立体几何中的探索性问题精编WORD版
立体几何中的探索性问题

立体几何中的探索性问题作者:徐勇来源:《理科考试研究·高中》2012年第10期立体几何中的探索性问题有利于考查学生的归纳、判断等各方面的能力,也有利于创新意识的培养,因此应注意高考中立几探索性命题的考查趋势.立体几何探索性命题的类型主要有:一、探索条件,即探索能使结论成立的条件是什么;二、探索结论,即在给定的条件下命题的结论是什么.而对命题条件的探索,在立体几何的题型更为常见,对命题条件的探索常采用以下三种方法:1.先猜(作)后证,即先观察与尝试给出条件再给出证明.2.先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.3.把几何问题转化为代数问题,探索出命题成立的条件.现例举如下例1 如图1,已知四面体ABCD四个面均为锐角三角形,E,F,G,H分别为边AB,BC,CD,DA上的点,BD∥平面EFGH,且(1)求证:HG∥平面ABC;(2)请在平面ABD内过点E作一条线段垂直于AC,并给出证明解析(1)因为BD∥平面EFGH,平面BDC∩平面EFGH=FG,所以BD∥同理BD∥EH,又因为EH=FG,所以四边形EFGH为平行四边形,所以HG∥又平面ABC,平面ABC,所以HG∥平面(2)如图2,在平面ABC内过点E作EP⊥AC,且交AC于P点,在平面ACD内过点P 作PQ⊥AC,且交AD于Q点,连结EQ,则EQ即为所求线段证明如下:因为EP⊥AC,PQ⊥AC,EP∩PQ=P,所以AC⊥平面又因为平面EPQ,所以EQ⊥例2 如图3,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面(1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面解析(1)因为AD⊥平面ABE,AD∥BC,所以BC⊥平面ABE,则AE⊥又因为BF⊥平面ACE,则AE⊥所以AE⊥平面又平面BCE,所以AE⊥(2)——(]1[]3[SX)]×2[KF(]2[KF)]×[KF(]2[KF)] (]4[]3[SX)(3)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系易得CN=[SX(]1[]3[SX)因为MG∥AE,平面ADE,平面ADE,所以MG∥平面同理GN∥平面所以平面MGN∥平面又平面MGN,所以MN∥平面所以N点为线段CE上靠近C点的一个三等分点例3 如图3,在四棱锥P—ABCD中,底面ABCD为菱形,∠ABD=60°,Q为AD的中点(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面解析(1)连因为四边形ABCD为菱形,所以又∠BAD=60°,所以△ABD为正三角形而Q为AD中点,所以AD⊥因为PA=PD,Q为AD中点,所以AD⊥又BQ∩PQ=Q,所以AD⊥平面而平面PAD,所以平面PQB⊥平面(2)当t=[SX(]1[]3[SX)]时,使得PA∥平面连AC交BQ于N,交BD于O,连MN,则O为BD的中点又BQ为正△ABD边AD上的中线,所以N为正△ABD的中心设菱形ABCD的边长为a,则AN=[SX(][KF(]3[KF)][]3[SX)]a,AC=[KF(]3[KF)由PA∥平面MQB,平面PAC,平面PAC∩平面MQB=MN,所以PA∥MN,[SX(]PM[]PC[SX)]=[SX(]AN[]AC[SX)]=[SX(][SX(][KF(]3[KF)][]3[SX)]a[][KF (]3[KF)]a[SX)]=[SX(]1[]3[SX)],即PM=[SX(]1[]3[SX)]PC,t=[SX(]1[]3[SX)例4 如图4,在四棱锥P—ABCD中,四边形ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,平面PAD⊥平面ABCD.(1)求证:PA⊥平面ABCD;(2)若平面PAB∩平面PCD=l,问直线l能否与平面ABCD平行?请说明理由解析(1)∠ABC=90°,AD∥BC,所以AD⊥而平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以AD⊥平面PAB,所以AD⊥同理可得AB⊥由于AB,平面ABCD,且AB∩AD=C,所以PA⊥平面(2)不平行证明:假定直线l∥平面ABCD,由于平面PCD,且平面PCD∩平面ABCD=CD,同理可得l∥AB,所以AB∥这与AB和CD是直角梯形ABCD的两腰相矛盾,故假设错误,所以直线l与平面ABCD不平行例5 如图5所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面(1)若G为AD边的中点,求证:EG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论解析(1)在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面(2)连结PG,由△PAD为正三角形,G为AD的中点,得PG⊥由(1)知BG⊥AD,PG∩BG=G,平面PGB,平面PGB,所以AD⊥平面因为平面PGB,(3)当F为PC的中点时,满足平面DEF⊥平面取PC的中点F,连结DE、EF、在△PBC中,FE∥PB,所以EF∥平面在菱形ABCD中,GB∥DE,所以DE∥平面平面DEF,平面DEF,EF∩DE=E,所以平面DEF∥平面由(1)得PG⊥平面ABCD,而平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面例6 如图6,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点(1)求四棱锥P—ABCD的体积;(2)求证:PA∥平面MBD;(3)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由解析(1)因为Q为AD的中点,△PAD为正三角形,因为平面PAD⊥平面ABCD,所以PQ⊥平面因为AD=4,所以PQ=2[KF(]3[KF)所以四棱锥P—ABCD的体积V=[SX(]1[]3[SX)=[SX(]1[]3[SX)(]3[KF)](]32[KF(]3[KF)][]3[SX)(2)连结AC交BD于点O,连结由正方形ABCD知点O为AC的中点,因为M为PC的中点,所以MO∥又平面MBD,平面MBD,所以PA∥平面(3)存在点N,当N为AB中点时,平面PQB⊥平面因为四边形ABCD是正方形,Q为AD的中点,所以BQ⊥由(1)知,PQ⊥平面ABCD,平面ABCD,所以PQ⊥又BQ∩PQ=Q,所以NC⊥平面因为平面PCN,所以平面PCN⊥平面。
