江苏省2018中考数学试题研究 第一部分 考点研究 第三章 函数 第12课时 反比例函数及其应用试题(5年真题)
江苏省近年中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质一次函数、反比例

江苏省2018中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质一次函数、反比例函数、二次函数图象性质的对比练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2018中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质一次函数、反比例函数、二次函数图象性质的对比练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2018中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质一次函数、反比例函数、二次函数图象性质的对比练习的全部内容。
一次函数、反比例函数、二次函数图象性质的对比一三种函数的图象问题1。
在同一直角坐标系中,函数y=kx+k与y=-错误!(k≠0)的图象大致为( )2。
已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的大致图象可能是()第2题图3。
二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx -c在同一坐标系内的图象大致是( )第3题图二 三种函数图象的增减性4. 已知函数y =x ,y =错误!和y =x 2+x -1. (1)y 随x 的增大而增大的是________;(2)①若点A (-1,y 1)和点B (1,y 2)在一次函数y =x 图象上,则y 1与y 2的大小关系为________;②若点A (-1,y 1)和点B (1,y 2)在反比例函数y =1x图象上,则y 1与y 2的大小关系为________;③若点A (-1,y 1)和点B (1,y 2)在二次函数y =x 2+x -1图象上,则y 1与y 2的大小关系为________.三 三种函数图象的交点问题 5。
江苏省近年中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)(20

江苏省2018中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2018中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2018中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)的全部内容。
函数第14课时二次函数的应用江苏近5年中考真题精选(2013~2017)命题点1二次函数的实际应用(盐城1考,淮安1考,宿迁1考)考向一最大利润问题1.(2016徐州26题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)2。
(2013盐城25题10分)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2题图3。
江苏省近年中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质试题(5年真题)

江苏省2018中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质试题(5年真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2018中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质试题(5年真题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2018中考数学试题研究第一部分考点研究第三章函数第13课时二次函数的图象与性质试题(5年真题)的全部内容。
第三章函数第13课时二次函数的图象与性质江苏近5年中考真题精选(2013~2017)命题点1 二次函数图象的对称轴与顶点坐标(淮安2考,宿迁1考)1. (2013淮安16题3分)二次函数y=x2+1的图象的顶点坐标是________.2。
(2015淮安15题3分)二次函数y=x2-2x+3的图象的顶点坐标是________.3. (2014南通14题3分)已知抛物线y=ax2+bx+c与x轴的公共点是(-4,0),(2,0),则这条抛物线的对称轴是直线________.第5题图4. (2015宿迁16题3分)当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为________.5. (2014扬州16题3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线l上,则4a-2b+c的值为________.命题点2待定系数法求二次函数解析式(盐城4考,淮安2考,宿迁必考)基础练习1. 已知二次函数y=ax2+bx+c的图象经过A(-1,0),B(3,0),C(0,-3)三点,求这个二次函数的解析式.2。
2018年江苏省苏州市中考数学试题含答案

江苏省苏州市2018年中考数学试卷一、选择题<共10小题,每小题3分,共30分)1.<3分)<2018?苏州)<﹣3)×3的结果是<)A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.<3分)<2018?苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为<)A.30°B.60°C.70°D.150°考点:对顶角、邻补角分析:根据对顶角相等可得∠β与∠α的度数相等为30°.解答:解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.点评:本题主要考查了对顶角相等的性质,比较简单.3.<3分)<2018?苏州)有一组数据:1,3,3,4,5,这组数据的众数为<)A.1B.3C.4D.5考点:众数分析:根据众数的概念求解.解答:解:这组数据中3出现的次数最多,故众数为3.故选 B点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.<3分)<2018?苏州)若式子在实数范围内有意义,则x的取值范围是<)A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子<a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.<3分)<2018?苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是<)b5E2RGbCAPA.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.6.<3分)<2018?苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为<)p1EanqFDPwA.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.<3分)<2018?苏州)下列关于x的方程有实数根的是<)A.x2﹣x+1=0 B.x2+x+1=0 C.<x﹣1)<x+2)=0 D.<x﹣1)2+1=0 考点:根的判别式.专计算题.题:分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=<﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、<x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0<a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.<3分)<2018?苏州)二次函数y=ax 2+bx﹣1<a≠0)的图象经过点<1,1),则代数式1﹣a﹣b的值为<)DXDiTa9E3dA.﹣3 B.﹣1 C.2D.5考点:二次函数图象上点的坐标特征.分析:把点<1,1)代入函数解读式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1<a≠0)的图象经过点<1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣<a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.<3分)<2018?苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离<即AB的长)为<)RTCrpUDGiTA.4km B.2km C.2km D.<+1)km考点:解直角三角形的应用-方向角问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离<即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.10.<3分)<2018?苏州)如图,△AOB为等腰三角形,顶点A的坐标<2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为<)5PCzVD7HxAA.<,)B.<,)C.<,)D.<,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A<2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为<,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题<共8小题,每小题3分,共24分)11.<3分)<2018?苏州)的倒数是.考点:倒数.分析:根据乘积为1的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.<3分)<2018?苏州)已知地球的表面积约为510000000km 2,数510000000用科学记数法可表示为 5.1×108.jLBHrnAILg 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为: 5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.<3分)<2018?苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.考点:正方形的性质.分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.14.<3分)<2018?苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.xHAQX74J0X考点:用样本估计总体;条形统计图.分析:根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C占总体的比例,根据总人数乘以C占得比例,可得答案.解答:解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240<人),故答案为:240.点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.<3分)<2018?苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.LDAYtRyKfE考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角<或余角)的三角函数关系式求三角函数值.16.<3分)<2018?苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则<x+y)的值为20.Zzz6ZB2Ltk 考点:二元一次方程组的应用.