代数学引论第二章答案

合集下载

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

(完整版)北大版金融数学引论第二章答案

(完整版)北大版金融数学引论第二章答案

版权所有,翻版必究第二章习题答案1.某家庭从子女出生时开始累积大学教育费用5万元。

如果它们前十年每年底存 款1000元,后十年每年底存款1000+X 元,年利率7%。

计算X 。

解:S = 1000s 20¬p7%+Xs 10¬p7%X =50000 − 1000s 20¬p7% s 10¬p7%= 651.722.价值10,000元的新车。

购买者计划分期付款方式:每月底还250元,期限4年。

月结算名利率18%。

计算首次付款金额。

解: 设首次付款为X ,则有10000 = X + 250a 48¬p1.5%解得X = 1489.363.设有n 年期期末年金,其中年金金额为n ,实利率i =1。

试计算该年金的现值。

解:P V = na¬n pi1 − v nn= n 1n=(n + 1)nn 2− n n+2 (n + 1)n4.已知:a¬n p= X ,a 2¬n p= Y 。

试用X 和Y 表示d 。

解: a 2¬n p= a¬n p+ a¬np (1 − d)n则Y − X1d = 1 − ( X ) n5.已知:a¬7p= 5.58238, a 11¬p= 7.88687, a 18¬p= 10.82760。

计算i 。

解:a 18¬p = a¬7p + a 11¬p v 7解得6.证明: 11−v 10=s 10¬p +a ∞¬p。

s 10¬pi = 6.0%北京大学数学科学学院金融数学系第 1 页版权所有,翻版必究证明:s 10¬p + a ∞¬p(1+i)10−1+11 s 10¬p=i(1+i)10−1ii= 1 − v 107.已知:半年结算名利率6%,计算下面10年期末年金的现值:开始4年每半 年200元,然后减为每次100元。

高等代数2.1-引言

高等代数2.1-引言
第二章 行列式 §2.1 引言
联合收入问题
R,S,T三公司有右 三公司有右 图股份关系。 公司 图股份关系。R公司 拥有T公司60%股份 公司60%股份, 拥有 公司60%股份, 公司掌握R公司 T公司掌握 公司 20%股份 ,R,S,T 股份…, 股份 各自营业净收入分别 10、 万元。 是10、8和6万元。求 各公司联合收入及实 际收入。 际收入。
+
15/27
例2.求 n 级排列 135 (2n 1)(2n)(2n 2) 42 . 的逆序数. 的逆序数.
方法一
解:135 (2n 1)(2n)(2n 2) 42
12
n1
n1
1
τ = 1 + 2 + + (n 1) + (n 1) + + 2 + 1 = n(n 1)
16/27
19/27
定理1 定理
对换改变排列的奇偶性.即经过一次对换, 对换改变排列的奇偶性.即经过一次对换, 奇排列变成偶排列,偶排列变成奇排列. 奇排列变成偶排列,偶排列变成奇排列. 证明 1) 特殊情形:作相邻对换 特殊情形: 设排列为
a1 al ab b1 bm ab
对换 a 与 b
a1 al ba b1 bm
两式相减消去 x2,得
(a11a22 a12a21)x1 = b1a22 a12b2 ;
4/27
类似地, 类似地,消去 x1,得 (a11a22 a12a21)x1 = b1a22 a12b2;
(a11a22 a12a21)x2 = a11b2 b1a21 ,
当 a11a22 a12a21 ≠ 0 时, 原方程组有唯一解
除 a , b 外,其它元素所成逆序不改变. 其它元素所成逆序不改变

线性代数第二章答案解析

线性代数第二章答案解析

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A-=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得(A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。

