单管共射放大电路及其分析方法
单管共射放大电路实验报告

单管共射放大电路实验报告实验目的,通过实验,了解单管共射放大电路的基本原理和特性,掌握其工作原理和性能参数的测量方法,加深对电子技术的理论知识的理解。
实验仪器和器件,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单管共射放大电路是一种常用的放大电路,它由一个三极管和几个外围元件组成。
在这个电路中,三极管的基极接地,发射极接负电源,集电极接负载电阻,形成了一个共射放大电路。
当输入信号加在基极上时,三极管会产生放大效果,输出信号会在集电极上得到放大。
实验步骤:1. 按照电路图连接实验电路,接通直流电源,调节电源电压和电流,使其符合电路要求。
2. 使用信号发生器产生输入信号,接入电路,观察输出信号在示波器上的波形。
3. 调节信号发生器的频率和幅度,观察输出信号的变化。
4. 测量输入信号和输出信号的幅度,计算电压增益。
5. 改变负载电阻的数值,观察输出信号的变化。
实验结果与分析:在实验中,我们观察到输入信号在经过单管共射放大电路后,输出信号得到了明显的放大。
通过调节信号发生器的频率和幅度,我们发现输出信号的波形随着输入信号的变化而变化,但是整体上保持了放大的特性。
通过测量输入信号和输出信号的幅度,我们计算得到了电压增益的数值,验证了单管共射放大电路的放大性能。
在改变负载电阻的数值后,我们也观察到了输出信号的变化,进一步验证了电路的特性。
实验结论:通过本次实验,我们深入了解了单管共射放大电路的工作原理和特性,掌握了测量其性能参数的方法。
实验结果表明,单管共射放大电路具有良好的放大特性,能够将输入信号放大并输出。
同时,我们也发现了一些问题,比如在一定频率下,输出信号会出现失真等。
这些问题需要进一步的分析和解决。
实验的过程中,我们也遇到了一些困难和挑战,但通过认真的实验操作和思考,最终取得了满意的实验结果。
通过本次实验,我们不仅加深了对电子技术的理论知识的理解,还提高了实验操作的能力和实验分析的能力。
单管共射放大电路与分析方法共34页

51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 —自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
单管共射放大电路实验总结

单管共射放大电路实验总结引言本文是对单管共射放大电路实验的总结与分析。
单管共射放大电路是一种常见的放大电路,其具有放大倍数高、输入阻抗低、输出阻抗高等特点,在电子电路中应用广泛。
本文将从实验目的、实验原理、实验步骤和实验结果四个方面进行详细介绍。
实验目的本次实验的主要目的是掌握单管共射放大电路的工作原理和性能特点,熟悉放大电路的设计和调试过程,培养实际动手操作的能力,以及对实验数据的分析能力。
通过本实验,进一步了解电子器件的基本特性和工作原理,为电子电路设计和实际应用打下坚实基础。
实验原理单管共射放大电路是一种三极管作为放大元件的单级放大电路,其工作原理如下:1.输入信号经耦合电容传入三极管的基极,通过输入电阻Ri控制基极电流。
2.当输入信号为正弦波时,基极电流也为正弦波,进而控制三极管的发射极电流。
3.通过放大作用,使得输出信号的幅度得到放大。
4.由于共射放大电路是由共射极输出的,因此输出信号与输入信号之间存在180°的相位差。
5.通过耦合电容Ce将输出信号取出。
实验步骤1. 实验准备准备实验所需要的材料和仪器设备:三极管、耦合电容、负载电阻、信号源、示波器等。
2. 电路搭建按照给定的电路图,将电阻、电容和三极管等元器件按正确的位置连接好,注意接线的准确性和可靠性。
3. 实验参数设定根据实验要求,设置输入信号源的幅度和频率,选择合适的放大倍数。
4. 电源接入将实验电路接入电源,确认电源电压是否符合要求,并注意应用调压电路稳定电源。
5. 信号测量使用示波器测量输入信号源和输出信号的波形,注意设置好示波器的纵横坐标范围和触发模式。
6. 数据记录与分析记录实验测量到的数据,包括电压、电流和波形等信息。
通过对实验数据的分析,得出分析结论,进一步了解单管共射放大电路的性能特点。
7. 电路调试与改进根据实验数据的分析结果,对电路进行调试和改进,以提高电路的性能和稳定性。
8. 实验总结根据实验结果和观察,总结实验过程中遇到的问题和解决办法,总结实验的结果和得到的经验教训。
单管共射放大电路

实测8050的β为247,分析输出VPP大于10V,只需3.5V即可,取5V的输出电压,由于输出5V,电压设置为15V,Av>=10,取Av=12,Av=-Rc/Re。
电源电压为15V,设置VCE为5V设置ICQ=15MA,且有VCC-IC(RE+RC)=VCE,VCE=10V,RE=15RC,带入进行计算,IC*RE=VEQ=0.625,则Re=100Ω,Rc=12Re,Rc=1.2k,且Ic^2Re=0.135<0.25,用四分之一瓦电阻足够了,确定了Re与Rc后,VEQ=0.625,所以VBQ=1.325,设置偏置电阻RB1与RB2时,ICQ=15MA,IBQ=75UA,所以两个偏置电阻上流过的电流要远大于IBQ,0.75ma就可以了,但是RB1相对于RB2还有(1+β)(rbe+Re)很小,直接将Rb1当做Ri,设置Rb1为4.7K,则VBQ=1.325,所以RB2=47k,这样放大部分的电路就完成了.