专题五 探索性问题含答案精荐.docx

第5讲探索性问题概述:探索性题目一般作为压轴题或次压轴题出现,题目较难,难在结论不肯定,要通过探索证明或计算,得出结论,并给予肯定或否定冋答:这种题目的结论有多样性,需要解题的周密考虑,解这种题目有两种方法:一种是假定结论成立,去证明它的可能性或存在性; 另一种是从条件出发直接证明或计算I叫答存在或不存在.典型例题精析例1・(2005,绵阳)如图1,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S|、S2> S3表示,则不难证明S,=S2+S3・(1)如图2所示,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用Si、S?、S3表示,那么S】、S?、S3之间有什么关系?(不必证明)(2)如图3所示,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用Si、S2> S3表示,请你确定S]、S?、S3之.间的关系并加以证明;(3)若分别以育角三角形ABC三边为边向外作三个一般三角形,其面积分别为S】、S2> S3表示,使S]、S2、S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件? 并证明你的结论;(4)类比(1)、(2)、(3)的结论,请你总结岀一个更具一般意义的结论.(1 ) S]=S2+S3;(2) S 1=82+83,证明如卜:显然:S]=-^-c2, So=-^-a2, S3=-^-b2,4 ~ 4 「4/. So+S3= (a2+b2) =-^- c2=S|.4 4(也可用三角形相似证明)(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:・・•所作三个三角形相似,・・・丑二5 =作,S| C2 5, C2Si・・S [=S2+S3・(4)分别以直角三角形ABC的三边为一边向外作相似图形,其Ifti积分别用S】、S2、S3表示,则S]=S2+S3・例2. (2002.山西)如图1, OO]和©02外切于P, AB是OO]和(DO?的公切线,A、B是切点,真线AP、BP分别交OO2, G»O]于F、E・(1)求证:AE、BF分别为0O】、002的直径;(2)求证:AB2=AEBF;(3)如图2,当图1屮的切点P变为两圆一个交点时,结论AB2=AE BF还成立吗? 若成立,请证明;若不成立,请说明理由.分析:(1)即证ZAPE二ZBPF二90°,过P作二圆公切线,可证明.(2)证明△ ABE^ABFA 可得.(3)同样可证厶ABE^ABFA.AZE=ZBAF, ZF二ZABE.中考样题训练Sc + Sg ci~ b~=1,图11.(2005,黄冈)如图,在直角坐标系屮,0是原点,A、B、C三点的坐标分别为A (18, 0) ,B (18, 6) ,C (8, 6),四边形0ABC是梯形,点P、Q同时从原点出发,分别作饼速运动,其中点P沿0A向终点A运动,速度为每秒1个单位,点Q沿0C、CB向终点B运动,当这两点有一点到达H己的终点时,另一点也停止运动.(1)求出貞线0C的解析式及经过0、A、C三点的抛物线的解析式.(2)试在(1)屮的抛物线上找一点D,使得以0、A、D为顶点的三角形与AAOC全等,请直接写出点D的坐标.(3)设从出发起运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标, 并写出此时t的取值范围.(4)设从出发起,运动了t秒钟,当P、Q两点运动的路程Z和恰好等于梯形OABC 周长的一半,这时,肓线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由.2.(2004,苏州)如图,GO?与。
专题12 立体几何中探索性问题(解析版)

专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1AC ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC , 又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EFDF F =,1ABA C A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2),1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2), 设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB =1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1AO ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO A C O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO A O BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A A C O =,得1AO ⊥底面ABCD , 所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0),(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-, 由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>=⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1AC ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC ,又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EF DF F =,1ABA C A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2n t=,平面CBF的一个法向量21(,0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴,OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D