线性代数第2章答案

线性代数第2章答案

第二章 矩阵及其运算2.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B求.B A A AB T 及23- 解:A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112 ⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=092650850. 3.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求kA .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ ⎪⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---kk kk k kkk k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明:当2=k 时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k kkk k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1214.求下列矩阵的逆矩阵: ⎪⎪⎪⎭⎫ ⎝⎛---145243121; 解: 2=A , 故1-A 存在. 024312111==-=A A A而 1613322212-==-=A A A 21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(注意元素的排列顺序).5.设矩阵B 满足E B A AB 932-=-,⎪⎪⎪⎭⎫ ⎝⎛=400020101A ,求矩阵B .解:由E B A AB 932-=-,得))(()(E A E A E A B E A 33932+-=-=-.注意到023≠=-||E A ,从而E A 3-可逆,于是E A B 3+=⎪⎪⎪⎭⎫ ⎝⎛=700050104.6.设三阶矩阵A 满足21=||A ,求|)(|*A A 231--.解:根据逆矩阵和伴随矩阵的性质得|||||||)(|*11113223123-----=-=-A A A A A A 27163213-=-=-||)(A .7. 设⎪⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,求8A 及4A . 解: ⎪⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A . 则⎪⎪⎭⎫⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A O O A A ⎪⎪⎭⎫⎝⎛=8281A OO A . 1682818281810===A A A A A .⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A .8.⎪⎪⎪⎪⎪⎭⎫⎝⎛=4121031200210001A ,求1-A .解: 24=A , 0434232413121======A A A A A A . 68122444332211====A A A A124110320011312-=-=)(A 124210120211413-=-=)(A31213120211514=-=)(A 44210120011523-=-=)(A 51213120011624-=-=)(A 21210210011734-=-=)(A *-=A AA 11,故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A ,也可以分块处理.13.解下列矩阵方程:⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解: 11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X (注意坐乘、右乘) ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫ ⎝⎛---=201431012(初等矩阵的性质).15.举反列说明下列命题是错误的:(1)若02=A ,则0=A ;(2)若A A =2,则0=A 或E A =; (3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A (2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠ (3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011Y AY AX =且0≠A 但Y X ≠16.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时 有0=*A(2) 若0≠A ,由于*-=A AA 11, 则E A AA =* 取行列式得到: nA A A =*则1-*=n A A若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA第二章自测题1. 填空题(1)设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8030010000100001A ,求=||A . 提示:根据8==||,||**A E A AA ,得3||||*A A =知道2=||A .(2) 设n 阶矩阵满足31=||A ,则=-⎪⎭⎫⎝⎛*-||A A 15411.提示:根据逆矩阵和伴随矩阵的性质有n n A A A A A A A )(||)(||||||||131154154111111-=-=-=-=-⎪⎭⎫⎝⎛----*-. (3)设⎪⎪⎪⎭⎫ ⎝⎛=300041003A ,则()=--12E A .提示:因为⎪⎪⎪⎭⎫ ⎝⎛=-1000210012E A ,所以⎪⎪⎪⎪⎭⎫⎝⎛-=--1000212100121)(E A . (4) 设⎪⎪⎭⎫ ⎝⎛-=3211A ,E A A B 232+-=, 则=-1B .提示:先求出矩阵B ,从而知道⎪⎪⎭⎫ ⎝⎛--=-112101B . (5)设A 为43⨯矩阵,且2()R A =,102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()R AB = .