1.3M 1.4M
VPP: 11.6 11.2
分析实验数据,达到了Av大于20dB,输出Vpp大于10V,3dB带宽为10Hz到1MHz,使用了15V电压供电,已经达到了实验要求。
五、实验总结(实验中遇到的已解决和未解决的问题)
实验基本上达到了要求。在实验的进行过程中,翻阅了一些有关晶体管电路设计的有关资料,学习了晶体管放大电路的工作原理。并熟练使用仿真软件,但是实际上还是与与仿真结果有所差别,经过不断调试,基本达到实验要求。
一、实验目的(详细指明输入输出)
1、增益≥20dB
2、3dB带宽10Hz~1MHz
3、采用单电Βιβλιοθήκη 供电4、输出幅值≥10Vpp
二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页)
单管共射放大电路及其分析方法

单管共射放大电路及其分析方法单管共射放大电路是一种常用的单管放大电路,常用于电子设备中的信号放大部分。
它的基本原理是将输入信号串联到输入电容上,通过串联的电容将信号引入到放大管的基极,并通过电阻将放大管的发射极接地,从而形成共射放大电路。
本文将介绍单管共射放大电路的工作原理以及常用的分析方法。
单管共射放大电路的基本原理是利用放大管的电流放大能力将输入信号放大到输出端。
在电路中,放大管的基极被输入电容串联,并接到输入信号源。
当输入信号变化时,电容将输入信号引入到放大管的基极中,使得管子的驱动点发生偏移。
同时,放大管的发射极通过电阻连接到地,形成共射放大电路,通过电流放大作用,将输入信号放大到输出端。
具体的过程是:当输入信号为正向偏移时,放大管的发射电流增加,使得扩散极的电压下降,从而使放大管的驱动点偏向截止状态。
反之,当输入信号为负向偏移时,放大管的发射电流减小,使扩散极的电压上升,从而使放大管的驱动点偏向饱和状态。
通过这种方式,输入信号经过放大管的放大,输出端可以得到一个放大后的信号。
但需要注意的是,在实际电路中,为了保持放大管的工作在放大区,通常会对放大管的工作点进行偏置,即通过添加恒流源、电流镜等元件来保持放大管的工作在线性放大区。
在进行单管共射放大电路的分析时,有几个常用的方法可以帮助我们更好地理解电路的工作原理。
首先,可以使用直流分析的方法来分析电路的静态工作状态。
直流分析可以通过对电路中的直流元件(如电阻、电流源等)进行分析,得到电路的静态工作点。
静态工作点是指在没有输入信号时,电路各个节点和分支的电压和电流的数值。
在进行直流分析时,需要对电路中的直流元件进行参数计算,并应用基本的电路定理(如欧姆定律、基尔霍夫电流定律、基尔霍夫电压定律等)进行方程的建立和求解。
其次,可以使用小信号分析的方法来分析电路的交流工作状态。
在小信号分析中,将电路中的元件替换成小信号等效模型,可以得到电路中对小信号响应的表达式。
共射单管放大电路实验报告

共射单管放大电路实验报告共射单管放大电路实验报告一、实验目的本实验旨在通过搭建共射单管放大电路,了解其工作原理及特性,并通过实验数据分析,探讨电路的放大倍数、输入阻抗和输出阻抗等参数对电路性能的影响。
二、实验原理共射单管放大电路是一种常见的放大电路,由晶体管、电容和电阻等元件组成。
其工作原理是通过输入信号的变化,控制晶体管的工作点,使得输出信号得以放大。
具体来说,当输入信号施加在基极上时,晶体管进入放大状态,输出信号通过负载电阻得以放大。
三、实验步骤1. 按照电路图搭建共射单管放大电路,注意连接正确。
2. 调节电源电压,使得晶体管正常工作。
3. 连接信号发生器和示波器,设置合适的频率和振幅。
4. 通过示波器观察输入信号和输出信号的波形,并记录数据。
5. 分别改变输入信号的振幅和频率,记录相应的输出信号数据。
四、实验数据分析通过实验数据的分析,我们可以得出以下结论:1. 放大倍数:通过比较输入信号的振幅和输出信号的振幅,可以得出放大倍数。
在实验中,我们发现放大倍数与输入信号的振幅成正比,但随着输入信号振幅的增大,放大倍数会逐渐饱和,不能无限增大。
