高中数学选修23知识点.pdf

合集下载

人教A版高中数学选修2-3知识点总结(2)(K12教育文档)

人教A版高中数学选修2-3知识点总结(2)(K12教育文档)

人教A版高中数学选修2-3知识点总结(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教A版高中数学选修2-3知识点总结(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教A版高中数学选修2-3知识点总结(2)(word版可编辑修改)的全部内容。

高中数学 选修2-3知识点第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法。

那么完成这件事共有 N=M 1M 2。

.M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--= 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== ;m n n m n C C -= m n m n m n C C C 11+-=+ 7、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101()第二章 随机变量及其分布知识点:1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

高中数学选修2-3知识点

高中数学选修2-3知识点

111--++=⋅+=m n m n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n A A C m nm m m n mn-=+--==Λ)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ;mn n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 10、二项式系数C n r为二项式系数(区别于该项的系数) 11、杨辉三角:()()对称性:,,,……,1012C C r n n r nn r==- ()系数和:…2C C C n n nn n012+++= (3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第n C n n nn2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式() 系数最大即第项及第项,其二项式系数为n n C C n n nn +++=-+121211212第二章 随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

高中数学 选修2-3知识点(完整知识点梳理及经典例题答案详解)

高中数学 选修2-3知识点(完整知识点梳理及经典例题答案详解)

高中数学选修2-3知识点总结第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--= 规定:0!1=5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm n mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -= mn m n m n C C C 11+-=+7、解排列、组合题的基本策略 (1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

这是解决排列组合应用题时一种常用的解题方法。

(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

(3在处理排列组合问题时,常常既要分类,又要分步。

其原则是先分类,后分步。

(4)两种途径:①元素分析法;②位置分析法。

高中数学选修2-3知识点(K12教育文档)

高中数学选修2-3知识点(K12教育文档)

高中数学选修2-3知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学选修2-3知识点(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学选修2-3知识点(word版可编辑修改)的全部内容。

111--++=⋅+=m nm n m nm m m n m n mAA CA A A 高中数学 选修2-3知识点第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2。

.。

M N 种不同的方法。

3、排列:从n 个不同的元素中任取m (m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--=5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mm mn mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222……9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 10、二项式系数C nr为二项式系数(区别于该项的系数) 11、杨辉三角:()()对称性:,,,……,1012C C r n n r nn r==- ()系数和:…2C C C n n nn n012+++= (3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第n C n n nn2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式() 系数最大即第项及第项,其二项式系数为n n C C n n nn +++=-+121211212第二章 随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

数学选修2-3知识点总结

数学选修2-3知识点总结

数学选修2-3知识点总结1. 弧度制和角度制的转换在数学中,角度一般用度(°)来表示,弧度则是用弧长与半径之比来表示的。

弧度制的优点是在数学计算中更加方便和准确。

要将角度制转换为弧度制,可以使用以下公式:$$\\text{弧度} = \\frac{\\text{角度} \\times \\pi}{180}$$要将弧度制转换为角度制,可以使用以下公式:$$\\text{角度} = \\frac{\\text{弧度} \\times 180}{\\pi}$$2. 三角函数的定义和性质•正弦函数(sin):定义为对于任意实数x,它的值等于以x为对边的正弦的长度与以1为斜边的长度之比。

•余弦函数(cos):定义为对于任意实数x,它的值等于以x为邻边的余弦的长度与以1为斜边的长度之比。

•正切函数(tan):定义为对于任意实数x,它的值等于正弦值与余弦值之比。

三角函数具有一些重要的性质,如:•正弦函数的周期性:sin(x + 2π) = sin(x),其中π是圆周率。

•余弦函数的周期性:cos(x + 2π) = cos(x),其中π是圆周率。

•正切函数的周期性:tan(x + π) = ta n(x),其中π是圆周率。

•三角函数的奇偶性:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。

3. 三角函数的图像和变换3.1 正弦函数的图像和变换正弦函数的图像为一条连续的波浪线,振幅为1,周期为2π。

正弦函数的图像可以通过对y = sin(x) 进行平移、压缩和拉伸得到。

•平移:对于y = sin(x - a),图像右移a单位;对于y = sin(x + a),图像左移a单位。

•压缩和拉伸:对于y = sin(bx),图像的周期为2π/b,振幅不变;对于y = asin(x),图像的振幅为a,周期不变。

3.2 余弦函数的图像和变换余弦函数的图像也是一条连续的波浪线,与正弦函数的图像相似,但相位差90度。

人教版高中数学知识点总结:新课标人教A版高中数学选修2-3知识点总结

人教版高中数学知识点总结:新课标人教A版高中数学选修2-3知识点总结

高中数学选修2-3知识点总结第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--= 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== ;m n n m n C C -= m n m n m n C C C 11+-=+7、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101()第二章 随机变量及其分布知识点:1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