提示:由于矩阵B 可逆,从而知道2()().R AB R A ==(6)设121000000000000n n na a A a a -⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭,其中012(,,,),i a i n ≠= 则1A -= .提示:由于矩阵A 比较特殊,可以看出11111211000000000000n n n a a A a a ------⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪⎪⎝⎭.也可以利用分块矩阵处理.事实上,设O A D B O ⎛⎫= ⎪⎝⎭,其中矩阵A 及矩阵B 都可逆,所以D 可逆. 令1O A B O -⎛⎫⎪⎝⎭⎪⎪⎭⎫ ⎝⎛=4321C C C C , 则O A B O ⎛⎫ ⎪⎝⎭⎪⎪⎭⎫⎝⎛4321C C C C ==E 12E O O E ⎛⎫ ⎪⎝⎭ 由此得到13131441111222()()AC E C A AC O C O A BC O C O B BC E C B ----⎧=⇒=⎪=⇒=⎪⎨=⇒=⎪⎪=⇒=⎩存在存在 故 111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.2.单项选择题(1) n A 是可逆矩阵,则正确的选项是( ).(A) ||||A A =*; (B) 1-*=n A A ||||; (C) ||||1-*=A A ; (D) ||||n A A =*.提示:根据,||*E A AA =有1-=n A A ||||*,答案为B.(2) 设n A ,n B ,n C 满足E ABC =,则下式正确的是( ). (A) E ACB =; (B) E CBA =; (C) E BAC =; (D) E BCA =.提示:根据E ABC =,知道A 和BC 互为逆矩阵,从而D 对.(3) n A 是可逆矩阵, 则下式正确的是( ). (A) 2*()||n A A A *-=; (B) 1*()||n A A A *+=; (C) 1*()||n A A A *-= ; (D) 2*()||n A A A *+=.提示:因为0||AA A E *=≠,所以,***()||A A A E *=,从而1***()||()A A A *-=.注意到11*()||A A A -=和1||||n A A *-=,故2*()||n A A A *-=,答案为A.(4) A 和B 均为n 阶方阵,下面结论正确的是( ). (A) 若A 与B 均可逆,则B A +可逆; (B) 若A 与B 均可逆,则AB 可逆; (C) 若B A +可逆,则B A -可逆; (D) 若B A +可逆,则A 与B 均可逆. 提示:答案为B.(5) 设n 维行向量α=(210021,,,, ),矩阵ααT E A -=,ααT E B 2+=,则AB 等于( ). (A) 0; (B) E -; (C) E ; (D) ααT E +.提示:因为ααααααααααααααT T T T T T T E E AB 222-+=-+-=,而21=T αα,答案为C.(6)设分块矩阵1111A X αβ⎛⎫= ⎪⎝⎭,2212A X αβα-⎛⎫= ⎪⎝⎭,其中12,A A 为n 阶可逆矩阵,12,αα为1n ⨯矩阵,12,ββ为1n ⨯矩阵,α为实数,则α=( ).(A) 1; (B) 1111A βα-; (C) 111111A βα--; (D) 111111A βα-+. 提示:因为121121,.A O αααβαα+=+= 从而111111A αβα-=-,答案为C.(7)设A 和B 均为n 阶可逆阵,则必有( ).(A) A B +可逆; (B) ||||A B =;(C) A 经行的初等变换可以变为B ; (D) 存在可逆矩阵P ,使得1P AP B -=. 提示:因为A 和B 均为n 阶可逆阵,A 经行的初等变换可以变为E , B 经行的初等变换也可以变为E ,答案为C.(8)设A 为n 阶实矩阵,T A 为A 的转置矩阵,则方程组(I )0Ax =和方程组(II )0T A Ax =必有( ). (A)(II )和(I )的解是相同的;(B)(II )的解是(I )的解,但(I )的解不是(II )的解; (C)(I )的解是(II )的解,但(II )的解不是(I )的解; (D) (I )的解不是(II )的解,(II )的解也不是(I )的解.提示:根据矩阵乘法的结合律,显然(I )的解是(II )的解;又因为0T A Ax =,则0T T x A Ax =, 即0()()T T x A Ax =,也就是0()()T Ax Ax =.注意到A 为n 阶实矩阵,且Ax 为1n ⨯阵,根据0()()T Ax Ax =, 立知0Ax =(Why ?),这样(II )的解也是(I )的解,答案为A.(9)设A 为3阶矩阵,1()R A =,则有( ). (A) 3*()R A =; (B) 2*()R A =;(C) 1*()R A = ; (D) 0*()R A =.提示:因为1()R A =,所以,A 的所有2级子式都为零,这样*A O =,答案为D.事实上,设A 为n 阶矩阵,则1102*,();(),();,().n R A n R A R A n R A n =⎧⎪==-⎨⎪≤-⎩若若若(10) n A 是可逆矩阵, 则下式正确的是( ).(A) 1122--=A A )(; (B)0≠*AA ;(C)111--=A A A ||)(* ;(D) T T T A A ])[(])[(111---=. 提示:因为0||AA A E *=≠,答案为B.3. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=3500120000210052A ,求1-A . 解:令⎪⎪⎭⎫ ⎝⎛=21521A , ⎪⎪⎭⎫⎝⎛--=35122A ,则⎪⎪⎭⎫⎝⎛=21A O O A A . 由于⎪⎪⎭⎫ ⎝⎛---=-215211A ,⎪⎪⎭⎫ ⎝⎛---=-251312A ,则⎪⎪⎭⎫ ⎝⎛=---12111A O O A A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=2500130000210052.4.设方阵A 满足O E A A =--232,证明A 可逆,并求1-A . 证明: 由O E A A =--232得E E A A 23=-)(,所以A 可逆,且)(E A A 3211-=-.5. 设α,β,1γ,2γ均为3维行向量,矩阵⎪⎪⎪⎭⎫ ⎝⎛=2132γγαA ,⎪⎪⎪⎭⎫ ⎝⎛=21γγβB .