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.<3分)<2018?苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE?ED=,则矩形ABCD的面积为5.dvzfvkwMI1考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE?ED=,∴4x?x=,解得:x=<负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.18.<3分)<2018?苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点<不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则<x﹣y)的最大值是2.rqyn14ZNXI考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x 2=﹣x2+x=﹣<x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP=∠APB ,∴△APC ∽△PBA ,∴=,∵PA=x ,PB=y ,半径为 4 ∴=,∴y=x 2,∴x ﹣y=x ﹣x 2=﹣x 2+x=﹣<x ﹣4)2+2,当x=4时,x ﹣y 有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题<共11小题,共76分)19.<5分)<2018?苏州)计算:22+|﹣1|﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.<5分)<2018?苏州)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.<5分)<2018?苏州)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷<+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.22.<6分)<2018?苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.<6分)<2018?苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC 上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.EmxvxOtOco<1)求证:△BCD≌△FCE;<2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.分析:<1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;<2)由<1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:<1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE<SAS).<2)解:由<1)可知△BCD≌△FCE,∴∠BDC=∠E,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.<7分)<2018?苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P<a,0)<其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.SixE2yXPq5<1)求点A的坐标;<2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:计算题.分析:<1)先利用直线y=x上的点的坐标特征得到点M的坐标为<2,2),再把M<2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解读式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为<6,0);<2)先确定B点坐标为<0,3),则OB=CD=3,再表示出C点坐标为<a,﹣a+3),D点坐标为<a,a),所以a﹣<﹣a+3)=3,然后解方程即可.解答:解:<1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为<2,2),把M<2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解读式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为<6,0);<2)把x=0代入y=﹣x+3得y=3,∴B点坐标为<0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为<a,﹣a+3),D点坐标为<a,a)∴a﹣<﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.<7分)<2018?苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法<画树状图或列表)求A、C两个区域所涂颜色不相同的概率.6ewMyirQFL考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出A与C中颜色不同的情况数,即可求出所求的概率.解解:画树状图,如图所示:答:所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.<8分)<2018?苏州)如图,已知函数y=<x>0)的图象经过点A、B,点A的坐标为<1,2),过点A作AC∥y轴,AC=1<点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.kavU42VRUs<1)求△OCD的面积;<2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.分析:<1)根据待定系数法,可得函数解读式,根据图象上的点满足函数解读式,可得D 点坐标,根据三角形的面积公式,可得答案;<2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;<1)y=<x>0)的图象经过点A<1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为<1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为<2,1).∴.<2)∵BE=,∴.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解读式,图象上的点满足函数解读式.27.<8分)<2018?苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.y6v3ALoS89<1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;<2)求证:BF=BD;<3)设G是BD的中点,探索:在⊙O上是否存在点P<不同于点B),使得PG=PF?并说明PB与AE的位置关系.M2ub6vSTnP考点:圆的综合题.分析:<1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧的长;<2)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;<3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF<SAS),求出PG=PF.解答:<1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;<2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;<3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF<SAS),∴PG=PF.点评:此题主要考查了圆的综合应用以及全等三角形的判定与性质和弧长公式以及圆心角定理等知识,正确作出辅助线是解题关键.28.<9分)<2018?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t<s)0YujCfmUCw<1)如图①,连接OA、AC,则∠OAC的度数为105°;<2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离<即OO1的长);eUts8ZQVRd<3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d<cm),当d<2时,求t的取值范围<解答时可以利用备用图画出相关示意图).sQsAEJkW5T考点:圆的综合题.分析:<1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;<2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;<3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:<1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;<2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;<3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由<2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣<2﹣)=t2﹣<+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.29.<10分)<2018?苏州)如图,二次函数y=a<x 2﹣2mx﹣3m2)<其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B<点A位于点B的左侧),与y轴交于C<0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.GMsIasNXkA<1)用含m的代数式表示a;<2)求证:为定值;<3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.TIrRGchYzg考点:二次函数综合题.分析:<1)由C在二次函数y=a<x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.<2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.<3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且<2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.解答:<1)解:将C<0,﹣3)代入二次函数y=a<x2﹣2mx﹣3m2),则﹣3=a<0﹣0﹣3m2),解得 a=.<2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a<x2﹣2mx﹣3m2)=0,解得 x1=﹣m,x2=3m,则 A<﹣m,0),B<3m,0).∵CD∥AB,∴点D的坐标为<2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为<x,),∴=,∴x=4m,∴E<4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.<3)解:如图2,记二次函数图象顶点为F,则F的坐标为<m,﹣4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.点评:本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度稍难,但问题之间的提示性较明显,所以是一道质量较高的题目.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
