假设目标是极小化目标函数)。

R语言GA遗传算法【精品毕业设计】(完整版)

R语言GA遗传算法【精品毕业设计】(完整版)

GA包遗传算法最大化使用遗传算法的适应度函数。

默认求最大值。

用法:ga(type = c("binary", "real-valued", "permutation"), fitness, ..., min, max, nBits, population = gaControl(type)population,<br/>selection=gaControl(type)selection, crossover = gaControl(type)crossover,<br/> mutation=gaControl(type)mutation, popSize = 50, pcrossover = 0.8, pmutation = 0.1, elitism = base::max(1, round(popSize*0.05)), maxiter = 100, run = maxiter, maxfitness = Inf, names = NULL, suggestions = NULL, keepBest = FALSE, parallel = FALSE, monitor = gaMonitor, seed = NULL)参数说明•type: 解得编码类型–binary :二进制编码–real-valued:实数浮点编码–permutation:问题涉及到重新排序的列表,字符串编码。

可求解TSP 问题•fitness:适应度函数•min:解得下界(多元变量为一个向量)•max:解得上界(多元变量为一个向量)•nBits:一个种群用二进制编码的长度是多少(长度越大代表精度越高) •population:初始种群•selection:选择•crossover: 交叉•crossover:变异•popsize:种群大小•pcrossover: 交叉概率(默认0.8)•pmutation:变异概率(默认0.1)•elitism: 代沟(默认情况下,前5%个体将在每个迭代中保留)•maxiter:最大迭代次数(默认100)•maxfitness:适应度函数的上界,GA搜索后中断•keepBest:是否保留每一代的最优解•parallel:是否采用并行运算•monitor:绘图用的,监控遗传算法的运行状况•seed:一个整数值包含随机数发生器的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法总结
遗传算法是借鉴生物的自然选择和遗传进化机制而开发出的一种全局自适应概率搜索算法。

一、遗传算法流程图
算法开始
原问题参数集
染色体编码,产生初始种群
计算种群中个体的适应值
终止条件判断
N
选择
交叉
Y
变异
新种群
输出结果
算法结束
图1 遗传算法流程图
二、遗传算法的原理和方法
1)染色体编码
把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法就称为编码。

De Jong 曾提出了两条操作性较强的实用编码原则:编码原则一:应使用能易于产生与所求问题相关的且具有低阶、短定义长度模式的编码方案;编码原则二:应使用能使问题得到自然表示或描述的具有最小编码字符集的编码方案。

编码方法主要有以下几种:二进制编码方法、格雷码编码方法、浮点数编码方法、符号编码方法、参数级联编码方法、多参数交叉编码方法。

2) 适应值计算
由解空间中某一点的目标函数值()f x 到搜索空间中对应个体的适应度函数值
(())Fit f x 的转换方法基本上有一下三种:
a . 直接以待解的目标函数值()f x 转化为适应度函数值(())Fit f x ,令
() (())=() f x Fit f x f x ⎧⎨
-⎩目标函数为最大化函数
目标函数为最小化函数
b . 对于最小值的问题,做下列转化max max () ()
(())0 C f x f x C Fit f x -<⎧=⎨⎩
其他,其中max C 是
()f x 的最大输入值。

c . 若目标函数为最小值问题,1
(()), 0, ()01()
Fit f x c c f x c f x =
≥+≥++
若目标函数为最大值问题,1
(()), 0, ()01()
Fit f x c c f x c f x =≥-≥+-
3) 选择、交叉、变异
遗传算法使用选择算子来对群体中的个体进行优胜劣汰操作:根据每个个体的适应度值大小选择。

适应度较高的个体被遗传到下一代群体中的概率较大;适应度较低的个体的被遗传到下一代群体中的概率较小。

其中选择的方法有:轮盘赌选择、随机竞争选择、最佳保留选择、无回放随机选择、确定式选择等。

遗传算法中的所谓交叉运算,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。

交叉操作主要有单点交叉、两点交叉与多点交叉、均匀交叉和算数交叉四种。

遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座的其他基因来替换,从而形成一个新的个体。

主要有基本位变异、均匀变异、边界变异等几种变异操作方法。

4) 控制参数选择
交叉概率c p 一般取0.4~0.99;变异概率m p 一般取0.0001~0.1;群体规模一般取10~200。

三、算例
⎪⎩

⎨⎧∈≤≤=+=≤+=-+-=N
10,042),(5),(..)2()3(),( min 121212112
2212112
22121x x x x x x x h x x x x g t s x x x x f , (1)
1)三种不同的遗传方法
方法一:原模型中12x x 、均为决策变量,操作如下。

a. 采用混合整数编码,对1x 进行十进制编码,2x 进行二进制编码;
b. 适应度函数值采用12121
((,))(,)
Fit f x x c f x x =
+计算,其中
112112max{0,(,)5}max{0,|(,)4|}c g x x h x x λμ=⨯-+⨯-,λ=μ=10000;
c. 采用赌轮盘选择、单点交叉和基本位变异;
d. c p =0.8,m p =0.1,遗传代数为200,种群中个体数100;
e. 终止条件为连续十次最优个体保持不变或遗传代数到达200。

方法二:已知等式约束112(,)h x x ,可得21(4)/2x x =-,则原问题可化为
221
112
211111114min ()(3)((
)2)2
4()()52..010N 4010
2x f x x x g x x s t x x x -=-+--⎧=+≤⎪⎪≤≤∈⎨⎪-⎪≤≤⎩

(2)
即等式约束简化后的模型为 22
1112
21111
11min ()(3)()2
4()()5..204N
x
f x x x
g x x s t x x =-+-⎧=+≤⎪⎨⎪≤≤∈⎩, (3)
其中a~b 的操作如下,而c~e 的操作同方法一。

a. 对1x 进行十进制编码;
b. 适应度函数值采用12121
((,))(,)
Fit f x x c f x x =
+计算,其中
112max{0,(,)5}c g x x λ=⨯-,λ=10000
方法三:在方法二的基础上,改变1x 的编码方法,对1x 进行二进制编码。

由于104x ≤≤,且为自然数,则二进制编码至少为3位,但3位的二进制可以表示0~7的整数,所以存在冗余编码。

则通过惩罚来排除冗余编码,即适应度函数值采用
12121
((,))(,)
Fit f x x c f x x =
+计算。

其中1121max{0,(,)5}max{0,()4}c g x x x i λλ=⨯-+⨯-,λ=10000。

1()x i 表示个体解码后的1x 。

2)三种方法的计算结果
方法一可得到三个不同的解:
解1:12122,1, ((,))0.4646, () 2.0000x x Fit f x x f x ====,适应度趋势图如下:
图2 方法一解1的适应度趋势图
解2:12120,2, ((,))0.1075, ()9.0000x x Fit f x x f x ====,适应度趋势图如下:。

相关文档
最新文档