一元一次方程应用题7相遇,追及问题)
一元一次方程应用题-相遇及追击问题

一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
顺水速度=船速+水速 逆水速度=船速-水速
A码头
B码头
水流方向
从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
甲
乙
A
B
A车路程+B车路程=相距路程
解:设B车行了x小时后与A车相遇,根据题意列方程得 50x+30x=240 解得 x=3 答:设B车行了3小时后与A车相遇。
练 一
例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
1、画出示意图:
3km/h甲
乙2km/h
A
B
2、甲乙相遇时,两人所走的路程与AB两地的距离有什么关系?
时间角度:甲行走的时间=乙行走的时间
3、甲行走的时间与乙行走的时间有什么关系?
甲行走的速度×时间+乙行走的速度×时间=AB的距离
练习1
西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
慢车先行路程
快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程
慢车后行路程
相遇问题
慢车后行的时间=快车行驶的时间
例2:甲、乙从一点出发,同向而行,甲每小时走3km,乙每小时走2km,乙先出发3小时,甲再出发追赶乙,问甲要多久才能追上乙?
人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)

人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)一、单选题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上乙,则下列四个方程中不正确的是()A.7x=6.5x+10B.7x-10=6.5xC.(7-6.5)x=10D.7x=6.5x-102.甲、乙两列火车在平行轨道上相向而行,已知两车自车头相遇到车尾相离共需8 s.若甲、乙两车的速度之比为3∶2,甲车长200 m,乙车长280 m,则甲、乙两车的速度分别为()A.30 m/s,20 m/sC.38 m/s,22 m/sB.36 m/s,24 m/sD.60 m/s,40 m/s3.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.x8x5x8x5B.x8x5xx85108 C.D.4.如图,甲船从北岸船埠A向南行驶,航速为36千米/时;乙船从南岸船埠B向北行驶,航速为27千米/时.15动身,两船均于7:两岸平行,水面宽为18.9千米,则两船间隔最近时的时刻为()A.7:35B.7:34C.7:33D.7:325.甲乙两人练习跑步,甲先让乙跑10米,则甲5秒钟追上乙,若甲让乙先跑2秒,甲跑4秒就追上乙,甲乙两人每秒分别跑()A.4米、6米C.6米、4米B.2米、4米D.4米、2米16.甲、乙两人从学校到博物馆去,甲每小时走4km,乙每小时走5km,甲先出发0.1h,结果乙还比甲早到0.1h.设学校到博物馆的距离为xkm,则以下方程正确的是()A.xx+0.1=0.145B.xx-0.1=0.145C.xx=0.145D.4x﹣0.1=5x+0.17.甲、已两地相距50千米,小明、小刚分别以6?千米/时、4千米/时从甲乙两地同时出发,小明领一只小狗以10千米/时奔向小刚,碰到小刚后奔向小明,碰到小明后奔向小刚…一直到两人相遇,小狗共跑了多少路程?()A.25千米B.30千米C.35千米D.50千米8.A、B两地相距900千米,甲乙两车分别从A、B两地同时动身,相向而行,已知甲车的速率为110千米/时,乙车的速率为90千米/时,则当两车相距100千米时,甲车行驶的工夫是()A.4小时B.4.5小时C.5小时D.4小时或5小时二、填空题9.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时.10.一个通讯员骑自行车需要在规定工夫内把函件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要早退15分钟,原定工夫是________分.11.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A,C两地距离为2千米,则A,B两地之间的距离是_____.12.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.13.在一段双轨铁道上,两人辆火车迎头驶过,A列车车速为20米/秒,B列车车速为25米/秒,若A列车全长200米,B列车全长160米,两列车错车的工夫为____秒。
一元一次方程-相遇、追及问题

