显著性和互作效应分析
回归分析中的交互作用效应检验方法(Ⅰ)

回归分析中的交互作用效应检验方法回归分析是一种常用的统计分析方法,用于研究自变量和因变量之间的关系。
在许多研究中,研究者都希望了解自变量之间是否存在交互作用效应,即一个自变量对因变量的影响是否受到另一个自变量的调节。
因此,交互作用效应的检验方法成为了回归分析中一个重要的研究课题。
交互作用效应的检验方法多种多样,下面将针对其中一些常用的方法进行介绍。
1. 简单交互作用的检验简单交互作用是指在回归模型中只包含两个自变量及其交互项。
在这种情况下,可以使用t检验或F检验来检验交互项的系数是否显著。
在t检验中,检验的是交互项系数是否显著不等于零;在F检验中,检验的是包含交互项的模型和不包含交互项的模型之间的显著性差异。
2. 多重交互作用的检验当回归模型中包含多个自变量及其交互项时,简单的t检验或F检验可能就不够用了。
这时可以使用分层回归分析来进行交互作用效应的检验。
分层回归分析是指将样本按照一个或多个自变量进行分层,然后在每个分层中分别进行回归分析。
通过比较不同分层中交互项系数的显著性来判断交互作用效应的存在与否。
3. 条件效应的检验除了检验交互项系数的显著性外,有时还需要对交互作用效应的条件效应进行检验。
条件效应是指在不同条件下,一个自变量对因变量的影响是否存在差异。
对于条件效应的检验,可以使用交互作用的简单效应分析或者边际效应分析。
4. 强度与方向的检验交互作用效应的检验不仅仅是在显著性上进行判断,还需要考虑交互作用的强度和方向。
强度是指交互作用项系数的大小,而方向是指交互作用项系数的符号。
对于交互作用效应的强度和方向,可以使用图形展示来进行直观的分析。
总结回归分析中交互作用效应的检验方法有很多种,可以根据研究设计和数据特点来选择合适的方法。
在进行交互作用效应的检验时,需要考虑显著性、条件效应、强度和方向等方面,以全面地评估交互作用效应的存在与否。
同时,也需要注意避免多重检验问题,以免引入假阳性结果。
统计学中的统计显著性与效应大小

统计学中的统计显著性与效应大小统计学是一门研究数据整理、分析和解释的学科,用于从现有数据中得出结论和推断。
在统计学中,统计显著性和效应大小是两个重要的概念,它们有助于我们理解研究结果的可信度和实际意义。
本文将详细解释统计显著性和效应大小,并探讨它们在实际应用中的意义和限制。
一、统计显著性统计显著性是指通过对数据进行统计分析,判断观察到的差异是否是由于变异引起的,还是由于真正的因素引起的。
它通过计算一个统计量(例如t值或F值),然后与一个临界值进行对比来确定结果的可信程度。
如果统计量的值超过了临界值,我们就可以说结果是具有统计学显著性的。
然而,统计显著性并不等同于实际意义或效果的重要性。
它只能告诉我们差异是否是由于随机因素而产生的。
如果样本容量足够大,即使观察到很小的差异,也可能达到统计学显著性。
因此,在判断研究结果时,我们不能仅仅依靠统计显著性的结果,还需要考虑效应大小。
二、效应大小效应大小是指观察到的差异在实际意义上的重要程度。
通常,我们使用一些指标来度量效应大小,比如相关系数、标准化的均值差异等。
效应大小的解释通常是主观的,取决于具体的研究背景和领域。
效应大小与统计显著性密切相关,但又不同于统计显著性。
一个小效应可能在足够大的样本中达到统计学显著性,但它可能对研究领域的实际应用影响较小。
相反,一个大效应即使在小样本中也可能达到统计学显著性,并对实际问题具有重要的意义。
三、统计显著性与效应大小的关系统计显著性和效应大小的关系是广泛讨论的话题。
在一些研究中,我们可能发现一个显著的但效应很小的结果,这种情况被认为是“统计上显著但不实质上显著”的。
这种情况下,我们需要谨慎解释结果,并考虑使用其他衡量指标来评估效应的大小。
另一方面,在一些研究中,尽管效应很大,但由于样本容量不足等原因,可能未达到统计学显著性的水平。
这种情况下,我们应该重视效应的大小,并认识到样本容量对结果的影响。
统计显著性和效应大小的关系还取决于研究领域和具体的研究问题。
报告结果的效应大小与显著性的解读与发现

报告结果的效应大小与显著性的解读与发现一、概述在科学研究中,报告结果是至关重要的一环,它不仅可以展示研究者的努力与成果,更能向学术界和社会大众传递信息。