x y ⎧=-+=⎪⎨==⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =, 02a a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点,BD CD =,1//AC DE ∴, 又1AC ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=故三棱锥11A A B D - 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC ==所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-,(3,0)AE λ=,1(0,1,1)AD =⋯(7分) 设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M ,G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD=M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又M D⊂平面PDC,可得BD M D⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又M D ⊂平面PDC ,BD M D ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴=在Rt PDC ∆中,由PD =CD =可得PC =MD =则CM =12MCD S ∆∴==.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a . 【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1ACAA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCAC C =, 1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4),1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4), 设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221|||332216n a ==++. 解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得//MC平面PBD?说明理由.【分析】(1)通过证明CD AD⊥,证明CM⊥平面AMD,然后证明平面AMD⊥平面BMC;⊥,CD DM(2)存在P是AM的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD所在平面与半圆弦CD所在平面垂直,所以AD⊥半圆弦CD所在平面,CM⊂半圆弦CD所在平面,∴⊥,CM ADM是CD上异于C,D的点.CM DM∴⊥,DM AD D∴⊥平面AMD,CM⊂平面CMB,=,CM∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得//MC OP,MC⊂/平面BDP,OP⊂平面BDP,所以//MC平面PBD.。
高考专题高中数学微课题研究性精品教程专题8.1:立体几何中探索性问题的研究与拓展.docx

桑水AB C D EFP专题8.1:立体几何中探索性问题的研究与拓展【拓展探究】探究1: 如图,在三棱锥P - ABC 中,PC ⊥平面ABC ,△ABC 为正三角形, D ,E ,F 分别是BC ,PB ,CA 的中点. (1)证明平面PBF ⊥平面P AC ;(2)判断AE 是否平行平面PFD ?并说明理由; (3)若PC = AB = 2,求三棱锥P - DEF 的体积. 解:(1)∵PC ⊥平面ABC ,BF ⊂平面ABC ,∴PC ⊥BF .∵△ABC 为正三角形,F 是CA 的中点 ∴BF ⊥AC .又∵PC ∩AC = C . ∴BF ⊥平面P AC . ∵BF ⊂平面PBF ,∴平面PBF ⊥平面P AC . (2)AE 不平行平面PFD .反证法:假设AE ∥平面PFD .∵AB ∥FD ,FD ⊂平面PFD ,AB ⊄平面PFD∴AB ∥平面PFD .∵AE 、AB 是平面ABE 内两条相交直线, ∴平面ABE ∥平面PFD .而∵P ∈平面ABE ,P ∈平面PFD ,矛盾. 则假设不成立.即AE 不平行平面PFD .(3)∵D ,E ,F 分别是BC ,PB ,CA 的中点,PC ⊥平面ABC ,∴V P - DEF = V B - DEF . 则V P - DEF =12V P - BDF =12×13×14S △ABC ×PC =12×13×14×3424⨯⨯=312. 变式1:如图在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)AE 等于何值时,平面1D DE ⊥平面1D CE ,并证明你的结论;DC1A 1D 1C 1B桑水解:(1)证明:连接1AD ,依题意有:在长方形11A ADD 中,11AD AA ==,1111111111111A ADD A D AD A D AD B AB A ADD AB A D A D D E D E AD B AD AB A ⇒⊥⎫⇒⊥⎫⎪⊥⇒⊥⇒⊥⎬⎬⊂⎭⎪=⎭四边形平面又平面平面. …… 7分(2)证明:AE 等于1时,面1D DE ⊥面1D CE ……… 9分 证明:当1AE =时,2DE CE ==,又2CD =,222DE CE CD ∴+=,DE CE ∴⊥,又长方体中1DD ⊥面AC ,1CE DD ∴⊥,CE ∴⊥面1D DE拓展:特征矩形(平面几何问题)若ABCD 是一个矩形,且E 是AB 的中点,则AC DE ⊥的充要条件是2=BCAB探究2:如图,在透明塑料制成的长方体ABCD - A 1B 1C 1D 1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列三个说法:①水的形状始终呈棱柱形状;②水面四边形EFGH 的面积不改变;③当E ∈AA 1时,AE + BF 是定值.其中正确说法是 .【专题反思】你学到了什么?还想继续研究什么?。
立体几何中的探索性问题

平面B1BC1的法向量n2=(x2,y2,z2).
y
∴AA→→11CB1·n·n11==00,⇒43xy11-=40z,1=0,
x
∴取向量n1=(0,4,3).