江苏省苏州市2018年中考数学二轮复习精练《函数》(含答案)

第三讲函数第一节函数及其图象(时间:60分钟分值:60分)评分标准:选择题和填空题每小题3分.命题点1平面直角坐标系中点的坐标特征1. (2019湘西州)已知点P(2,3),则点P关于x轴的对称点的坐标为()A. (-2,3)B. (2,-3)C. (3,-2)D. (-3,2)2. (2019泸州)已知点A(a,1)与点B(-4,b)关于原点对称,则a+b的值为()A. 5B. -5C. 3D. -33. 已知第二象限内的点P到x轴的距离为4,到y轴的距离为3,则P点的坐标一定是()A. (3,4) B. (-3,4) C. (4,3) D. (-4,3)4. (2019邵阳)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1),30秒后,第4题图飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A. Q′(2,3),R′(4,1);B. Q′(2,3),R′(2,1)C. Q′(2,2),R′(4,1);D. Q′(3,3),R′(3,1)5. (2019贵港)在平面直角坐标系中,点P(m-3,4-2m)不可能在()A. 第一象限;B. 第二象限;C. 第三象限;D. 第四象限6. 已知点P(3-m,m)在第二象限,则m的取值范围是()A. m<0B. m≤0C. m>3D. m≥37. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次到点A1,A2,A3,…,A n.例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),…;若点A1的坐标为(a,b),则点A2019的坐标为()A. (-b+1,a+1)B. (-a,-b+2)C. (b-1,-a+1)D. (a,b)8. 如图,一个质点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动即(0,0)→(0,1)→(1,1)→(1,0)→…,那么第35秒时质点所在位置的坐标是()A. (4,0)B. (0,5)C. (5,0)D. (5,5)第8题图命题点2函数自变量的取值范围9. (2019无锡)函数y=x2-x中自变量x的取值范围是() A. x≠2 B. x≥2 C. x≤2 D. x>210. (2019恩施州)函数y=1x-3+x-1的自变量x的取值范围是()A. x≥1;B. x≥1且x≠3;C. x≠3;D. 1≤x≤3命题点3函数的表示方法及图象11. (2019泸州)下列曲线中不能表示y是x的函数的是()12. (2019绍兴)均匀地向一个容器注水,最后把容器注满.在注水的过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()13. (2019东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()14. (2019宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误..的是()A. 乙前4秒行驶的路程为48米;B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等;D. 在4至8秒内甲的速度都大于乙的速度第14题图15. (2019淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高..水位h与注水时间t之间的变化情况的是()16. (2019济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能..表示y与x函数关系的是()A. ①B. ③C. ②或④D. ①或③第16题图第17题图17. (2019孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E、F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()18. (2019西宁)如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度运动,同时动点N自D点出发沿折线DC-CB以每秒2 cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()19. 关注传统文化(2019聊城)端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示.下列说法错误的是()A. 乙队比甲队提前0.25 min到达终点B. 当乙队划行110 m时,此时落后甲队15 mC. 0.5 min后,乙队比甲队每分钟快40 mD. 自1.5 min开始,甲队若要与乙队同时到达终点,甲队的速度需提高到225 m/min第19题图20. (2019兰州)如图①,在矩形ABCD 中,动点E 从A 点出发,沿AB →BC 的方向运动,当点E 到达点C 时停止运动,过点E 作FE ⊥AE ,交CD 于F 点.设点E 运动的路程为x ,FC =y ,如图②所示表示的是y 与x 的函数关系的大致图象.当点E 在BC 上运动时,FC 的最大长度是25.则矩形ABCD 的面积是 ( ) A. 235 B. 5 C. 6 D. 254第20题图第二节 一次函数的图象与性质(时间:30分钟 分值:50分)评分标准:选择题和填空题每小题3分.1. (2019毕节)把直线y =2x -1向左平移1个单位,平移后直线的关系式为( )A. y =2x -2;B. y =2x +1;C. y =2x ;D. y =2x +22. (2019湘潭)一次函数y =ax +b 的图象如图所示,则不等式ax +b ≥0的解集是( )A. x ≥2B. x ≤2C. x ≥4D. x ≤4第2题图 第3题图3. (2019甘肃省卷)在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,观察图象可得( )A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<04. 已知直线l 1:y =-3x +b 与直线l 2:y =-kx +1在同一坐标系中的图象交于点(1,-2),那么方程组⎩⎪⎨⎪⎧3x +y =b kx +y =1的解是 ( ) A. ⎩⎪⎨⎪⎧x =1y =-2 B. ⎩⎪⎨⎪⎧x =1y =2 C. ⎩⎪⎨⎪⎧x =-1y =-2 D. ⎩⎪⎨⎪⎧x =-1y =2 5. 设正比例函数y =mx 的图象经过点A(m ,4),且y 的值随x 值的增大而减小,则m =( )A. 2B. -2C. 4D. -46. (2019广安)当k<0时,一次函数y =kx -k 的图象不经过...( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7. (2019怀化)一次函数y =-2x +m 的图象经过点P(-2,3),且与x 轴,y 轴分别交于点A ,B ,则△AOB 的面积是 ( )A. 12 B. 14C. 4D. 8 8. (2019齐齐哈尔)已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )9. (2019绥化)在同一平面直角坐标系中,直线y =4x +1与直线y =-x +b 的交点不可能在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限10. (2019天津)若正比例函数y =kx(k 为常数,k ≠0)的图象经过第二、四象限,则k 的值可以是________(写出一个即可).11. (2019海南)在平面直角坐标系中,已知一次函数y =x +1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1________y 2.(填“>”、“<”或“=”)12. (2019鹤壁模拟)已知一次函数y =kx +b 的图象经过两点A(0,1),B(2,0),则当x________时,y ≤0.13. (2019株洲)如图示直线y =3x +3与x 轴、y 轴分别交于点A 、B ,当直线绕着点A 按顺时针方向旋转到与x 轴首次重合时,点B 运动的路径的长度为________.第13题图 第14题图14. (2019孝感)如图,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A(2,-4),且与y 轴交于点B ,在x 轴上存在一点P 使得PA +PB 的值最小,则点P 的坐标为________.15. (8分)(2019台州)如图,直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P(1,b).(1)求b ,m 的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2.求a的值.第15题图第三节一次函数的实际应用(时间:60分钟分值:65分)评分标准:选择题和填空题每小题3分.基础过关1. (8分)(2019洛阳模拟)某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该商品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示:(1)求销售量y与销售价x的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?第1题图2. (8分)(2019天津)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(Ⅰ)(Ⅱ)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x 的函数关系式;(Ⅲ)当x>70时,顾客在哪家复印店复印花费少?请说明理由.3. (8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.已知购3台空调、2台彩电需花费2.32万元,购2台空调、4台彩电需花费2.48万元.(1)计算每台空调与彩电的进价分别是多少元?(2)已知每台空调的售价为6100元,每台彩电的售价为3900元,设商场计划购进空调x台,空调和彩电全部销售完商场获得的利润为y元.试写出y与x的函数关系式;(3)根据市场需要,商场购进空调不少于10台,且购进的空调和彩电可以全部销售,那么在筹集资金范围内,商场有哪几种进货方案可供选择?选择哪种进货方案,商场获利最大?最大利润是多少元?4. (8分)(2019衢州)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第4题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.5. (8分)(2019永州)永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该(1)(2)请用求出的函数表达式预测该水库今年4月6日的水位;(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?6. (8分)(2019齐齐哈尔)“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)a=________;b=________;m=________;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.第6题图满分冲关1. (8分)关注国家政策为了贯彻落实市委市政府提出的“精准扶贫”精神,某校特制定了一系列关于帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中的10辆货车前往A村,其余货车前往B村.