2. 输入阻抗:输入阻抗是指电路对外部信号源的阻抗。
在共射单管放大电路中,输入阻抗较低,可以有效地接收外部信号,并将其放大输出。
3. 输出阻抗:输出阻抗是指电路对外部负载的阻抗。
在共射单管放大电路中,输出阻抗较高,可以有效地驱动负载电阻,使得输出信号的失真较小。
五、实验结果分析通过实验数据的分析,我们可以得出以下结论:1. 在合适的工作点下,共射单管放大电路可以实现输入信号的放大,并输出相应的放大信号。
2. 输入信号的振幅和频率对放大倍数有影响,但是其影响是有限的。
3. 输入阻抗和输出阻抗对电路性能有重要影响,合适的阻抗匹配可以提高电路的放大效果。
六、实验总结通过本次实验,我们深入了解了共射单管放大电路的工作原理和特性。
通过实验数据的分析,我们得出了对电路性能的一些结论。
实验一:共射极单管放大电路

失真波形
严重截止失真波形
失真波形
饱和失真波形
返回
实验内容
最佳静态工作点的调试
初调静点(空载)第2步:
调节RB1使VC=7V左右。 由低信输出f=1kHZ的正弦信号至Vi,慢慢加大信号幅度, 用示波器观察输出波形Vo,如出现单边失真,调节RB1使之 消除。
再加大Vi,若还出现比较明显的单边失真,则调 节RB1消除之。
返回
饱和区
Ic
为方便演示,假定三极管空载且e级到地电阻为0,此时交直流负 载线重合。 红色的圆表示静 请注意,由于集 基极直流电位下 此时应当降低基极 当输入信号过大 此时应当升高基极 基极直流电位升 态工作点的位置; 电极和基极反相, 降时,静态工作 直流电位,使静态 时,将使动态工 电位,使静态工作 高时,静态工作 红色水平线用于 因此在集电极输 点将下移,在输 工作点下移。 点上移。 作点的范围同时 点将上移,在输 标出叠加图示正 出的波形上,饱 入信号不变时, 进入截止和饱和 入信号不变时, 弦信号时,动态 和失真出现在下 动态工作点将进 区,出现双向失 动态工作点将进 工作点的运动范 半周期,截止失 入截止区,引起 真。此时应减小 入饱和区,引起 围 截止失真 真出现在上半周 输入信号幅度。 饱和失真 期
直至加大Vi出现双向对称失真,此时减小V静态工作点的调试
关断低信,测量最佳静点,完成表2.2的测试内容。
实验内容
测量电压增益
在输出波形为最大不失真波形时用示波器观察放大 器输出电压Uo的波形。 用交流毫伏表测量此种情况下的 Uo1 、 Ui1,计算放 大倍数 加2K负载电阻,用交流毫伏表测试此种情况下的 Uo2 、Ui2值,计算放大倍数。 根据P33公式计算整个电路的输出电阻
单管共射放大电路

单管共射放大电路一、什么是单管共射放大电路单管共射放大电路(Single-Ended Common Cathode Amplifier)是一种放大电路,它可以把小信号变成大信号,也就是把低电压信号放大成高电压信号。
这种放大电路采用了单管共射放大技术,它可以提高信号电平,提升信号强度,使电路的输出信号更加清晰,噪声更小,并且能够有效提高电路的稳定性。
二、单管共射放大电路的原理单管共射放大电路的原理是把输入信号通过一个电流放大器(current amplifier),把输入信号的电流放大,然后再通过一个电压放大器(voltage amplifier),把输入信号的电压放大。
这样,就能把输入信号放大成较大的输出信号。
三、单管共射放大电路的优点1、低成本:单管共射放大电路的结构简单,只需要一个电流放大器和一个电压放大器,所以成本较低,是一种经济实惠的放大方案。
2、稳定性好:单管共射放大电路采用了单管共射放大技术,它可以有效提高电路的稳定性,使电路的输出信号更加清晰,噪声更小。
3、安装方便:单管共射放大电路的结构简单,只需要一个电流放大器和一个电压放大器,所以安装方便,可以在一个小空间内完成安装。
四、单管共射放大电路的应用单管共射放大电路广泛应用于各种电子设备中,如无线电、电视、录音机、收音机、电话机等,它们都使用了单管共射放大电路来放大信号,从而获得更好的声音效果。