直击高考
(2016·北京卷改编)如图,在三棱柱 ABC-A1B1C1 中,AA1C1C 是边 长为 4 的正方形.平面 ABC⊥平面 AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面 ABC;(2)求二面角 A1-BC1-B1 的余弦值;
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
解 (1)在△PAD中,PA=PD,O为AD中点, 所以PO⊥AD, 又侧面PAD⊥底面ABCD, 平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD. 又在直角梯形ABCD中,连接OC, 易得OC⊥AD,
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面 ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
cos〈P→B,O→A〉=|PP→→BB|·|OO→→AA|= 33. ∴直线 PB 与平面 POC 所成角的余弦值为 36.
z y
x
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面
ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值
高考专题立体几何中的探索性问题-精品之高中数学(文)---精校解析Word版

第68题立体几何中的探索性问题I .题源探究·黄金母题【例1】【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F , 使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析; (III )存在.理由见解析.【解析】分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(III )取PB 中点F ,连结F E ,则F//E PA ,根据线面平行定理则//PA 平面C F E .解析:(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA .(II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A . 因为C P ⊥平面CD AB ,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下:取PB 中点F ,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA . 又因为PA ⊄平面C F E ,所以//PA 平面C F E .【名师点睛】在解决立体几何探索性问题时,常常先通过空间观察和条件分析(中点)假设存在符合条件的点,然后进行推理论证。
II .考场精彩·真题回放【例2】【2015高考安徽文19】如图,三棱锥P -ABC 中,PA ⊥平面ABC ,1,1,PA AB ==2,60AC BAC =∠=o .(Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.【答案】(Ⅱ)13PM MC = 【解析】(Ⅰ)解:由题设AB =1,,2=AC60=∠BAC可得ABC S ∆︒⋅⋅⋅=60sin 21AC AB 23=.由⊥PA 面ABC ,可知PA 是三棱锥ABC P -的高,又1=PA所以三棱锥ABC P -的体积6331=⋅⋅∆PA S V ABC = (Ⅱ)证:在平面ABC 内,过点B 作AC BN ⊥, 垂足为N ,过N 作PA MN //交PC 于M ,连接BM.由⊥PA 面ABC 知AC PA ⊥,所以AC MN ⊥.由于N MN BN =⋂,故⊥AC 面MBN ,又⊂BM 面MBN ,所以BM AC ⊥.在直角BAN ∆中,21cos =∠⋅=BAC AB AN ,从而23=-=AN AC NC .由PA MN //,得31=NC AN MC PM =. 【名师点睛】本题将正弦定理求三角形的面积巧妙地结合到求锥体的体积之中,本题的第(Ⅱ)问需要学生构造出线面垂直,进而利用性质定理证明出面面垂直,本题考查了考生的空间想象能力、构造能力和运算能力.【例3】【2016高考四川文科】如图,在四棱锥P-ABCD 中,PA⊥CD ,AD∥BC ,∠ADC=∠PAB=90°,12BC CD AD ==. DCB AP(I )在平面PAD 内找一点M ,使得直线CM∥平面PAB ,并说明理由; (II )证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD 的中点M ,证明详见解析;(Ⅱ)证明详见解析.【解析】分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,只要在平面ABCD 上作//CM AB 交AD 于M 即得;(Ⅱ)要证面面垂直,先证线面垂直,也就要证线线垂直,本题中有PA BD ⊥(由线面垂直的性质或定义得),另外可以由平面几何知识证明BD AB ⊥,从而有线面垂直,再有面面垂直. 试题解析:MDCB AP(I )取棱AD 的中点M (M∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD‖BC,BC =12AD ,所以BC‖AM , 且BC =AM . 所以四边形AMCB 是平行四边形,从而CM‖AB . 又AB ⊂ 平面PAB ,CM ⊄ 平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(II )由已知,PA ⊥AB , PA ⊥CD ,因为AD ∥BC,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD . 从而PA ⊥ BD .因为AD ∥BC,BC =12AD , 所以BC ∥MD,且BC =MD. 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A,所以BD ⊥平面PAB .又BD ⊂ 平面PBD,所以平面PAB ⊥平面PBD . 【例4】【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P A B C D -中,侧棱PD ⊥底面A B C D ,且P D C D =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是 否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.【答案】(Ⅰ)四面体EBCD 是一个鳖臑; (Ⅱ)124.V V = 【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE是鳖臑D B C E -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PDV CE DE BC CE DE ⋅⋅⋅===⋅⋅⋅【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.【例5】【2014四川文18】在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形。