设前往A村的大货车为x 辆,前往A、B两村总费用为y元,试求出y与x的函数解析式;(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少总费用.2. (9分)(2019孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区.经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2019年每套A型健身器材售价为2.5万元,经过连续两年降价,2019年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元.采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1-n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?第四节 反比例函数(时间:120分钟 分值:170分)评分标准: 选择题和填空题每小题3分.基础过关1. (2019郴州)已知反比例函数y =k x的图象过点A (1,-2),则k 的值为 ( ) A. 1 B. 2 C. -2 D. -12. (2019湘西州)反比例函数y =k x(k >0),当x <0时,图象在 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. (2019广东省卷)如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为 ( )A. (-1,-2)B. (-2,-1)C. (-1,-1)D. (-2,-2)第3题图 第4题图4. (2019徐州)如图,在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)与y =m x(m ≠0)的图象相交于点A (2,3),B (-6,-1),则不等式kx +b >m x的解集为 ( ) A. x <-6 B. -6<x <0或x >2C. x >2D. x <-6或0<x <25. (2019天津)若点A (-1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =-3x的图象上,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 ;B. y 2<y 3<y 1;C. y 3<y 2<y 1;D. y 2<y 1<y 36. (2019宜昌)某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长y (单位:m)随另一边长x (单位:m)的变化而变化的图象可能是( )7. (2019枣庄)如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C在x 轴的负半轴上,函数y =k x(x <0)的图象经过顶点B ,则k 的值为 ( ) A. -12 B. -27 C. -32 D. -36第7题图 第8题图8. (2019天门)如图,P (m ,m )是反比例函数y =9x在第一象限内的图象上一点,以P 为顶点作等边△P AB ,使AB 落在x 轴上,则△POB 的面积为( )A. 92B. 3 3C. 9+1234D. 9+3329. (2019济宁)请写出一个过点(1,1),且与x 轴无交点的函数解析式:________. 10. (2019上海)如果反比例函数y =k x(k 是常数,k ≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的值增大而________.(填“增大”或“减小”)11. (2019广西四市)对于函数y =2x ,当函数值y <-1时,自变量x 的取值范围是________.12. (2019长沙)如图,点M 是函数y =3x 与y =kx 的图象在第一象限内的交点,OM =4,则k 的值为________.第12题图 第14题图 第15题图13. (2019呼和浩特)已知函数y =-1x ,当自变量的取值为-1<x<0或x ≥2,函数值y 的取值________.14. (2019黔东南州)如图,已知点A 、B 分别在反比例函数y 1=-2x 和y 2=kx 的图象上,若点A 是线段OB 的中点,则k 的值为________.15. (2019西宁)如图,点A 在双曲线y =3x(x >0)上,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当AC =1时,△ABC 的周长为________16. (8分)(2019随州)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数y =k x 的图象于点B ,AB =32.(1)求反比例函数的解析式;(2)若P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P 、Q 各位于哪个象限?并简要说明理由.第16题图17. (8分)(2019百色)已知反比例函数y =kx (k ≠0)的图象经过点B (3,2),点B 与点C 关于原点O 对称,BA ⊥x 轴于点A ,CD ⊥x 轴于点D .(1)求这个反比例函数的解析式; (2)求△ACD 的面积.第17题图18. (8分)(2019丽水)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时间为t 小时,平均速度为v 千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v ,t v (千米/小时) 75 80 85 90 95 t (小时)4.003.753.533.333.16(1) (2)汽车上午7∶30从丽水出发,能否在上午10∶00之前到达杭州市场?请说明理由; (3)当汽车到达杭州市场的行驶时间t 满足3.5≤t ≤4,求平均速度v 的取值范围. 19. (8分)(2019苏州)如图,在△ABC 中,AC =BC ,AB ⊥x 轴,垂足为A ,反比例函数y =k x (x >0)的图象经过点C ,交AB 于点D ,已知AB =4,BC =52. (1)若OA =4,求k 的值;(2)连接OC ,若BD =BC ,求OC 的长.第19题图20. (8分)(2019周口模拟)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合). 过点F 的反比例函数y =kx(k >0)的图象与BC 边交于点E .(1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?第20题图21. (8分)(2019赤峰)如图,一次函数y =-33x +1的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限作等边△ABC .(1)若点C 在反比例函数y =kx的图象上,求该反比例函数的解析式;(2)点P (23,m )在第一象限,过点P 作x 轴的垂线,垂足为D ,当△P AD 与△OAB 相似时,P 点是否在(1)中反比例函数图象上?如果在,求出P 点坐标;如果不在,请加以说明.第21题图满分冲关1. (2019凉山州)已知抛物线y =x 2+2x -m -2与x 轴没有交点,则函数y =mx 的大致图象是( )2. (2019洛阳模拟)已知点A (x 1,y 1),B (x 2,y 2)是反比例函数y =3x 的图象上的两点,若x 1<0<x 2,则下列结论正确的是 ( )A. y 1<0<y 2B. y 2<0<y 1C. y 1<y 2<0D. y 2<y 1<03. (2019海南)如图,△ABC 的三个顶点分别为A (1,2)、B (4,2)、C (4,4).若反比例函数y =kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是 ( )A. 1≤k ≤4B. 2≤k ≤8C. 2≤k ≤16D. 8≤k ≤16第3题图 第4题图4. (2019开封模拟)如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数y =4x(x >0)的图象上,则点E 的坐标是( )A. (5+1,5-1);B. (3+5,3-5);C. (5-1,5+1);D. (3-5,3+5) 5. (2019潍坊)一次函数y =ax +b 与反比例函数y =a -bx ,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )6. (2019商丘模拟)已知双曲线y =3x 和y =kx 的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点A 、B ,若CB =2CA ,则k =________. 第6题图 第7题图7. 如图,A 、B 是反比例函数y =kx 上两点,AC ⊥y 轴于C ,BD ⊥x 轴于D ,AC =BD =15OC ,S 四边形ABDC =9,则k =________. 8. 已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点.若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的解析式为________. 9. (8分)(2019山西)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数y =2x 的图象与CB 交于点D ,函数y =kx (k 为常数,k ≠0)的图象经过点D ,与AB 交于点E ,与函数y =2x 的图象在第三象限内交于点F ,连接AF ,EF .(1)求函数y =kx 的表达式,并直接写出E ,F 两点的坐标.(2)求△AEF 的面积.第9题图10. (8分)(2019舟山)如图,一次函数y =k 1x +b (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于点A (-1,2),B (m ,-1).(1)求这两个函数的表达式;(2)在x 轴上是否存在点P (n ,0)(n >0),使△ABP 为等腰三角形?若存在,求n 的值;若不存在,请说明理由.第10题图11. (8分)注重阅读理解在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6),…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的解析式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,求出“理想点”的坐标;若不存在,请说明理由.12. (8分)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(1)中的反比例函数图象交EF于点B,直接写出AB的解析式.第12题图13. (10分)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(-6,0),B(4,0),C(5,3),反比例函数y=kx的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)求△AD′C的面积.第13题图14. (11分)(2019江西)如图,直线y=k1x(x≥0)与双曲线y=k2x(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A′PB′.过点A′作A′C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.第14题图第五节二次函数的图象与性质(时间:60分钟分值:80分)评分标准:选择题和填空题每小题3分.基础过关1. (2019宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A. y=(x+2)2+1B. y=(x+2)2-1C. y=(x-2)2+1D. y=(x-2)2-12. (2019金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是()A. 