然而,报告结果的效应大小和显著性对于读者的解读和理解至关重要。
本文将围绕这一主题展开详细论述,旨在探讨效应大小和显著性的概念、解读方法和潜在的发现。
二、效应大小的概念与解读效应大小指的是所研究变量之间的差异或关联程度的量化指标。
一般通过统计参数(如均值差、相关系数等)来衡量。
在解读效应大小时,我们需要综合考虑研究背景、实际意义和统计显著性等多个因素。
效应大小可以分为小、中、大三个等级,通过Cohen's d和η²等指标进行计算。
一般认为,效应大小大于0.2为小效应,大于0.5为中效应,大于0.8为大效应。
但需要注意,对于某些领域和特定研究问题,效应大小的判断标准可能会有所不同。
三、显著性的概念与解读显著性是指研究结果在统计学上的显著程度,表示所观察到的差异或关联是否是由随机因素引起的。
通常,我们使用P值作为判断显著性的依据,P值小于0.05被认为是显著的。
然而,显著性并不意味着效应的大小或实际意义,它只是对差异或关联的一个统计判断。
因此,在解读显著性时,也需要考虑效应大小和实际意义等因素。
四、效应大小与显著性的关系与影响效应大小和显著性虽然有一定的关联,但并不完全一致。
显著性仅仅是判断差异或关联是否存在,而效应大小则提供了更加具体和客观的量化信息。
一般情况下,显著结果配合大效应大小更为可靠和有意义,反之亦然。
此外,有研究发现,当效应大小较小时,即使显著性很高,也可能对实际应用或理论建构影响甚微。
因此,在解读和报道研究结果时,我们需要综合考虑效应大小和显著性,避免过分强调显著性而忽略效应的实际意义。
五、效应大小与显著性的实例解析以某研究为例,假设研究目的是探究睡眠质量与工作效能之间的关系。
研究结果显示,睡眠质量与工作效能之间存在显著的负相关(P<0.05),相关系数为-0.2。
生物统计名词解释

生物统计名词解释一、田间试验1.田间试验:是指在田间土壤、自然气候等环境条件下栽培作物,并进行与作物有关的各种科学研究的试验。
4.准确性:也称准确度,指某一试验指标或性状的观测值与该实验指标或性状观测值总体平均数接近的程度(实验的系统误差影响准确性大小)。
5.精确性:也称精确度,指同一试验指标或性状的重复观测值彼此接近程度(实验的随机误差影响精确性大小)。
6.试验指标:用来衡量实验结果好坏或处理效应高低、在试验中具有测定的性状或观测的项目称为试验指标。
7.试验因素:试验中人为控制的、影响试验指标的原因或条件称为试验因素。
8.试验水平:对试验因素所设定的质的不同状态或量的不同级别称为试验水平,简称水平。
9.试验处理:事先设计好的实施在试验单位上的具体项目称为实验处理简称处理。
10.实验小区:实施一个实验处理的一小块长方形土地称为实验小区,简称小区。
11.试验单位:实施试验处理的材料单位称为试验单位,亦称试验单元。
12.总体与个体:根据研究目的确定的研究对象的全体称为总体,其中的一个研究对象称为个体。
13.样本:从总体中抽取的一部分个体组成的集合。
14.样本容量:样本所包含的个体数目,常记为n。
15.试验误差:由于受到试验因素以外各种内在的、外在的非试验因素的影响使观测值与试验处理观测值总体平均数之间产生的差异,简称误差。
16.系统误差:在一定试验条件下,由某种原因所引起的使观测值发生方向性的误差,又称偏性。
17.随机误差:由多种偶然的、无法控制的因素引起的误差。
21.边际效应:指小区两边或两端植株的生长环境与小区中间植株的生长环境不一致而表现出的差异。
22.小区形状:指小区长宽比例。
(小区形状一般为长方形,狭长小区使各小区更紧密相邻,减少了小区之间的土壤差异)23.区组:将一个重复全部小区安排与土壤非礼等环境条件相对均匀一致的小块土地上,成为一个区组(田间试验一般设置3-4次重复,即设置3-4个区组。
显著性和互作效应分析

显著性和互作效应分析显著性分析是指对实验或观察数据进行统计分析,以确定观察到的差异是否由于偶然因素引起,还是由于真实的差异造成。
在这种分析中,研究者会将一个或多个变量作为自变量,将要观察或测量的结果作为因变量。
然后,使用适当的统计方法(如t检验、方差分析等)对数据进行处理,计算出统计指标(如p值、置信区间等),以判断差异是否具有统计学意义。
如果p值小于事先设定的显著性水平(通常为0.05),则可以认为差异是显著的,否则则认为差异不显著。