此外,单管共射放大电路还可以用于汽车音响系统,它可以有效提高汽车音响系统的音质,使音乐更加清晰、响亮。
五、总结单管共射放大电路是一种放大电路,它可以把小信号变成大信号,也就是把低电压信号放大成高电压信号,它具有低成本、稳定性好、安装方便等优点,广泛应用于各种电子设备中,如无线电、电视、录音机、收音机、电话机等,也可以用于汽车音响系统,从而获得更好的声音效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U o U i
Uo IcRL Ib
Ro
(RL Rc // RL )
所以
A u
U o U i
RL
rbe
输入电阻
Ri
U i Ii
Ri = rbe // Rb
输出电阻
Ro = Rc
4.2.1 4.2.3
作业
Rb
100
ICQ IBQ (50 0.113)mA 5.65mA
UCEQ VCC Rc ICQ (12 5.653)V 4.95V
UCEQ不可能为负,其最小值也只能为0,三极管工作在饱 和区。
IBQ
ICM VCC VCES 12V 4mA
I BQ
VCC
U BEQ Rb
(12 0.7 ) mA 280
40 A
ICQ IBQ = (50 0.04) mA = 2 mA
UCEQ = VCC – ICQ Rc = (12 - 2 3)V = 6 V
若 Rb=100k,试估算静态工作点。
IBQ VCC UBEQ 12 0.7 mA 0.113mA
Ui
Ri
.
Us
Rs Ri
输出电阻
放大倍数
从放大电路的输出端看进去的等效电阻。
含义——描述放大电路的放大能力 描述放大电路带负载能力的技术指标。
定义式
测量或计算方法
电压放大倍数 电流放大倍数
A u
U o U i
A i
Io Ii
Ro
U o Io
RC
3mA
(0.113mA,4mA,0V )
ICQ UCEQ
2、静态分析——图解法
在三极管的输出特性曲线上用作图的方法求放大电路的静态工作点。
步骤
画直流通路
近似估算IBQ、找到相应的输出特性曲线
列输出回路方程,作直流负载线
uCE VCC iCRc
与横坐标的交点
与纵坐标的交点
iB
Q
iB
rbe
uB E iB
U CE 常 数
rbe ——晶体管的输入电阻
uBE
在小信号的条件下,rbe是一常数。晶体管 的输入电路可用rbe等效代替。
O
uBE
rbe
rbb
(1
)
26(mV I EQ
)
低频、小功率管rbb约为300 。
(1)三极管的微变等效电路
输出电路
iC
1、静态工作点过低,引起 iB、iC、uCE 的波形失真
iB / µA
iB / µA
—— 截止失真
ib IBQ
O
tO
O
t
Q
uBE/V
uBE/V ui
结论:iB 波形失真
图解法的应用1——分析非线性失真
iC / mA iC
NPN 管截止失真输出uo波形
ICQ
O
tO
O
Q UCEQ
t uo = uce
结论:iC 、uCE (uo )波形失真
第5次课 放大电路及其分析方法
主要内容
放大电路概述 放大电路的基本分析方法
目的与要求
掌握放大电路主要技术指标的含义及其计算方法 了解单管共射放大电路的工作原理 理解放大电路的组成原则 了解放大电路的图解分析法 掌握放大电路的工程近似分析法和微变等效电路法
重点:放大电路的微变等效分析
1、直流通路与交流通路
交流通路
交流电流流过的路径。 画法
加信号源us VCC自身短路 大容量电容短路
2、静态分析——工程近似分析法
基本思路
——先假定三极管工作在放大模式,再由分析结果进行验证、确定和计算
步骤
画直流通路
UBEQ= VCC – IBQ Rb
列输入、输出回路的电压、电流方程
求静态工作点
UCEQ= VCC – ICQ RC
验证
ICQ = β IBQ
c b
IBQ e
ICQ UCEQ
求得静态工作点
其中,硅管 UBEQ = (0.6 ~ 0.8) V
锗管 UBEQ = (0.1 ~ 0.2) V
IB Q VCC
ICQ IBQ
U Rb
B
EQ
UCEQ = VCC – ICQ RC