对称轴是直线x=1,最小值是2B. 对称轴是直线x=1,最大值是2C. 对称轴是直线x=-1,最小值是2D. 对称轴是直线x=-1,最大值是23. (2019兰州)2y的对应值:x 1 1.1 1.2 1.3 1.4那么方程 x 2+3x -5=0的一个近似根是( ) A. 1 B. 1.1 C. 1.2 D. 1.34. (2019宁波)抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5. (2019新乡模拟)如图是二次函数y =ax 2+bx +c 的部分图象,由图象可知不等式ax 2+bx +c>0的解集是( )第5题图A. -1<x<5;B. x>5;C. x<-1;D. x<-1或x>56. 若二次函数y =x 2+bx +5配方后为y =(x -2)2+k ,则b 、k 的值分别为( ) A. 0,5 B. 0,1 C. -4,5 D. -4,17. (2019连云港)已知抛物线y =ax 2(a >0)过A(-2,y 1)、B(1,y 2)两点,则下列关系式一定正确的是 ( )A. y 1>0>y 2B. y 2>0>y 1C. y 1>y 2>0D. y 2>y 1>0 8. (2019苏州)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a(x -2)2+1=0的实数根为( )A. x 1=0,x 2=4B. x 1=-2,x 2=6C. x 1=32,x 2=52D. x 1=-4,x 2=09. (2019菏泽)一次函数y =ax +b 和反比例函数y =cx 在同一个平面直角坐标系中的图象如图所示,则二次函数y =ax 2+bx +c 的图象可能是( )第9题图10. (2019滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y =x 2+5x +6,则原抛物线的解析式是( )A. y =-(x -52)2-114;B. y =-(x +52)2-114;C. y =-(x -52)2-14;D. y =-(x +52)2+1411. (2019广安)如图所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0 ②a +b +c>0 ③2a -b =0 ④c -a =3 其中正确的有( )个A. 1B. 2C. 3D. 4第11题图 第12题图12. (2019盐城)如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A(1,m)、B(4,n)平移后的对应点分别为点A′、B′,若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A. y =12(x -2)2-2;B. y =12(x -2)2+7;C. y =12(x -2)2-5;D. y =12(x -2)2+413. (2019邵阳)若抛物线y =ax 2+bx +c 的开口向下,则a 的值可能是________.(写一个即可)14. (2019兰州)如图,若抛物线y =ax 2+bx +c 上的P(4,0),Q 两点关于他的对称轴x =1对称,则Q 点的坐标为________.15. (2019青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________. 16. (2019百色)经过A(4,0),B(-2,0),C(0,3)三点的抛物线解析式是________. 17. (2019咸宁)如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A(-1,p),B(4,q)两点,则关于x 的不等式mx +n>ax 2+bx +c 的解集是________.第14题图 第17题图18. (8分)(2019平顶山模拟)已知抛物线y =ax 2+bx +3的对称轴是直线x =1. (1)求证:2a +b =0;(2)若关于x 的方程ax 2+bx -8=0的一个根为4,求方程的另一个根. 满分冲关1. (2019广州)a ≠0,函数y =ax 与y =-ax 2+a 在同一直角坐标系中的大致图象可能是( )2. (2019乐山)已知二次函数y =x 2-2mx(m 为常数),当-1≤x ≤2时,函数值y 的最小值为-2,则m 的值是 ( )A. 32B. 2C. 32或 2D. -32或 2 3. (2019天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B(点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B′落在y 轴上,则平移后的抛物线解析式为( )A. y =x 2+2x +1;B. y =x 2+2x -1;C. y =x 2-2x +1;D. y =x 2-2x -1 4. (12分)(2019杭州)在平面直角坐标系中,设二次函数y 1=(x +a)(x -a -1),其中a ≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.第六节 二次函数的应用(时间:90分钟 分值:75分)评分标准:选择题和填空题每小题3分. 命题点1 二次函数的实际应用1. 某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查;每件服装每降价2元,每天可多卖出1件,在确保盈利的前提下,若设每件服装降价x 元,每天售出服装的利润为y 元,则y 与x 的函数关系式为( )A. y =-12x 2+10x +1200(0<x<60);B. y =-12x 2+10x -1250(0<x<60)C. y =-12x 2+10x -1200(0<x<60);D. y =-12x 2+10x +1250(0<x<60)2. 某企业是一家专门生产季节性产品的企业,当产品无利润时,企业会自动停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n 之间满足函数关系式y =-n 2+14n -24,则企业停产的月份为( )A. 2月和12月B. 2月至12月C. 1月D. 1月、2月和12月3. (2019临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m )与足球被踢出后经过的时间t(单位:s )t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =92;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度是11 m .其中正确结论的个数是( ) A .1 B .2 C .3 D .44. (2019天门)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s =60t -32t 2,则飞机着陆后滑行的最长时间为________秒.5. (2019日照)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为________米.第5题图6. (8分)(2019安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函售价x(元/千克) 50 60 70销售量y(千克) 100 80 60(1)求y与x(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?命题点2二次函数与几何图形结合7. (10分)(2019深圳节选)如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;(用一般式表示)(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在,请直接给出点D坐标;若不存在,请说明理由.第7题图8. (10分)(2019苏州)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC,点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F′恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N,试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.第8题图9. (10分)(2019湘西州)如图,已知抛物线y =-33x 2+bx +3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0).(1)求b 的值及点B 的坐标;(2)试判断△ABC 的形状,并说明理由;(3)一动点P 从点A 出发,以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发,以每秒1个单位的速度向点C 运动(当点P 运动到点B 时,点Q 随之停止运动),设运动时间为t 秒,当t 为何值时△PBQ 与△ABC 相似?第9题图10. (10分)(2019濮阳模拟)如图,直线y =-43x +4交x 轴于点A ,交y 轴于点C ,抛物线y =ax 2-43x +c 过点A ,交y 轴于点B(0,-2).(1)求抛物线的解析式;(2)点M为抛物线在第四象限部分上的一个动点,求四边形BMAC面积的最大值;(3)点D为抛物线对称轴上一点,规定:d=|AD-BD|,探究d是否存在最大值?若存在,请直接写出d的最大值及此时点D的坐标.第10题图11. (12分)如图,二次函数y=x2-bx+c的图象交x轴于A(-1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q 同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图①,当△BPQ为直角三角形时,求t的值;(3)如图②,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.第11题图。
2018年江苏省苏州市中考数学试卷-答案

2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.5384000=3.84100000=3.8410⨯⨯.故选C .【考点】科学记数法。
3.【答案】B【解析】判断轴对称图形的关键是寻找对称轴,图形按照某条直线折叠后直线两旁的部分能否重合即可.四个选项中,A 、C 、D 三个选项中的图形都能沿着某一条直线折叠以后,直线两旁的部分能互相重合,只有B 选项中图形无法沿着某一条直线折叠以后,直线两旁的部分互相重合.故选B . 【考点】轴对称图形的识别。
4.【答案】D【解析】根据题意,得x 20+≥,解得x 2≥-,所以x 2≥-表示在数轴上时在点2-处取向右的方向,2-处用实心点圈表示.故选D .【考点】二次根式有意义的条件和用数轴表示不等式的解集。
5.【答案】B【解析】()22121111+x 11x x x x x x x x +++⎛⎫÷=⋅= ⎪+⎝⎭+.故选B . 【考点】分式的混合运算。
6.【答案】C【解析】设每个小正方形的边长为a ,则正方形的面积29a ,∴阴影部分面积为21424,2a a a ⨯⨯⨯=∴飞镖落在阴影部分的概率2244=99a a =.故选C .【考点】几何概率的求法。
7.【答案】B【解析】()1,B BCO,BOC 4018040702OB OC B =∴∠=∠∠=︒∴∠=︒-︒=︒,,四边形ABCD 是O 的内接四边形,18018018070110B D D B ∴∠+∠=︒∴∠=︒-∠=︒-︒=︒,.故选B. 【考点】圆内接四边形的性质以及等腰三角形的性质。
8.【答案】D【解析】根据题意得,6020,tan 20tan 6020240,204060,ABP AB AP AB ABP BC AC ∠=︒=∴=⋅∠=⨯︒==⨯=∴=+=,在t R PAC △中,PC ===.故选D .【考点】解直角三角形的应用——方向角问题。
2018年江苏省南京市中考数学试卷(含答案解析版)