互作效应分析则是用于检测不同自变量之间的交互作用对因变量的影响。
简单来说,互作效应是指两个或多个自变量之间的相互作用造成的差异。
通常,研究者会通过建立线性回归模型或方差分析模型来评估这种交互作用。
在这个模型中,自变量之间的相互作用效应就是我们所关注的互作效应。
如果互作效应是显著的,那么我们可以得出结论,这些自变量之间存在相互作用,且对因变量的影响不是简单相加的。
如果互作效应不显著,那么我们可以认为这些自变量之间的相互作用对因变量没有显著的影响。
显著性和互作效应分析在实验设计中都起着重要的作用。
在研究设计阶段,显著性分析可以帮助研究者选择合适的样本量和统计检验方法,以确保实验结果的可靠性和可重复性。
而互作效应分析则可以帮助研究者理解变量之间的相互作用关系,更好地解释实验结果。
此外,在做出决策或提出建议时,显著性分析和互作效应分析也能为研究者提供重要的科学依据。
总之,显著性和互作效应分析是统计学和实验设计中常用的两个重要概念。
显著性分析用于确定差异是否具有统计学意义,而互作效应分析则用于检测变量之间的相互作用效应。
这两种分析方法都能够为研究者提供有力的统计依据,以支持科学研究的可靠性和真实性。
回归分析中的交互作用效应检验方法(四)

回归分析是一种常用的统计方法,用于探索自变量和因变量之间的关系。
在实际应用中,我们经常遇到多个自变量对因变量的影响,并且这些自变量之间可能存在交互作用。
在回归分析中,我们需要了解如何检验交互作用效应,以更准确地理解自变量对因变量的影响。
一、交互作用效应的概念交互作用是指两个或多个自变量相互作用产生的影响,使得它们对因变量的影响不是简单地加总。
在回归分析中,交互作用通常指的是两个自变量对因变量的联合影响。
例如,假设我们想研究教育水平和工作经验对收入的影响,如果两者之间存在交互作用,那么教育水平对收入的影响会随着工作经验的不同而发生变化。
二、交互作用效应的检验方法在回归分析中,我们常用的方法是引入交互项并进行交互作用的检验。
假设我们的模型为:Y = β0 + β1X1 + β2X2 + β3X1X2 + ε,其中Y为因变量,X1和X2为自变量,β0为截距项,β1和β2为自变量的系数,β3为交互项的系数,ε为误差项。
为了检验交互作用效应是否显著,我们需要进行F检验或t检验。
F检验是检验整个交互作用的显著性,而t检验是检验交互项系数的显著性。
在进行F检验时,我们需要构建一个新的模型:Y = β0 + β1X1 + β2X2 + ε,然后将原模型与新模型进行比较,得到F值并进行显著性检验。
而在进行t检验时,我们直接检验交互项系数β3的显著性。
三、交互作用效应的解释在进行交互作用效应检验后,如果发现交互作用显著,那么我们需要进一步解释这个效应。
通常来说,可以通过绘制交互作用图来解释交互作用效应。
交互作用图可以直观地展示自变量对因变量的影响在不同交互项水平上的变化。
另外,我们还可以通过计算边际效应来解释交互作用效应。
边际效应是指在其他自变量保持不变的情况下,一个自变量的变动对因变量的影响。
通过计算不同交互项水平上的边际效应,我们可以更清晰地理解交互作用效应的具体影响。
四、交互作用效应检验的注意事项在进行交互作用效应检验时,有一些注意事项需要牢记。
报告撰写中的显著性检验和结果解读技巧

报告撰写中的显著性检验和结果解读技巧标题一:显著性检验的基本概念及应用范围在报告撰写中,显著性检验是一种重要的统计方法,被广泛应用于各个领域的研究中。
它帮助研究者判断样本数据是否具有统计学上的显著差异,从而得出结论。
本小节将介绍显著性检验的基本概念和应用范围。
概述:显著性检验基于假设检验的理论,通过对样本数据进行统计分析,判断研究结果是否能够推广到总体中。
显著性检验主要包括参数检验和非参数检验两种类型。
参数检验假设总体满足某种概率分布,而非参数检验则对总体分布没有假设。
应用范围:显著性检验可以在很多领域中应用,例如医药研究、经济学研究、心理学研究等。
在医药领域,显著性检验可以用于判断新药效果是否显著优于对照组;在经济学研究中,可以用于检验某个因素对经济增长的影响程度;在心理学研究中,可以用于判断某种干预措施对心理疾病患者的治疗效果是否显著。