iC / mA
iC / mA
4
交流负载线 80
60
IC
Q
iC 2
Q
IB = 4 0 µA
20
直流负载线
0
0
t0
4.5 6 7.5 9
12 uCE/V
uCE
0
uCE/V
t
UCEQ
3、动态分析——图解法
单管共射放大电路的电压电流波形 交、直流并存 电压放大作用 倒相作用
图解法的应用1——分析非线性失真
基本要求——不失真 放大对象——变化量,即输入信号的小变化→输出信号的大变化 核心元件
三极管 场效应管
2、主要技术指标
技术指标测试示意图
输入电阻Ri
从放大电路输入端看进去的等效电阻。
描述放大电路从信号源索取电流的大小
定义式
. Ri
Ii
Us Rs Ri
U i Ii
一、放大电路概述
放大的概念 主要技术指标 单管共发射极放大电路 组成原则
1、放大的概念
放大—— 输入为小信号,有源元件控制电源使负载获得大信号,并保持线性关系。 放大本质
能量的控制 在放大电路中提供一个能源,由能量较小的输入信号控制这个能源,使
之输出较大的能量,然后推动负载。
集电极电源VCC
集电极负载电阻RC
工作原理
uo
输入回路
输出回路
ΔuΙ ΔuBE ΔiB ΔiC ( ΔiB) ΔuCE ( ΔiCRC ) ΔuO
电路结构缺点
双电源供电
ui、uo不共地
阻容耦合单管共射放大电路
4、组成放大电路的原则
合理的偏置
iC
Q2 IB
Q1
O
uCE
升高VCC,直流负载线平行右移, 动态工作范围增大,但管子的动态功 耗也增大。
4、动态分析——微变等效电路法
三极管的微变等效电路 微变等效电路法
(1)三极管的微变等效电路
输入电路
晶体管的输入特性曲线 Q 点附近的工作段近似地看成直线
可认为 uBE 与 iB 成正比
通向地的支路一一画出
列出电路方程并求解。
(3) 微变等效电路法举例
步骤1:求静态工作点Q
步骤
求静态工作点Q 求微变参数rbe 画放大电路的微变等效电路 列电路方程并求解
IB Q VCC
ICQ IBQ
UB Rb
EQ
UCEQ = VCC – ICQ RC
步骤2:求微变参数rbe
+
uce
e
b
ib
+
ube
rbe
ic
c
+
ib uce
e
在大多数情况下,简化的微变等效电路对于工程计算来说误差很小。
(2) 微变等效电路法的步骤
确定静态工作点Q 求静态工作点处三极管的微变参数rbe
画微变等效电路
画三极管的等效电路 其余部分的交流通路——从三极管的三个电极出发,按画交流通路的方法把
——外加直流电源使发射结正偏,集电结反偏,使三极管处于放大状态,则有:
Δ iC Δ iB
有信号的输入回路
——输入回路的接法应使输入电压△uI 能够传送到三极管的基极回路,使基极电流产生相 应的变化量△iB。
有信号的输出回路
——输出回路的接法应使变化量iC 能够转化为变化量uCE,并传送到放大电路的输出端。
若UCEQ≥0.7V,说明三极管处于放大状态,假设正确; 否则,根据实际情况用另外的模型分析。
2、静态分析——工程近似分析法
【例】图示单管共射放大电路中,VCC = 12 V,
Rc= 3 k, Rb= 280 k,NPN 硅管的 = 50,试估算静态工作点。
解:设 UBEQ = 0.7 V
Q
iB
iB
O
uCE
假设在Q 点附近特性曲线基本上是水平的(iC与uCE无关),
数量关系上,iC比iB大 倍;
从三极管输出端看,可以用 iB 恒流源代替三极管; 该恒流源为受控源;为iB 对iC的控制。
(1)三极管的微变等效电路
三极管的简化参数等效电路
b ib + ube
ic c
列电路方程并求解
ube rbe
ic c
+
+
ib uce Rc RL uo
e
(3) 微变等效电路法举例
步骤4:列方程求性能指标
ii b ib
ic c
+
+
+
+
ui Rb ube rbe ib uce Rc RL uo
e
Ri
电压增益 A u
而 U i Ibrbe
U S 0 RL
Ro
(UU
o
o
1)RL
Uo RL Uo'