高中数学选修2-3知识点

高中数学选修2-3知识点

高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。

那么完成这件事情共有M1+M2+。

+MN种不同的方法。

2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。

那么完成这件事情共有XXX种不同的方法。

3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。

从n个不同元素中取出m个元素的一个排列数,用符号An表示。

An=m!/(n-m)!(m≤n,n,m∈N)。

5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。

*(n-m+1)=n!/(n-m)。

6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。

8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。

+C(n,n)*a^0*b^n。

9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。

10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。

11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。

高中数学选修2-3知识点总结(K12教育文档)

高中数学选修2-3知识点总结(K12教育文档)

第一章(完整)高中数学选修2-3知识点总结(word版可编辑修改)第二章第三章第四章编辑整理:第五章第六章第七章第八章第九章尊敬的读者朋友们:第十章这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学选修2-3知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

第十一章本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学选修2-3知识点总结(word版可编辑修改)的全部内容。

第十二章第十三章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法。

那么完成这件事共有 N=M 1M 2.。

M N 种不同的方法。

3、排列:从n 个不同的元素中任取m (m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--= 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n mm m n mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -=mn m n m n C C C 11+-=+7、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r+-==101() 9.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++,令1x =,则0122n rnn nn n n C C C C C =++++++第二章 随机变量及其分布 知识点:(3)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.(4)离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③当时 x ,曲线上升;当时 x ,曲线下降.并且当曲线向左、右两边无限延伸时,以 x 轴为渐近
线,向它无限靠近.
④当 一定时,曲线的形状由 确定. 越大,曲线越“矮胖”,表示总体的分布越分散; 越小,曲线
越“瘦高”,表示总体的分布越集中. ⑤当σ相同时,正态分布曲线的位置由期望值μ来决定. ⑥正态曲线下的总面积等于 1.
超几何分布
服从参数为N, M, n的超几何分布
E = n M N
D(X)=np(1-p)* (N-n)/(N-1)
(不要求)
二项分布,ξ ~ B(பைடு நூலகம்,p)
Eξ=np
Dξ=qEξ=npq,(q=1-p)
几何分布,p(ξ=k)=g(k,p)
1 p
D
=
q p2
学海无涯
17.正态分布: 若概率密度曲线就是或近似地是函数
1、随机变量:如果随机试验可能出现的结果可以用一个变量 X 来表示,并且 X 是随着试验的结果的不同 而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母 X、Y 等或希腊字母 ξ、η 等表示。 2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量 X 可能取的值,我们可以按一定 次序一一列出,这样的随机变量叫做离散型随机变量. 3、离散型随机变量的分布列:一般的,设离散型随机变量 X 可能取的值为 x1,x2,..... ,xi ,......,xn
6、组合:从 n 个不同的元素中任取 m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一 个组合。
7、公式:C
Cmn =mn
A = A
mAn mmA
m
=n
m m
=n(nn(−n
1−)1)(n(−n m!m!
m− m+
1+)1)
C
Cmn =mn
= n!n! m!m(n!(−n m− )m! )!
f (x) =
1