标题二:显著性水平的选择和结果解读技巧显著性水平是显著性检验中的重要参数,决定了研究结果的可靠性和可信度。
在此小节中,我们将讨论显著性水平的选择和结果解读技巧。
选择显著性水平:通常情况下,研究者会选择0.05或0.01作为显著性水平。
0.05表示有5%的概率犯错,即认为结果是显著的,但实际上并不显著;而0.01则表示有1%的概率犯错。
选择显著性水平要根据实际情况和研究者的需求来确定,一般来说,对重要性较高的研究,可以选择更为严格的显著性水平。
结果解读技巧:当显著性检验结果显示显著差异时,不能轻率地得出结论。
首先,需要判断样本容量是否足够大,以保证结果的稳定性。
其次,要注意结果的实际意义,不能只看p值的大小。
对于大样本研究,即使微小差异也可能被判定为显著,但在实际应用中可能并不具有重要性。
最后,需要与其他研究结果进行比较,进一步验证结果的可靠性。
标题三:类型I错误和类型II错误及其避免策略显著性检验中存在两种错误类型,即类型I错误和类型II错误。
了解这些错误类型及其避免策略对于正确解读结果至关重要。
回归分析中的交互作用效应检验方法(九)

回归分析中的交互作用效应检验方法回归分析是一种统计学方法,用来研究自变量与因变量之间的关系。
在实际应用中,我们经常遇到自变量之间存在交互作用的情况。
交互作用是指两个或多个自变量在影响因变量时相互作用的效应。
在回归分析中,如何有效地检验交互作用效应成为了一个重要的问题。
本文将介绍一些常见的方法,帮助读者更好地理解和应用回归分析中的交互作用效应检验方法。
交互作用效应的概念在回归分析中,当我们考虑两个自变量对因变量的影响时,通常会假设它们是独立的,即它们的影响是相互独立的。
然而,实际情况往往会更为复杂。
当两个自变量之间存在交互作用时,它们对因变量的影响并不是简单地相加,而是相互影响、相互作用的结果。
例如,假设我们想要研究药物的剂量和患者的年龄对治疗效果的影响,如果药物的剂量和患者的年龄之间存在交互作用,则不同年龄段的患者对药物的反应可能会有所不同。
交互作用效应的检验方法在回归分析中,我们通常使用F检验或t检验来检验自变量对因变量的影响是否显著。
然而,当我们考虑交互作用效应时,这些传统的检验方法可能并不适用。
因此,我们需要寻找一些特殊的检验方法来检验交互作用效应的显著性。
一种常见的方法是使用ANOVA(方差分析)来检验交互作用效应的显著性。
在这种方法中,我们首先建立一个包含自变量、交互项和因变量的回归模型,然后使用方差分析来检验交互项的显著性。
如果交互项显著,我们就可以认为自变量之间存在交互作用。
除了ANOVA外,我们还可以使用边际效应的方法来检验交互作用效应的显著性。
边际效应是指在控制其他自变量不变的情况下,一个自变量对因变量的影响。
通过比较不同交互项对应的边际效应,我们可以判断交互作用效应是否显著。
此外,还有一些复杂的方法,如结构方程模型(SEM)和逻辑斯蒂回归(Logistic Regression)等,可以用来检验交互作用效应的显著性。
这些方法通常需要对模型进行更为复杂的假设和参数设定,适用于更为复杂的数据结构和研究问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。
表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数从复水稻品种1 2 3 4 51 41 33 38 37 312 39 37 35 39 343 40 35 35 38 34 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。
图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。
或者打开已存在的数据文件“DATA5-1.SAV”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。
图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图5-3所示的对话框。
该对话框用于设置均值的多项式比较。
图5-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图5-3中显示的是要求计算“1.1×me an1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。