立体几何中地探索性问题

立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟] 如图所示,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________,就有MN ∥平面B 1BDD 1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M 位于线段FH 上(答案不唯一) [解析] 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,FH ∩HN =H ,DD 1∩BD =D ,∴平面FHN ∥平面B 1BDD 1,故只要M ∈FH ,则MN ⊂平面FHN ,且MN ∥平面B 1BDD 1.2.如图所示,在正方体ABCD A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.解:(1)如图所示,取AA 1的中点M ,连接EM ,BM .因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .(2分)又在正方体ABCD A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE 和平面ABB 1A 1所成的角.(4分)设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23,(5分)即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(6分)(2)在棱C1D1上存在点F,使B1F∥平面A1BE.事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接B1F,EG,BG,CD1,FG.因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG⊂平面A1BE.(8分)因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG,(10分)而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.(12分)3.如图,四棱锥PABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥APDE的体积;(2)AC边上是否存在一点M,使得PA∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)∵PD⊥平面ABCD,∴PD⊥AD.又∵ABCD 是矩形, ∴AD ⊥CD . ∵PD ∩CD =D , ∴AD ⊥平面PCD ,∴AD 是三棱锥A PDE 的高. ∵E 为PC 的中点,且PD =DC =4, ∴S △PDE =12S △PDC =12×⎝ ⎛⎭⎪⎫12×4×4=4. 又AD =2,∴V A -PDE =13AD ·S △PDE =13×2×4=83.(2)取AC 中点M ,连接EM ,DM ,∵E 为PC 的中点,M 是AC 的中点,∴EM ∥PA . 又∵EM ⊂平面EDM ,PA ⊄平面EDM , ∴PA ∥平面EDM . ∴AM =12AC = 5.即在AC 边上存在一点M ,使得PA ∥平面EDM ,AM 的长为 5.4.如图所示,在三棱锥P ABC 中,点D ,E 分别为PB ,BC 的中点.在线段AC 上是否存在点F ,使得AD ∥平面PEF ?若存在,求出AF FC的值;若不存在,请说明理由.解:假设在AC 上存在点F ,使得AD ∥平面PEF , 连接DC 交PE 于G ,连接FG ,如图所示.∵AD ∥平面PEF ,平面ADC ∩平面PEF =FG ,∴AD ∥FG .又∵点D ,E 分别为PB ,BC 的中点,∴G 为△PBC 的重心,∴AF FC =DG GC =12.故在线段AC 上存在点F ,使得AD ∥平面PEF ,且AF FC =12.5.[2016·北京卷] 如图,在四棱锥P ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC . (1)求证:DC ⊥平面PAC .(2)求证:平面PAB ⊥平面PAC .(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由.解:(1)证明:因为PC ⊥平面ABCD , 所以PC ⊥DC . 又因为DC ⊥AC , 所以DC ⊥平面PAC .(2)证明:因为AB ∥DC ,DC ⊥AC , 所以AB ⊥AC .因为PC ⊥平面ABCD , 所以PC ⊥AB ,所以AB ⊥平面PAC , 所以平面PAB ⊥平面PAC .(3)棱PB 上存在点F ,使得PA ∥平面CEF .证明如下: 取PB 的中点F ,连接EF ,CE ,CF .因为E 为AB 的中点, 所以EF ∥PA .又因为PA ⊄平面CEF ,所以PA ∥平面CEF .6.[2016·四川卷] 如图,在四棱锥P ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (2)证明:平面PAB ⊥平面PBD .解:(1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD ,从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD ,所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .7. [2016·阳泉模拟] 如图74110,在四棱锥P ABCD 中,BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .(1)求证:AC ⊥PD .