2018年XX省XX市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选中,恰有一项是符合题目要求的)1.(2分)(2018•XX)的值等于()A.B.﹣C.±D.2.(2分)(2018•XX)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a183.(2分)(2018•XX)下列无理数中,与4最接近的是()A.B. C. D.4.(2分)(2018•XX)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大5.(2分)(2018•XX)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c6.(2分)(2018•XX)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④D.①②③④二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)7.(2分)(2018•XX)写出一个数,使这个数的绝对值等于它的相反数:.8.(2分)(2018•XX)同志在党的十九大报告中强调,生态文明建设功在当代,利在千秋.55年来,经过三代人的努力,XX塞罕坝林场有林地面积达到1120000亩.用科学记数法表示1120000是.9.(2分)(2018•XX)若式子在实数X围内有意义,则x的取值X围是.10.(2分)(2018•XX)计算×﹣的结果是.11.(2分)(2018•XX)已知反比例函数y=的图象经过点(﹣3,﹣1),则k= .12.(2分)(2018•XX)设x1、x2是一元二次方程x2﹣mx ﹣6=0的两个根,且x1+x2=1,则x1= ,x2= .13.(2分)(2018•XX)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(,).14.(2分)(2018•XX)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.15.(2分)(2018•XX)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2= °.16.(2分)(2018•XX)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(7分)(2018•XX)计算(m+2﹣)÷.18.(7分)(2018•XX)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值X围;(2)数轴上表示数﹣x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边19.(8分)(2018•XX)X阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?20.(8分)(2018•XX)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.21.(8分)(2018•X X)随机抽取某理发店一周的营业额如下表(单位:元):星期一星期二星期三星期四星期五星期六星期日合计540 680 760 640 960 2200 1780 7560 (1)求该店本周的日平均营业额;(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.22.(8分)(2018•XX)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)下列事件中,概率最大的是.A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球23.(8分)(2018•XX)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)24.(8分)(2018•XX)已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?25.(9分)(2018•XX)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第t min时的速度为vm/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min时离家的距离为m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.26.(8分)(2018•XX)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.27.(9分)(2018•XX)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.2018年XX省XX市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选中,恰有一项是符合题目要求的)1.(2分)(2018•XX)的值等于()A.B.﹣C.±D.【考点】22:算术平方根.【专题】1 :常规题型.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.2.(2分)(2018•XX)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a18【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法.【专题】11 :计算题.【分析】根据幂的乘方,即可解答.【解答】解:a3•(a3)2=a9,故选:B.【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方公式.3.(2分)(2018•XX)下列无理数中,与4最接近的是()A.B. C. D.【考点】2B:估算无理数的大小.【专题】1 :常规题型.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.4.(2分)(2018•XX)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大【考点】W7:方差;W1:算术平均数.【专题】1 :常规题型;542:统计的应用.【分析】分别计算出原数据和新数据的平均数和方差即可得.【解答】解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(186﹣188)2+(194﹣188)2]=,所以平均数变小,方差变小,故选:A.【点评】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.5.(2分)(2018•XX)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.(2分)(2018•XX)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④D.①②③④【考点】I9:截一个几何体.【专题】55:几何图形.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.【点评】本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)7.(2分)(2018•XX)写出一个数,使这个数的绝对值等于它的相反数:﹣1 .【考点】15:绝对值;14:相反数.【专题】1 :常规题型.【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣1【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.8.(2分)(2018•XX)同志在党的十九大报告中强调,生态文明建设功在当代,利在千秋.55年来,经过三代人的努力,XX塞罕坝林场有林地面积达到1120000亩.用科学记数法表示1120000是 1.12×106.【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1120000=1.12×106,故答案为:1.12×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2分)(2018•XX)若式子在实数X围内有意义,则x的取值X围是x≥2 .【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2分)(2018•XX)计算×﹣的结果是.【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】先利用二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=﹣2=3﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.(2分)(2018•XX)已知反比例函数y=的图象经过点(﹣3,﹣1),则k= 3 .【考点】G6:反比例函数图象上点的坐标特征.【专题】17 :推理填空题.【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,解得,k=3,故答案为:3.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.12.(2分)(2018•XX)设x1、x2是一元二次方程x2﹣mx ﹣6=0的两个根,且x1+x2=1,则x1= ﹣2 ,x2= 3 .【考点】AB:根与系数的关系.【专题】523:一元二次方程及应用.【分析】根据根与系数的关系结合x1+x2=1可得出m的值,将其代入原方程,再利用因式分解法解一元二次方程,即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,∴m=1,∴原方程为x2﹣x﹣6=0,即(x+2)(x﹣3)=0,解得:x1=﹣2,x2=3.故答案为:﹣2;3.【点评】本题考查了根与系数的关系以及因式分解法解一元二次方程,利用根与系数的关系求出m的值是解题的关键.13.(2分)(2018•XX)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( 1 ,﹣2 ).【考点】P5:关于x轴、y轴对称的点的坐标;Q3:坐标与图形变化﹣平移.【专题】1 :常规题型.【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.14.(2分)(2018•XX)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= 5 cm.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【专题】1 :常规题型.【分析】直接利用线段垂直平分线的性质得出DE是△ABC 的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,正确得出DE是△ABC的中位线是解题关键.15.(2分)(2018•XX)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2= 72 °.【考点】L3:多边形内角与外角;JA:平行线的性质.【专题】555:多边形与平行四边形.【分析】过B点作BF∥l1,根据正五边形的性质可得∠ABC 的度数,再根据平行线的性质以及等量关系可得∠1﹣∠2的度数.【解答】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.【点评】考查了多边形内角与外角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.16.(2分)(2018•XX)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为 4 .【考点】ME:切线的判定与性质;R2:旋转的性质.【专题】1 :常规题型;556:矩形菱形正方形;55A:与圆有关的位置关系.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.