多项式的系数需要由读者自己根据研究的需要输入。
具体的操作步骤如下:① 选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。
② 单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。
③ 为多项式指定各组均值的系数。
方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。
依次输入各组均值的系数,在方形显示框中形成—列数值。
因素变量分为几组,输入几个系数,多出的无意义。
如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。
如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。
可以同时建立多个多项式。
一个多项式的一组系数输入结束,激话“Next”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。
如果认为输入的几组系数中有错误,可以分别单击“Previous”或“Next”按钮前后翻找出错的一组数据。
单击出错的系数,该系数显示在编辑框中,可以在此进行修改,修改后单击“Change”按钮在系数显示框中出现正确的系数值。
当在系数显示框中选中一个系数时,同时激话“Remove”按钮,单击该按钮将选中的系数清除。
④单击“Previous”或“Next”按钮显示输入的各组系数检查无误后,按“Continue”按钮确认输入的系数并返回到主对话框。
要取消刚刚的输入,单击“Cancel”按钮;需要查看系统的帮助信息,单击“Help”按钮。
本例子不做多项式比较的选择,选择缺省值。
5)设置多重比较在主对话框里单击“Post Hoc”按钮,将打开如图5-4所示的多重比较对话框。
该对话框用于设置多重比较和配对比较。
方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组;配对比较可找出和其它组均值有差异的组,并输出显著性水平为0.95的均值比较矩阵,在矩阵中用星号表示有差异的组。
图5-4 “Post Hoc Multiple Comparisons”对话框(1)多重比较的选择项:①方差具有齐次性时(Equal Variances Assumed),该矩形框中有如下方法供选择:LSD (Least-significant difference) 最小显著差数法,用t检验完成各组均值间的配对比较。
对多重比较误差率不进行调整。
Bonferroni (LSDMOD) 用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。
Sidak 计算t统计量进行多重配对比较。
可以调整显著性水平,比Bofferroni方法的界限要小。
Scheffe对所有可能的组合进行同步进入的配对比较。
这些选择项可以同时选择若干个。
以便比较各种均值比较方法的结果。
R-E-G-WF (Ryan-Einot-Gabriel-Welsch F) 用F检验进行多重比较检验。
R-E-G-WQ (Ryan-Einot-Gabriel-Welsch range test) 正态分布范围进行多重配对比较。
S-N-K (Student-Newmnan-Keuls) 用Student Range分布进行所有各组均值间的配对比较。
如果各组样本含量相等或者选择了“Harmonic average of all groups”即用所有各组样本含量的调和平均数进行样本量估计时还用逐步过程进行齐次子集(差异较小的子集)的均值配对比较。
在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。
Tukey (Tukey's,honestly signicant difference) 用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。