(2)在线段PA 上是否存在点E ,使BE ∥平面PCD ?若存在,求出PE PA的值;若不存在,请说明理由.解:(1)证明:∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊥CD ,AC ⊂平面ABCD ,∴AC ⊥平面PCD ,∵PD ⊂平面PCD ,∴AC ⊥PD .(2)在线段PA 上存在点E ,使BE ∥平面PCD ,且PE PA =13.下面给出证明:∵AD =3,BC =1,∴在△PAD 中,分别取PA ,PD 靠近点P 的三等分点E ,F ,连接EF ,BE ,CF .∵PE PA =PF PD =13,∴EF ∥AD ,且EF =13AD =1. 又∵BC ∥AD ,∴BC ∥EF ,且BC =EF , ∴四边形BCFE 是平行四边形,∴BE ∥CF ,又∵BE ⊄平面PCD ,CF ⊂平面PCD , ∴BE ∥平面PCD .8.(10分)[2016·河南中原名校联考] 如图所示,在四棱锥S ABCD 中,平面SAD ⊥平面ABCD ,AB ∥DC ,△SAD 是等边三角形,且SD =2,BD =23,AB =2CD =4.(1)证明:平面SBD ⊥平面SAD .(2)若E 是SC 上的一点,当E 点位于线段SC 上什么位置时,SA ∥平面EBD ?请证明你的结论.(3)求四棱锥S ABCD 的体积.解:(1)证明:∵△SAD 是等边三角形, ∴AD =SD =2,又BD =23,AB =4,∴AD 2+BD 2=AB 2,∴BD ⊥AD ,又∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD . ∴BD ⊥平面SAD .又BD ⊂平面SBD ,∴平面SBD ⊥平面SAD .(2)当E 为SC 的三等分点,即ES =2CE 时,结论成立. 证明如下:连接AC 交BD 于点H ,连接EH .∵CD ∥AB ,CD =12AB ,∴CH HA =12=CEES,∴HE ∥SA .又SA ⊄平面EBD ,HE ⊂平面EBD , ∴SA ∥平面EBD .(3)过S 作SO ⊥AD ,交AD 于点O . ∵△SAD 为等边三角形,∴O 为AD 的中点,∴SO = 3.易证得SO ⊥平面ABCD ,∴V 四棱锥S ABCD =13S 梯形ABCD ·SO .∵S 梯形ABCD =12×(2+4)×3=33,∴V 四棱锥S ABCD =3.二、探索垂直关系1.如图所示,在三棱锥P ABC 中,已知PA ⊥底面ABC ,AB ⊥BC ,E ,F 分别是线段PB ,PC 上的动点,则下列说法错误的是( )A .当AE ⊥PB 时,△AEF 一定为直角三角形 B .当AF ⊥PC 时,△AEF 一定为直角三角形C .当EF ∥平面ABC 时,△AEF 一定为直角三角形D .当PC ⊥平面AEF 时,△AEF 一定为直角三角形答案:B [解析] 已知PA ⊥底面ABC ,则PA ⊥BC ,又AB ⊥BC ,PA ∩AB =A , 则BC ⊥平面PAB ,BC ⊥AE .当AE ⊥PB 时,又PB ∩BC =B ,则AE ⊥平面PBC ,则AE ⊥EF ,A 正确.当EF ∥平面ABC 时,又EF ⊂平面PBC ,平面PBC ∩平面ABC =BC ,则EF ∥BC ,故EF ⊥平面PAB ,则AE ⊥EF ,故C 正确.当PC ⊥平面AEF 时,PC ⊥AE ,又BC ⊥AE ,PC ∩BC =C ,则AE ⊥平面PBC ,则AE ⊥EF ,故D 正确.用排除法可知选B.2.如图所示,在三棱柱ABC A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案:a 或2a [解析] 由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.当CF ⊥DF 时,设AF =x ,则A 1F =3a -x .由Rt △CAF ∽Rt △FA 1D ,得AC A 1F =AF A 1D ,即2a 3a -x =x a,整理得x 2-3ax +2a 2=0,解得x =a或x =2a .3.如图所示,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的正投影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________.答案:①②③ [解析] 由题意知PA ⊥平面ABC ,∴PA ⊥BC .又AC ⊥BC ,PA ∩AC =A ,∴BC ⊥平面PAC ,∴BC ⊥AF .∵AF ⊥PC ,BC ∩PC =C ,∴AF ⊥平面PBC ,∴AF ⊥PB ,AF ⊥BC .又AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF ,∴PB ⊥EF .故①②③正确.4.如图所示,已知长方体ABCD A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点.(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1DAD的比值为多少时,DF ⊥平面D 1MB ?并说明理由.解析:(1)证明:∵E 为线段AD 1的中点,F 为线段BD 1的中点,∴EF ∥AB . ∵EF ⊄平面ABCD ,AB ⊂平面ABCD , ∴EF ∥平面ABCD . (2)当D 1DAD=2时,DF ⊥平面D 1MB . ∵ABCD 是正方形, ∴AC ⊥BD . ∵D 1D ⊥平面ABC , ∴D 1D ⊥AC . ∴AC ⊥平面BB 1D 1D , ∴AC ⊥DF .∵F ,M 分别是BD 1,CC 1的中点, ∴FM ∥AC . ∴DF ⊥FM . ∵D 1D =2AD , ∴D 1D =BD .∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1) (2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE⊄平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.∴DE⊥平面A1DC.而A1F⊂平面A1DC,(6分)∴DE⊥A1F.又∵A1F⊥CD,CD∩DE=D,∴A1F⊥平面BCDE,又BE⊂平面BCDE,∴A1F⊥BE.(9分)(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCDA1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF⊂平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴∠ABG=∠DAE.∴AE⊥BG.又∵BG∩FG=G,∴AE⊥平面BFG.又BF⊂平面BFG,∴AE⊥BF.(3)存在.取CC1中点P,即为所求.连接EP,AP,C1D,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF⊂平面A1EF,DM⊄平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F⊂平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF⊂平面BCD,所以EF⊥平面A1BD.因为A1B⊂平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。