19
精讲 例题
分
析
例2、小明每天早上 要在7:50之前赶到距离 家1000米的学校上学, 一天,小明以80米/分 的速度出发,5分后, 小明的爸爸发现他忘了 带语文书,于是,爸爸 立即以180米/分的速 度去追小明,并且在途 中追上他。 (1)爸爸追上小明用 了多少时间? (2)追上小明时,距 离学校还有多远?
1.顺逆问题 2. 3.追及问题
一、明确行程问题中三个量的关系
三个基本量关系是:速度×时间=路程 引例:从甲地到乙地,水路比公路近40千米,上午十 时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地
驶往乙地,结果同时到达终点。已知轮船的速度是每小时 24千米,汽车的速度是每小时40千米,求甲、乙两地水路、 公路的长,以及汽车和轮船行驶的时间?
线段图分析:
A
B
80千米
甲
乙
第二种情况: A车路程+B车路程-相距80千米= 相距路程
变式 练习
分
析
1、 A、B两车分别 停靠在相距115千米的
线段图分析:
甲、乙两地,A车每小
A
B
时行50千米,B车每小
甲
乙
时行30千米,A车出发
1.5小时后B车再出发。
(1)若两车相向而行, 请问B车行了多长时间 后与A车相遇?
解:设船在静水中的平均速度为x千米/时,则顺流
速度为(x+3)千米/时,逆流速度为(x-3)千米/时。
根据往返路程相等,列得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并,得 0.5x=13.5
X=27
答:船在静水中的平均速度为27千米/时。
一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程常见应用题型及解法

一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
一元一次方程的应用之追及问题

一元一次方程的应用之追及问题追及问题是一种经典的一元一次方程应用问题,常常出现在物理学、运动学以及交通领域中。
它描述的是两个物体相互追赶、追及的情况,通过建立一元一次方程来求解物体的速度、距离和时间等相关问题。
例如,假设有两个人A和B,他们在同一条直线上同时从不同的位置出发,A的速度是5米/秒,B的速度是4米/秒。
问题1:如果A和B同时出发后,多久之后他们能够相遇?问题2:相遇时,A和B分别走了多少米?首先,可以设定A和B同时出发的时间为t,那么A和B在t时间内分别走过的距离可以用速度乘以时间来表示。
根据题目中给出的数据,A 和B的速度分别是5米/秒和4米/秒,那么他们走过的距离可以表示为:A的距离=5tB的距离=4t问题1:他们相遇的时间是多久?由于他们在相遇时走过的距离是相等的,所以我们可以将A的距离和B的距离相等,即5t=4t。
解这个方程可以得到t=0,表示他们在出发后立即相遇。
但根据题意可知,他们是同时出发的,所以这个解是不符合实际情况的。
因此,我们可以设定他们相遇的时间为t,即5t=4t。
解这个方程可以得到t=0。
这个解同样不符合实际情况,所以可以排除。
问题2:相遇时,A和B分别走了多少米?我们可以将相遇时的距离设为d,即A和B相遇时的距离是d,那么根据上面的分析,A和B分别走过的距离分别是5d和4d。
根据题意,A 和B相遇时的距离是相等的,所以可以写出5d=4d,从而解得d=0。
同样不符合实际情况。
通过上面的分析可以看出,在这个问题中,A和B根本无法相遇。
这是因为在他们的出发速度中,A的速度5米/秒大于B的速度4米/秒,A 始终能够保持在B的前方,无论经过多久都不可能相遇。
通过这个例子,我们可以看到追及问题中一元一次方程的应用。
尽管上述问题中我们没有得到实际的解,但这并不妨碍追及问题在实际情况中的应用。
例如,在交通运输领域中,追及问题可以用于计算不同车辆之间的距离,以及不同车辆的相对速度和时间。
一元一次方程的应用(行程问题)测试题