Tukey's-b用“stndent Range”分布进行组间均值的配对比较。
其精确值为前两种检验相应值的平均值。
Duncan (Duncan's multiple range test) 新复极差法(SSR),指定一系列的“Range”值,逐步进行计算比较得出结论。
Hochberg's GT2用正态最大系数进行多重比较。
Gabriel用正态标准系数进行配对比较,在单元数较大时,这种方法较自由。
Waller-Dunca用t统计量进行多重比较检验,使用贝叶斯逼近。
Dunnett指定此选择项,进行各组与对照组的均值比较。
默认的对照组是最后一组。
选择了该项就激活下面的“ControlCategory”参数框。
展开下拉列表,可以重新选择对照组。
“Test”框中列出了三种区间分别为:“2-sides” 双边检验;“<Control” 左边检验“>Conbo1”“右边检验。
②方差不具有齐次性时(Equal Varance not assumed),检验各均数间是否有差异的方祛有四种可供选择:Tamhane's T2, t检验进行配对比较。
Dunnett's T3,采用基于学生氏最大模的成对比较法。
Games-Howell,Games-Howell比较,该方法较灵活。
Dunnett's C,采用基于学生氏极值的成对比较法。
③ Significance 选择项,各种检验的显著性概率临界值,默认值为0.05,可由用户重新设定。
本例选择“LSD”和“Duncan”比较,检验的显著性概率临界值0.05。
6) 设置输出统计量单击“Options”按钮,打开“Options”对话框,如图5-5所示。
选择要求输出的统计量。
并按要求的方式显示这些统计量。
在该对话框中还可以选择对缺失值的处理要求。
各组选择项的含义如下:图5-5输出统计量的设置“Statistics”栏中选择输出统计量:Descriptive,要求输出描述统计量。
选择此项输出观测量数目、均值、标准差、标准误、最小值、最大值、各组中每个因变量的95%置信区间。
Fixed and random effects, 固定和随机描述统计量Homogeneity-of-variance,要求进行方差齐次性检验,并输出检验结果。
用“Levene lest ”检验,即计算每个观测量与其组均值之差,然后对这些差值进行一维方差分析。
Brown-Forsythe 布朗检验Welch,韦尔奇检验Means plot,即均数分布图,根据各组均数描绘出因变量的分布情况。
“Missing Values”栏中,选择缺失值处理方法。
Exclude cases analysis by analysis选项,被选择参与分析的变量含缺失值的观测量,从分析中剔除。
Exclude cases listwise选项,对含有缺失值的观测量,从所有分析中剔除。
以上选择项选择完成后,按“Continue”按钮确认选择并返回上一级对话框;单击“Cancel”按钮作废本次选择;单击“Help”按钮,显示有关的帮助信息。
本例子选择要求输出描述统计量和进行方差齐次性检验,缺失值处理方法选系统缺省设置。
6)提交执行设置完成后,在单因素方差分析窗口框中点击“OK”按钮,SPSS就会根据设置进行运算,并将结算结果输出到SPSS结果输出窗口中。
7) 结果与分析输出结果:表5-2描述统计量,给出了水稻品种分组的样本含量N、平均数Mean、标准差Std.Deviation、标准误Std.Error、95%的置信区间、最小值和最大值。
表5-3为方差齐次性检验结果,从显著性慨率看,p>0.05,说明各组的方差在a=0.05水平上没有显著性差异,即方差具有齐次性。
这个结论在选择多重比较方法时作为一个条件。
表5-4方差分析表:第1栏是方差来源,包括组间变差“Between Groups”;组内变差“Within Groups”和总变差“Total”。
第2栏是离差平方和“Sum of Squares”,组间离差平方和87.600,组内离差平方和为24.000,总离差平方和为111.600,是组间离差平方和与组内离差平方和相加之和。
第3栏是自由度df,组间自由度为4,组内自由度为10;总自由度为14。
第4栏是均方“Mean Square”,是第2栏与第3栏之比;组间均方为21.900,组内均方为2.400。