知18=||A ,2=||B ,求||B A -.解:根据行列式的性质,得||B A -212γγβα-=2231222121=-=-=||||B A γγβγγα.6.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=2001Λ,求11A . 解: Λ=-AP P 1,故1-=P P A Λ,所以11111-=P P A Λ.3=P , 1411P *⎛⎫= ⎪--⎝⎭, ⎪⎪⎭⎫ ⎝⎛--=-1141311P . 而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=11111120012001Λ.故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=68468327322731.7.设ΛP AP =,其中⎪⎪⎪⎭⎫ ⎝⎛--=111201111P ,⎪⎪⎪⎭⎫⎝⎛-=511Λ,求ϕ(A )=8A (265A A E +-).解:因为6-=||p ,所以1-=p p A Λ.注意到⎪⎪⎪⎭⎫ ⎝⎛--=-121303222611P , ϕ(A )=8Λp (265ΛΛ+-E )1-p⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=444444444121303222610000000012111201111.8.(1)设矩阵A 及矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛B C O A .解: 设⎪⎪⎭⎫⎝⎛=B C O A D ,则0≠⋅=||||||B A D ,所以D 可逆. 令1-⎪⎪⎭⎫ ⎝⎛B C O A ⎪⎪⎭⎫⎝⎛=4321C C C C , 则⎪⎪⎭⎫ ⎝⎛B C O A ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫ ⎝⎛s nE O O E由此得到⎪⎪⎩⎪⎪⎨⎧=⇒=+-=⇒=+=⇒==⇒=------1242111131122111B C E BC CC B CA B C O BC CC A O C O AC A C E AC s n )()(存在存在故 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-----11111B CA B O A BC O A . 注:特别地0=C 的情况.(2)设矩阵A 及矩阵B 都可逆,求1O A B O -⎛⎫⎪⎝⎭.事实上,设O A D B O ⎛⎫= ⎪⎝⎭,其中矩阵A 及矩阵B 都可逆,所以D 可逆. 令1O A B O -⎛⎫⎪⎝⎭⎪⎪⎭⎫⎝⎛=4321C CC C , 则O A B O ⎛⎫ ⎪⎝⎭⎪⎪⎭⎫⎝⎛4321C C C C ==E 12E O O E ⎛⎫ ⎪⎝⎭ 由此得到13131441111222()()AC E C A AC O C O A BC O C O B BC E C B ----⎧=⇒=⎪=⇒=⎪⎨=⇒=⎪⎪=⇒=⎩存在存在 故 111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.9.解下列矩阵方程.(1) 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛--=100110111A , 且满足矩阵方程02=-+E AX A ,求X .解:因为1-=||A ,所以A 可逆,且⎪⎪⎪⎭⎫ ⎝⎛---=-1001102111A ,再根据02=-+E AX A ,得A A X -=-1⎪⎪⎪⎭⎫ ⎝⎛--=000000120.(2) 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=111111111A ,且满足矩阵方程X A E X A 212+=+-,求X . 解:注意到A 可逆,且⎪⎪⎪⎭⎫ ⎝⎛=-110011101211A ,⎪⎪⎪⎭⎫ ⎝⎛-=--635563356141212)(E A . 再根据X A E X A 212+=+-,得)()(E A E A X --=--1122⎪⎪⎪⎭⎫ ⎝⎛---=132213321281. 10.求解齐次线性方程组:12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩.解:注意到1211121136130040510150040A --⎛⎫⎛⎫ ⎪ ⎪=--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 120100100000-⎛⎫ ⎪ ⎪ ⎪⎝⎭ , 从而原方程与1243200x x x x +-=⎧⎨=⎩同解, 即12422243442211000001x x x x x x x x x x x -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.11.求矩阵的秩(1)10103121121210100111A ⎛⎫ ⎪ ⎪ ⎪=- ⎪-- ⎪ ⎪--⎝⎭. 解:注意到1010101001110111022200000000000001110000A ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,所以2()R A =. (2)a b b b a b A b b a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中A 为n 2()n ≥阶矩阵.分析:这是含参数矩阵的求秩问题,先将矩阵A 化为等价的行阶梯形再讨论. 解:显然矩阵A 的秩与b a ,有关,利用A 的初等变换对b a ,取值情况进行讨论:由于 000000~000000a b b b b b a a b b a a b b a a b b a a b ⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪ ⎪--⎝⎭A ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+b a b a b a b a b b b b b n a 0000000000000000)1(~ , 若0a b ==,则0()R A =;若0a b =≠,则1()R A =;若10()a n b +-=,且a b ≠,则1()R A n =-; 若10()a n b +-≠,且a b ≠,则()R A n =.。