e
( x− )2 2 2
,
x
(−,+)
2
的图像,其中解析式中的实数 、( 0) 是参数,分别表示总体的平均数与标准差.
则其分布叫正态分布 记作:N(, ) ,f( x )的图象称为正态曲线。
18.基本性质:
①曲线在 x 轴的上方,与 x 轴不相交.
②曲线关于直线 x= 对称,且在 x= 时位于最高点.
X 取每一个值 xi(i=1,2,......)的概率 P(ξ=xi)=Pi,则称表为离散型随机变量 X 的概率分布,简称分布 列
4、分布列性质① pi≥0, i =1,2, … ;② p1 + p2 +…+pn= 1. 5、二项分布:如果随机变量 X 的分布列为:
其中 0<p<1,q=1-p,则称离散型随机变量 X 服从参数 p 的二点分布
学海无涯
(3)最值:n 为偶数时,n+1 为奇数,中间一项的二项式系数最大且为第
2 n + 1 项 , 二 项 式 系 数 为 C n 2 n ; n 为 奇 数 时 , ( n + 1 ) 为 偶 数 , 中 间 两 项 的 二 项 式
系 数 最 大 即 第 n 2 + 1 项 及 第 n 2 + 1 + 1 项 , 其 二 项 式 系 数 为 C n n 2 − 1 = C n n 2 + 1 第二章 随机变量及其分布
C
m n
=C
n−m n
;
C
m−n1+C
m n
=C
m n+1
8、二项式定理: ( a + b ) n = C 0 n a n + C 1 n a n − 1 b + C 2 n a n − 2 b 2 + … + C n r a n − r b r + … + C n n b n
二 项 展 开 9、式 二的 项通 式项 通项公 公式 式: T r + 1 = C n r a n − r b r ( r = 0 , 1 … … n )
19. 3 原则:
( − , + )
( − 2 , + 2 )
( − 3 , + 3 )
学海无涯
从上表看到,正态总体在 ( − 2 , + 2 ) 以外取值的概率 只有 4.6%,在 ( − 3 , + 3 ) 以外取
值的概率只有 0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况 在一次试验中几乎是不可能发生的.
学海无涯
第一章 计数原理
高中数学 选修 2-3 知识点
1、分类加法计数原理:做一件事情,完成它有 N 类办法,在第一类办法中有 M1 种不同的方法,在第二 类办法中有 M2 种不同的方法,……,在第 N 类办法中有 MN 种不同的方法,那么完成这件事情共有 M1+M2+……+MN 种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要分成 N 个步骤,做第一 步有 m1种不同的方法,做第二 步有 M2不同的方法,……,做第 N 步有 MN 不同的方法.那么完成这件事共有 N=M1M2...MN 种不同的方 法。 3、排列:从 n 个不同的元素中任取 m(m≤n)个元素,按.照.一.定.顺.序.排成一列,叫做从 n 个不同元素中取 出 m 个元素的一个排列 4、排列数:从 n 个不同元素中取出 m(m≤n)个元素排成一列,称为从 n 个不同元素中取出 m 个元素的一
6、超几何分布:一般地, 设总数为 N 件的两类物品,其中一类有 M 件,从所有物品中任取 n(n≤N)件, 这 n 件中所含这类物品件数 X 是一个离散型随机变量,
则它取值为
k
时的概率为 P( X
=
k) =
C C k n−k M N−M
C
n N
(k
=
0,1, 2,
,m) ,
其中 m = minM, n ,且 n≤ N , M ≤ N ,n, M, N N*
SSx
a = y − bx
10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验
学海无涯
11、概率:Pn (k )
=
C
k n
p k (1 −
p)n−k
12、二项分布: 设在 n 次独立重复试验中某个事件 A 发生的次数,A 发生次数ξ是一个随机变量.如果 在一次试验中某事件发生的概率是 p,事件 A 不发生的概率为 q=1-p,那么在 n 次独立重复试验中
P( = k) = Cnk pk qn−k (其中 k=0,1, ……,n,q=1-p ) 于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作 ξ~B(n,p) ,其中 n,p 为参数 13、数学期望:一般地,若离散型随机变量ξ的概率分布为
则称 Eξ=x1p1+x2p2+…+xnpn+… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离 散型随机变量。
7、条件概率:对任意事件 A 和事件 B,在已知事件 A 发生的条件下事件 B 发生的概率,叫做条件概率. 记作 P(B|A),读作 A 发生的条件下 B 的概率 8、公式:
P(B | A) = P( AB) , P( A) 0. P( A)
9、相互独立事件:事件 A(或 B)是否发生对事件 B(或 A)发生的概率没有影响,这样的两个事件叫做相互 独立事件。 P(A B) = P(A) P(B)
个排列. 从 n 个不同元素中取出 m 个元素的一个排列数,用符号 Anm 表示。
Am = n(n −1)(n − m +1) = n! (m n, n, m N) (n − m)!
5、公式: ,
A
m n+1
=
A
m n
+
A
m m
C
= m−1 n
A
m n
+
mA
m−1 n
Anm = nAnm−−11
10、二项式系数 C n r 为 二 项 式 系 数 ( 区 别 于 该 项 的 系 数 )
11、杨辉三角:
( ) ( 1 ) 对 称 性 : C n r = C n n − r r = 0 , 1 , 2 , … … , n
( 2 ) 系 数 和 : C 0 n + C 1 n + … + C n n = 2 n
14、两点分布数学期望:E(X)=np
15、超几何分布数学期望:E(X)= n M . N
16、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2 +......+(xn-Eξ)2·Pn 叫随机变量ξ的均方差,简称方差。 17、集中分布的期望与方差一览:
期望
方差
两点分布
Eξ=p
Dξ=pq,q=1-p
K2≤3.841 时,X 与 Y 无关; K2>3.841 时,X 与 Y 有 95%可能性有关;K2>6.635 时 X 与 Y 有 99%可能 性有关
2、回归分析
回归直线方程 yˆ = a + bx
其中 b
=
xy

1 n
x
y
= (x − x)( y − y) ,=
SP
x2

1 n
(
x2
)
(x − x)2
第三章 统计案例
1、独立性检验
假设有两个分类变量 X 和 Y,它们的值域分另为{x1, x2}和{y1, y2},其样本频数列联表为:
y1
y2
总计
x1
a
b
a+b
x2
c
相关文档
最新文档