【点评】本题主要考查圆的切线的判定与性质,解题的关键是掌握矩形的判定与性质、旋转的性质、切线的性质、垂径定理等知识点.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(7分)(2018•XX)计算(m+2﹣)÷.【考点】6C:分式的混合运算.【专题】11 :计算题;513:分式.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=(﹣)÷=•=2(m+3)=2m+6.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.18.(7分)(2018•XX)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值X围;(2)数轴上表示数﹣x+2的点应落在 B .A.点A的左边B.线段AB上C.点B的右边【考点】C6:解一元一次不等式;13:数轴.【专题】524:一元一次不等式(组)及应用.【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.【点评】本题考查了一元一次不等式,解(1)的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式;解(2)的关键是利用不等式的性质19.(8分)(2018•XX)X阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?【考点】B7:分式方程的应用.【专题】1 :常规题型.【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=7.经检验,x=7是原方程的解.答:这种大米的原价是每千克7元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.20.(8分)(2018•XX)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【专题】55:几何图形.【分析】(1)延长AO到E,利用等边对等角和角之间关系解答即可;(2)连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】证明:(1)延长OA到E,∵OA=OB,∴∠ABO=∠BAO,又∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO,同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)即∠BOD=2∠BAD,又∠C=2∠BAD,∴∠BOD=∠C;(2)连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】此题考查菱形的判定,关键是根据全等三角形的判定和性质以及菱形的判定解答.21.(8分)(2018•XX)随机抽取某理发店一周的营业额如下表(单位:元):星期一星期二星期三星期四星期五星期六星期日合计540 680 760 640 960 2200 1780 7560 (1)求该店本周的日平均营业额;(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.【考点】W1:算术平均数;V5:用样本估计总体.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据平均数的定义计算可得;(2)从极端值对平均数的影响作出判断,可用该店本周一到周日的日均营业额估计当月营业额.【解答】解:(1)该店本周的日平均营业额为7560÷7=1080元;(2)因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合理,方案:用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×1080=32400元.【点评】本题主要考查算术平均数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.22.(8分)(2018•XX)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)下列事件中,概率最大的是 D .A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】(1)先画出树状图展示所有6种等可能的结果数,再找出2个球都是白球所占结果数,然后根据概率公式求解;(2)根据概率公式分别计算出每种情况的概率,据此即可得出答案.【解答】解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为=;(2)∵摸出的2个球颜色相同概率为=、摸出的2个球颜色不相同的概率为=,摸出的2个球中至少有1个红球的概率为=、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸出的2个球中至少有1个白球,故选:D.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2018•XX)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55:几何图形.【分析】在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【解答】解:在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=,同理:EF=BE﹣BF=,∴,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24.(8分)(2018•XX)已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?【考点】HA:抛物线与x轴的交点;H5:二次函数图象上点的坐标特征.【专题】535:二次函数图象及其性质.【分析】(1)代入y=0求出x的值,分m+3=1和m+3≠1两种情况考虑方程解的情况,进而即可证出:不论m为何值,该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标,令其大于0即可求出结论.【解答】(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及解一元一次不等式,解题的关键是:(1)由方程2(x﹣1)(x﹣m﹣3)=0有解证出该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标.25.(9分)(2018•XX)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第t min时的速度为vm/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min时离家的距离为200 m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.【考点】FH:一次函数的应用.【专题】33 :函数思想.【分析】(1)根据路程=速度×时间求出小明出发第2min 时离家的距离即可;(2)当2<t≤5时,离家的距离s=前面2min走的路程加上后面(t﹣2)min走过的路程列式即可;(3)分类讨论:0≤t≤2、2<t≤5、5<t≤6.25和6.25<t≤16四种情况,画出各自的图形即可求解.【解答】解:(1)100×2=200(m).故小明出发第2min时离家的距离为200m;(2)当2<t≤5时,s=100×2+160(t﹣2)=160t﹣120.故s与t之间的函数表达式为160t﹣120;(3)s与t之间的函数关系式为,如图所示:故答案为:200.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,读懂题目信息,从图中准确获取信息是解题的关键.26.(8分)(2018•XX)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【考点】S9:相似三角形的判定与性质;LE:正方形的性质;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;(2)首先证明CG是直径,求出CG即可解决问题;【解答】(1)证明:在正方形ABCD中,∠AD C=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.27.(9分)(2018•XX)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【考点】MR:圆的综合题.【专题】15 :综合题;55A:与圆有关的位置关系.【分析】(1)由切线长知AE=AD=m、BF=BD=n、CF=CE=x,根据勾股定理得(x+m)2+(x+n)2=(m+n)2,即x2+(m+n)x=mn,再利用三角形的面积公式计算可得;(2)由由AC•BC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求证即可;(3)作AG⊥BC,由三角函数得AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m)、BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面积公式计算可得.【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),。
江苏省近年中考数学试题研究第一部分考点研究第三章函数第12课时反比例函数及其应用练习(2021年整

江苏省2018中考数学试题研究第一部分考点研究第三章函数第12课时反比例函数及其应用练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2018中考数学试题研究第一部分考点研究第三章函数第12课时反比例函数及其应用练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2018中考数学试题研究第一部分考点研究第三章函数第12课时反比例函数及其应用练习的全部内容。
第12课时 反比例函数及其应用基础过关1. (2017湘西州)反比例函数y = kx(k >0),当x <0时,图象在( ) A. 第一象限B 。
第二象限 C 。
第三象限D 。
第四象限2. (2017台州)已知电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为I=UR 。
当电压为定值时,I 关于R 的函数图象是( )3。
(2017广东省卷)如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y = 2k x(k 2≠0)相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( ) A. (-1,-2) B 。
(—2,-1) C. (-1,—1) D 。
(—2,—2)第3题图4. (2017天津)若点A (—1,y 1),B (1,y 2),C (3,y 3)是反比例函数y =-3x的图象上的三点,则y 1,y 2,y 3的大小关系是( )A。
y1<y2<y3B. y2<y3<y1 C. y3<y2<y1D。
y2<y1<y35。