4.3一元一次方程的应用(行程问题)1.相遇、追及问题1.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发。
已知甲车的速度为120千米/时,乙车的速度为80千米/时,经过t小时两车相距50千米,则t的值为 .2.甲乙两人绕400米的环形跑道练习跑步,甲每秒跑2m,乙每秒跑2.4m,两人从同一地点出发,x秒相遇。
(1)若反向而行,则可列方程;(2)若同向而行,则可列方程。
3.甲乙两站相距480公里,一列慢车从甲站开出,每小时行驶90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开出,两车相向而行,问快车开出多少小时后两车相遇?(2)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(3)两车同时开出,快车在慢车的后面,多少小时后快车追上慢车?4.张华和李明登一座山,张华每分钟登高10m,并且先出发30min(分),李明每分钟登15m,两人同时登上山顶。
设张华登山用了x min,如何用含x的式子表示李明登山所用的时间?试用方程求x的值,由x的值能求山高吗?如果能,山高是多少?5.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km,到中午12时,两人又相距36km,求A、B两地间的路程。
6.A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇后两车相距100km 时,甲车共行驶了多少小时?7.甲从A地出发前往B地,20分钟后,乙从B地骑车出发前往A地,乙到达A地后停留40分钟,然后沿原路以原来的速度用了1小时就回到B地。
甲也同时到达,已知乙的速度比甲的速度多8千米/时,求A、B 两地之间的距离。
2.顺逆水(风)问题1.一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。
乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题7(相遇、追及问题)
执笔人:彭再荣审核人:邹伟杰
教学目标
1、利用路程、时间、速度三者之间的关系,借助化示意图列一元一次方程解
以现实为背景的应用题。
2、运用画图直观分析。
探究发现,充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。
3、结合实际,创造活跃有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养
学生的探索精神,树立学习的信心。
教学重点与难点
重点:通过分析题意,寻找等量关系,列方程。
难点:从不同的角度来找等量关系,列方程。
学法指导:自学启导法
教学过程:
一、复习与练习
1、甲乙两人从相距10千米的两地相向而行,甲每小时走3千米,乙每小时走2千米,
则______小时后两人相遇。
2、甲乙两人从相距10千米的两地同向而行,甲在后面追乙,甲每小时走3千米,乙
每小时走2千米,则______小时后甲追上乙。
二、例题分析
小明每天早上要在7:50之前赶到距家1000米的学校上学。
一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
分析:爸爸追上小明时,两人的_________相等,爸爸所用时间比小明______
可抓住等量关系_________
解:
三、知识应用:列方程解应用题
1、甲乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15
米,两人同时登上山顶。
甲用多长时间登山?这座山有多高?
相等关系:
2、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速
度比电气机车速度的5倍还快20千米/小时,半小时后两人相遇。
两车的速度各是多少??
相等关系:
3、甲列车从A地开往B地,速度是60千米/小时,乙列车从B地开往A地,速度是
90千米/小时。
已知两地相距300千米,两车相遇的地方离A地多远?
相等关系:
四、小结
相遇问题的相等关系:甲走路程+乙走路程=全程
追及问题的相等关系:追及路程=被追及路程+先走路程(相隔距离)
五、5分钟测评
1、甲乙两人骑自行车,同时从相距45千米的两地相向而行,经过两小时两人相遇,
已知甲与乙每小时多走2.5千米。
求两人每小时各走多少千米?
解:设乙每小时走x千米,则甲每小时走千米
2、跑得快的马每天走240里,跑的慢的马每天走150里,慢马先走12天,快马几天
可以追上慢马?
解:设
六、作业:
1、小兵和小明每天早晨坚持跑步,小兵每秒跑4米,小明每秒跑6米。
(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?
(2)如果小明站在百米跑道的起点处,小兵站在他前面10米,两人同时同向起跑,几秒后小明追上小兵?
2、运动场的跑道一周长400米,甲练习骑自行车,平均每分钟骑350米,乙练习跑
步,每分钟跑250米,两人从同一处同时出发反向而行,经过多少时间首次相遇?又经过多少时间再次相遇?
七:拓展题
1、一个自行车队进行训练,训练时所有的队员都以35千米/小时的速度前进。
突
然,一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其它队员汇合。
一号队员从离队到与其它队员汇合,经过了多少时间?
2、A、B两地相距480千米,一列慢车以60千米/小时的速度从A地开出,
一列快车以65千米/小时的速度从B地开出.
(1)若两车同时开出,相向而行,多少时间相遇?
(2)若慢车先开出1小时,两车同向而行,快车开出多少小时追上慢车?
(3) 若两车同时开出,相背而行,多少时间后两车相距620千米?
(4)若慢车先开出1小时,相向而行,慢车开出多少小时后两车相距620千米?
3、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。
已知
两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。
八、教学反思:。