《推荐》专题2.2立体几何中的探索性与存在性问题(教学案)-2017年高考数学二轮复习精品资料(江苏版)Word

数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.1对命题条件的探索探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:1、先猜后证,即先观察与尝试给出条件再给出证明;2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;3、把几何问题转化为代数问题,探索出命题成立的条件.例1【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD,E为边AD的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;【答案】(Ⅰ)详见解析【解析】从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)点评:这类探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明充分性.2对命题结论的探索探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.例2【2016高考北京文数】(本小题14分)如图,在四棱锥中,平面,(I)求证:;(II)求证:;(III)设点E为AB的中点,在棱PB上是否存在点F,使得平面?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III)存在.理由见解析.【解析】所以.又因为,所以平面.(II)因为,,所以.因为平面,所以.所以平面.所以平面平面.(III)棱上存在点,使得平面.证明如下:取中点,连结,,.又因为为的中点,所以.又因为平面,所以平面.对于立体几何的探索性与存在性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的探索性问题精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动.(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由.(2)求证:无论点E在BC边的何处,都有PE⊥AF.(3)当BE为何值时,PA与平面PDE所成角的大小为45。
?拓展提升(1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解.(2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.9如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的√2倍,P 为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,求二面角P-AC-D的大小.(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.如图所示,在正方体ABCD—Al BlC1Dl中,M,N分别是AB,BC中点.(1)求证:平面B1MN⊥平面BB1D1D;(2)在棱DD1上是否存在点P,使BD1∥平面PMN,若有,确定点P的位置;若没有,说明理由.如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的大小:(3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由.立体几何中探索性问题的向量解法高考中立体几何试题不断出现了一些具有探索性、开放性的试题。
对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。
立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势.本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。
一、存在判断型1、已知空间三点A(-2,0,2),B(-2,1,2),C(-3,0,3).设a=AB,b=AC,是否存在存在实数k,使向量k a+b与k a-2b互相垂直,若存在,求k的值;若不存在,说明理由。
解∵k a+b=k(0,1,0)+(-1,0,1)=(-1,k,1),k a-2b=(2,k,-2),且(k a+b)⊥(k a-2b),∴(-1,k,1)·(2,k,-2)=k2 -4=0.则k=-2或k=2.点拨:第(2)问在解答时也可以按运算律做.(k a+b)(k a-2b)=k2a2-k a·b-2b2= k2 -4=0,解得k=-2或k=2.2、如图,已知矩形ABCD,PA⊥平面ABCD,M、N分别是AB、PC的中点,∠PDA为θ,能否确定θ,使直线MN是直线AB与PC的公垂线?若能确定,求出θ的值;若不能确定,说明理由.解:以点A为原点建立空间直角坐标系A-xyz.设|AD|=2a,|AB|=2b,∠PDA=θ.则A(0,0,0)、B(0,2b,0)、C(2a,2b,0)、D(2a,0,0)、P(0,0,2atanθ)、M(0,b,0)、N(a,b,atanθ).∴AB=(0,2b,0),PC=(2a,2b,-2atanθ),MN=(a,0,atanθ).∵AB·MN=(0,2b,0)·(a,0,atanθ)=0,∴AB⊥MN.即AB⊥MN.若MN⊥PC,PDA B CE则MN ·PC =(a ,0,atan θ)·(2a,2b ,-2atan θ) =2a 2-2a 2tan 2θ=0. ∴tan 2θ=1,而θ是锐角. ∴tan θ=1,θ=45°.即当θ=45°时,直线MN 是直线AB 与PC 的公垂线.【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。