(2017日照)反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象大致是()第5题图6. (2017青海省卷)如图,已知A(-4,12),B(—1,2)是一次函数y1=kx+b(k≠0)与反比例函数y2= mx(m≠0,x<0)图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D,若y1〉y2,则x的取值范围是( )A. x〈-4B. -4〈x〈—1C. x〈-4或x〉—1 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数第12课时 反比例函数及其应用 江苏近5年中考真题精选(2013~2017)命题点1 反比例函数图象上的点(淮安2考)1. (2017淮安11题3分)若反比例函数y =-x6的图象经过点A (m ,3),则m 的值是__________.2. (2016淮安15题3分)若点A (-2,3),B (m ,-6)都在反比例函数y =k x(k ≠0)的图象上,则m 的值是________.命题点2 反比例函数解析式的确定(盐城1考,淮安3考)3. (2015淮安13题3分)若点P (-1,2)在反比例函数y =kx的图象上,则k =________.命题点3 反比例函数综合题(盐城3考,淮安1考,宿迁必考)考向一 反比例函数与一次函数结合第4题图4. (2015南京16题2分)如图,过原点O 的直线与反比例函数y 1、y 2的图象在第一象限内分别交于点A 、B ,且A 点为OB 的中点.若函数y 1=x1,则y 2与x 的函数表达式是________.5. (2013宿迁18题3分)在平面直角坐标系xOy 中,一次函数y =13x +2与反比例函数y =x5(x >0)的图象交点的横坐标为x 0.若k <x 0<k +1,则整数k 的值是______. 6. (2013盐城18题3分)如图,在以点O 为原点的平面直角坐标系中,一次函数y =-12x +1的图象与x 轴交于点A 、与y 轴交于点B ,点C 在直线AB 上,且OC =12AB ,反比例函数y =kx的图象经过点C ,则所有可能的k 值为________.第6题图 第7题图7. (2014宿迁16题3分)如图,一次函数y =kx -1的图象与x 轴交于点A ,与反比例函数y =x3(x >0)的图象交于点B ,BC 垂直x 轴于点C .若△ABC 的面积为1,则k 的值是________.考向二 反比例函数与几何图形结合8. (2015宿迁8题3分)在平面直角坐标系中,点A 、B 的坐标分别为(-3,0)、(3,0),点P 在反比例函数y =x2的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )A. 2个B. 4个C. 5个D. 6个9. (2014盐城8题3分)如图,反比例函数y =k x(x <0)的图象经过点A (-1,1),过点A 作AB ⊥y 轴,垂足为点B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B ′在此反比例函数的图象上,则t的值是( )A. 1+52B. 32C. 43D. -1+52第9题图 第10题图10. (2014连云港8题3分)如图,△ABC 的三个顶点坐标分别为A (1,2),B (2,5),C (6,1).若函数y =kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A. 2≤k ≤494B. 6≤k ≤10C. 2≤k ≤6D. 2≤k ≤25211. (2017宿迁16题3分)如图,矩形ABOC 的顶点O 在坐标原点,顶点B 、C 分别在x 、y 轴的正半轴上,顶点A 在反比例函数y =kx (k 为常数,k >0,x >0)的图象上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形AB ′O′C ′,若点O 的对应点O ′恰好落在此反比例函数图象上,则OBOC的值是________.第11题图 第12题图12. (2017盐城16题3分)如图,曲线l 是由函数y =x6在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (-42,42),B (22,22)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为________.第13题图13. (2016宿迁15题3分)如图,在平面直角坐标系中,一条直线与反比例函数y =x8(x >0)的图象交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数y =x2(x >0)的图象交于两点D 、E ,连接DE ,则四边形ABED 的面积为________.14. (2015宿迁24题8分)如图,在平面直角坐标系中,已知点A (8,1)、B (0,-3).反比例函数y =kx(x >0)的图象经过点A ,动直线x =t (0<t <8)与反比例函数的图象交于点M ,与直线AB 交于点N .(1)求k 的值;(2)求△BMN 面积的最大值; (3)若MA ⊥AB ,求t 的值.第14题图命题点4 反比例函数的实际应用(盐城1考)15. (2013扬州11题3分)在温度不变的条件下,一定质量的气体的压强P 与它的体积V 成反比例.当V =200时,P =50,则当P =25时,V =________.16. (2016盐城24题10分)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20 ℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h )变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =kx的一部分.请根据图中信息解答下列问题:(1)求k 的值;(2)恒温系统在一天内保持大棚里温度在15 ℃及15 ℃以上的时间有多少小时?第16题图 答案1. -2 【解析】∵反比例函数y =-x 6的图象经过点A (m ,3),∴-m6=3,解得m =-2.2. 1 【解析】将A (-2,3)代入y =k x(k ≠0),k =-6,即y =-x6,再将y =-6代入y =-x6中,得x =1,∴m =1. 3. -2 【解析】本题主要考查反比例函数中系数k 的确定.∵点P (-1,2)在反比例函数y =k x的图象上,∴k =-1×2=-2.4. y 2=x4【解析】设y 2与x 的函数解析式为y 2=k x .A 点坐标为(a ,b ),则ab =1,又∵A 点为OB 的中点,∴点B 的坐标为(2a ,2b ),∴k =2a ·2b =4ab =4,∴y 2与x 的函数解析式为:y 2=x4. 5. 1 【解析】联立两个函数解析式得:⎪⎩⎪⎨⎧=+=x y x y 5231,解得13x +2=x 5,即x 2+6x=15,配方得:x 2+6x +9=24,即(x +3)2=24,解得:x 1=26-3,x 2=-26-3(x >0,故舍去),∴一次函数与反比例函数图象交点的横坐标为x 0=26-3,即k <26-3<k +1,∵4<26=24<5,∴1<26-3<2,即整数k =1.6. 12或-1150 【解析】在y =-12x +1中,令y =0,则x =2;令x =0,得y =1,∴A (2,0),B (0,1).在Rt △AOB 中,由勾股定理得:AB = 5.设C (m ,-12m +1),由OC =12AB ,根据勾股定理得,m 2+(-12m +1)2=(125)2,解得m =-15或1,∴C 点坐标为(1,12)或(-15,1110),∴k =12或-1150.7. 2 【解析】设点B 的坐标是(x ,x 3,则BC =x3,OC =x ,∵y =kx -1,∴当y =0时,x =k 1,则OA =k 1,AC =x -k 1,∵△ABC 的面积为1,∴12·AC ·BC =1,∴12·(x -k 1)·x3=1,32-kx23=1,∴kx =3,∵解方程组⎪⎩⎪⎨⎧==1-3kx y x y 得:x 3=kx -1,∴x3=3-1=2,∴x =32,即点B 的坐标是(32,2),把点B 的坐标代入y =kx -1得k =2. 8. D 【解析】如果以AB 为直径画圆与双曲线相交,交点有4个,这四个点与AB 组成的三角形是直角三角形而且是以AB 为斜边,如果以A ,B 为直角顶点,则双曲线上还有两个点使△PAB 为直角三角形.9. A 【解析】如解图,∵A 点坐标为(-1,1),∴k =-1×1=-1,∴反比例函数解析式为y =-x1,∴OB =AB =1,∴△OAB 为等腰直角三角形,∴∠AOB =45°,∵PQ ⊥OA ,∴∠OPQ =45°,∵点B 和点B ′关于直线l 对称,∴PB =PB ′,BB ′⊥PQ ,∴∠BPQ=∠B ′PQ =45°,即∠B′PB =90°,∴B ′P ⊥y 轴,∴B ′点的坐标为(-t1,t ),∵PB=PB ′,∴t -1=1t ,整理得t 2-t -1=0,解得t 1=1+52,t 2=1-52(舍去),∴t 的值为1+52.第9题解图10. A 【解析】△ABC 的三个顶点坐标为A (1,2),B (2,5),C (6,1),把双曲线沿着第一象限的角平分线移动,当图象分别移动到经过点A 时和与线段BC 相切时,双曲线与△ABC 有交点,∴当双曲线y =kx经过点A(1,2)时,2=1k,∴k =2.设直线BC 的解析式为y =mx +n ,将B 、C 两点坐标代入直线BC 的解析式,得⎩⎨⎧=+=+1652n m n m ,解得⎩⎨⎧==71-n m ,∴y=-x +7,∵双曲线y =k x与直线BC :y =-x +7相切,∴k x=-x +7.即x 2-7x +k =0有两个相等的实数根,∴(-7)2-4×1×k =0,∴k =494,∴k 的取值范围是2≤k ≤494.第10题解图11.5-12【解析】设A (x ,y ),则O ′ (x +y ,y -x ),由A ,O ′点在反比例函数y =k x 上得⎩⎨⎧=+=kx y y x k xy ))((-,即:y 2-x 2=xy ,所以(x y )2+x y -1=0,解得x y =-1±52,又∵OB OC =x y>0,∴OB OC=5-12. 12. 8 【解析】如解图,将A 顺转45°为A ′(0,8),B 顺转45°为B ′(4,0),∴y A ′B ′=-2x +8,∴-2x +8=x6,∴x 1=1,x 2=3,∴y 1=6,y 2=2,∴M ′(1,6),N ′(3,2),∴S △OMN =S △OM′N ′=12(x M ′+x N ′)·(y M ′-y N ′)=8第12题解图13. 92 【解析】设A (a 28,2a ),B (a 8,a ),D (a 22,2a ),E (a 2,a )∴AD =a 28-a22=a 3,BE =a 8-a 2=a 6,梯形的高为2a -a =a ,∴S 四边形ABED =12(a 3+a 6)·a =92.14. 解:(1)∵反比例函数的图象经过点A , ∴把点A (8,1)代入y =kx ,得k =8;(2分)(2)设过点A(8,1),B (0,-3)的直线的解析式为:y =kx +b ,则⎩⎨⎧=+=3-81b b k ,解得⎪⎩⎪⎨⎧==3-21b k ,∴直线AB 的解析式为:y =12x -3,∴M 点的坐标为(t ,8t ),N 点的坐标为(t ,12t -3),则MN =8t -12t +3,∴S △BMN =12·(8t -12t +3)·t =-14t 2+32t +4=-14(t -3)2+254,∵-14<0.∴当t =3时,S 有最大值,最在值为254.(4分)(3)∵A (8,1),B (0,-3),M (t ,t8),∴MB 2=(t 8+3)2+t 2,MA 2=(t8-1)2+(8-t )2,AB 2=(1+3)2+82, ∵MA ⊥AB ,∴MB 2=MA 2+AB 2,即(t 8+3)2+t 2=(t8-1)2+(8-t )2+(1+3)2+82, 解得:t 1=12,t 2=8(舍),∴t =12.(8分)15. 400 【解析】∵在温度不变的条件下,一定质量的气体的压强P 与它的体积V成反比例关系,∴设P =k V ,∵当V =200时,P =50,∴k =VP =200×50=10000,∴P =10000V,当P =25时,得V =1000025=400.16. 解:(1)由图知点B (12,20),把点B (12,20)代入y =k x,得k =240;(2分)(2)设从0小时到2小时的直线解析式为y =mx +n ,代入点(0,10)和(2,20),得⎩⎨⎧+==n m n 22010, 解得⎩⎨⎧==105n m , 所以直线的解析式为y =5x +10,(4分)把y =15代入y =5x +10得15=5x +10,解得x 1=1(小时),(6分)把y =15代入y =x 240得15=x240,解得x 2=16(小时),(8分) 16-1=15(小时),答:恒温系统在一天内保持大棚里的温度在15℃及15℃以上的时间有15小时.(10分)。