高等数学 线性代数 习题答案第二章

高等数学 线性代数 习题答案第二章

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。

即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。

高等代数学答案02

高等代数学答案02
n n n n n ∑ ∑ ∑ ∑ ∑ 2 2 2 2 ¯ ( |ai | )( |bi | ) ≥ ( |ai ||bi |) = ( |ai bi |) ≥ | ai¯ bi |2 . i=1 i=1 i=1 i=1 i=1
2. 例 2.65. 3. 例 2.66. 4. 例 2.69.
复习题二
3. 由 A 非异, 则 AA−1 = A−1 A = In , 故直接计算可得 Ak (A−1 )k = (A−1 )k Ak = In . 4. 两边左乘 A−1 ; 两边右乘 A−1 . 5. 沿着这一行 (列) 展开求方阵的行列式显然值为 0, 故为奇异阵. 6. 由 Am = O , 得 (In − A)(In + A + A2 + · · · + Am−1 ) = (In + A + A2 + · · · + Am−1 )(In − A) = In . 7. 由于 B (A + B )−1 A(A−1 + B −1 ) = In , 故 A−1 + B −1 奇异. 8. 由 A2 = In 可得 (A + In )(A − In ) = O . 又 In + A 非异, 故 A − In = O , 即 A = In . 9. 由 A2 = A 可得 A2 − A − 2In = −2In , 即 (A + In )(A − 2In ) = −2In , 故 A + In 非异. 10. 由 A2 − A − 3In = O 可得 (A + In )(A − 2In ) = In , 故 A − 2In 非异.
7 30. 例 2.24. 31. 例 2.25 (3). 32. 例 2.26. 33. 例 2.10 (1). 34. (1) 例 2.36; (2) 例 2.37. 35. 例 2.3. 36. 例 2.32. 37. 例 2.33. 38. 例 2.34. 39. 例 2.35. 40. 例 1.39. 41. 例 2.70 的直接推论. 42. 例 2.71. 43. (1) 例 2.57; (2)2.3.2 训练题解答题 9. 44. 2.3.2 训练题解答题 10. 45. 例 2.48. 46. 例 2.63. 47. 例 2.61. 48. 类似例 2.52, 作多项式 f (x) = a1 + a2 x + a3 x2 + · · · + an xn−1 , 令 ϵ1 , ϵ2 , · · · , ϵn 是 −1 的所有 n 次方根. 又令 V = ··· ··· ···

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,bG,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,bG,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,bG,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若ij(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G 内元素.下面证明任意aG,存在bG,使得ab=ba=e.<1> 对任意aG,存在bG,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元aG,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意bG, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意dG, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,yG, xy=yx (xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,bG,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意aG,有a~a,故此aa-1=eS;对任意a,bS,由(ab)b-1=aS,可知ab~b,又be-1=bS,故b~e,由传递性可知ab~e,即(ab)e-1=abS.再者因ae-1=aS, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意aG, 有aa-1=eS,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构. [讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意aH, 有HaH=,并且aHG,HG,又注意到aH和H中都有n个元素, 故此HaH=G.同理可证对任意aH, 有HHa=, HHa=G,因此对任意aH,有aH=Ha.对任意aH, 显然aHH, HaH又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意aG,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取aH, hH, 显然有aha-1H.对给定的xH, 有HxH=, HxH=G.这是因为若假设yHxH, 则存在hH,使得y=xh,即x=yh-1H产生矛盾,因此HxH=;另一方面, xHG,HG, 又注意到xH和H中都有n个元素, 故此HxH=G.那么任取aH,由上面的分析可知axH, 从而可令a=xh1这里h1H.假设存在hH, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1hH,产生矛盾.因此,任取aH, hH, 有aha-1H.综上可知对任取aG, hH, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素ae适合a2=e.证明:设bG,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取aG,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构. 证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,kZ,0<rn.(2)A B i B j=B r G这里i+j=kn+r,kZ,0<rn.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,kZ,0<tn.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,bGa i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,bS,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即abS.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;… … …我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈a H;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果MN={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为MN={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmNm,那么该映射显然是一一对应,另外f(m i Nm j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1MN={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈MN,产生矛盾.2. 设f: MN/N→MmNm,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=axa=x-1axax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=SS=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群222综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p 阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为ab=ab, ab=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:ab=a+b-1,ab=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构. 证明:(i)证明L在运算下构成交换群:由的定义,得到(ab)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(bc)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(ab)c= a(bc).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)ab=ba,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(bc)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(ab)(ac)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(bc)= (ab)(ac).由于和满足交换律,故此(bc)a= (ba)(ca).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a. 所以a2=(ae L)a.因为L无零因子,所以满足消去律[注],故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档