这是一种最常用也是最基本的方法. 二、位置探究型3.如图所示。
PD 垂直于正方形ABCD 所在平面,AB=2,E 是PB 的中点,DP 与AE 夹角的余弦值为33。
(1)建立适当的空间坐标系,写出点E 的坐标。
(2)在平面PAD 内是否存在一点F ,使EF⊥平面PCB ?解析:⑴以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,设P (0,0,2m ).则A(2,0,0)、B(2,2,0)、C(0,2,0)、E(1,1,m), 从而AE =(-1,1,m),DP =(0,0,2m).AE DP =〉〈,cos 3322222=+mm m ,得m=1.所以E 点的坐标为(1,1,1).(2)由于点F 在平面PAD 内,故可设F(z x ,0,),由EF ⊥平面PCB 得:0=⋅CB EF 且0=⋅PC EF ,即10)0,0,2()1.1,1(=⇒=⋅---x z x00)2,2,0()1.1,1(=⇒=-⋅---z z x 。
所以点F 的坐标为(1,0,0),即点F 是DA 的中点时,可使EF⊥平面PCB. 【方法归纳】点F 在平面PAD 上一般可设出FDP t DA t DF 21+=⋅、计算出21,t t 后,D 点是已知的,即可求点。
是4、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别棱BC 、CD 上的点,且BE =CF .(1)当E 、F 在何位置时,B 1F ⊥D 1E ; (2)是否存在点E 、F ,使A 1C⊥面C 1EF ?(3)当E 、F 在何位置时三棱锥C 1-CEF 的体积取得最大值,并求此时二面角C 1-EF -C 的大小.解:(1)以A 为原点,以1AB AD AA 、、为x 轴、y 轴、z 轴建立空间直角坐标系,设BE=x ,则有因此,无论E 、F 在何位置均有11B F D E(2)111(,,),(0,,),(,0,),AC a a a EC ax a FC x a 若A 1C⊥面C 1EF ,则22()a a x a axa得0a矛盾,故不存在点E 、F ,使A 1C⊥面C 1EF(3)122()624C CEFa a a V x当2ax时,三棱锥C 1—CEF 的体积最大,这时,E 、F 分别为BC 、CD 的中点。
连接AC 交EF 于G ,则AC ⊥EF,由三垂线定理知:C 1G⊥EF11.C GC C EFC 是二面角的平面角,【方法归纳】 立体几何中的点的位置的探求经常借助于空间向量,引入参数,综合已知和结论列出等式,解出参数. 这是立体几何中的点的位置的探求的常用方法.三、巩固提高5、 在正三棱柱ABC —A 1B 1C 1中,所有棱的长度都是2,M 是BC 边的中点,问:在侧棱CC 1上是否存在点N ,使得异面直线AB 1和MN 所成的角等于45°?解:以A 点为原点,建立如图9-6-5所示的空间右手直角坐标系A -xyz.因为所有棱长都等于2,所以A (0,0,0),C (0,2,0),B (3,1,0), B 1(3,1,2),M(32,32,0). 点N 在侧棱CC 1上,可设N (0,2,m )(0≤m≤2), 则1AB =(3,1,2),MN =(32,12,m), 于是|1AB |=22,|MN |=12m ,1AB ·MN =2m-1.如果异面直线AB 1和MN 所成的角等于45°,那么向量1AB 和MN 的夹角是45°或135°,而cos<1AB ,MN >=||||1MN AB MNAB ••=122122+•-m m ,所以122122+•-m m =±22.解得m=-43,这与0≤m≤2矛盾.即在侧棱CC 1上不存在点N ,使得异面直线AB 1和MN 所成的角等于45°.6、(湖南高考·理)如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1.(I )证明PA⊥平面ABCD ;(II )求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. (Ⅰ)证明 因为底面ABCD 是菱形,∠ABC=60°, 所以AB=AD=AC=a , 在△PAB 中, 由PA 2+AB 2=2a 2=PB 2 知PA⊥AB. 同理,PA⊥AD,所以PA⊥平面ABCD. (Ⅱ)解 作EG//PA 交AD 于G , 由PA⊥平面ABCD.知EG⊥平面ABCD.作GH⊥AC 于H ,连结EH , 则EH⊥AC,∠EHG 即为二面角θ的平面角.又PE : ED=2 : 1,所以.3360sin ,32,31a AG GH a AG a EG =︒===从而 ,33tan ==GH EG θ .30︒=θ (Ⅲ)解法一 以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直平面PAD 的直线为x 轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为所以 ).0,21,23(),31,32,0(a a AC a a AE == 设点F 是棱PC 上的点,,10),,21,23(<<-==λλλλλ其中a a a PC PF 则 )).1(),1(21),1(23(λλλ-+-=a a a 令 AE AC BF 21λλ+= 得 解得 .23,21,2121=-==λλλ 即 21=λ时,.2321AE AC BF +-= 亦即,F 是PC 的中点时,BF 、AC 、AE 共面.又 BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF//平面AEC. 解法二 当F 是棱PC 的中点时,BF//平面AEC ,证明如下, 证法一 取PE 的中点M ,连结FM ,则FM//CE. ① 由 ,21ED PE EM ==知E 是MD 的中点. 连结BM 、BD ,设BD ⋂AC=O ,则O 为BD 的中点. 所以 BM//OE. ②由①、②知,平面BFM//平面AEC. 又 BF ⊂平面BFM ,所以BF//平面AEC. 证法二因为 )(2121DP CD AD CP BC BF ++=+=PDABCE所以 BF 、AE 、AC 共面.又 BF ⊄平面ABC ,从而BF//平面AEC.【方法归纳】点F 是线PC 上的点,一般可设PC PF λ=,求出λ值,P 点是已知的,即可求出F 点高考复习课:立体几何中探索性问题的向量解法本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。