空间解析几何 二次曲面

合集下载

几种常用的二次曲面与空间曲线

几种常用的二次曲面与空间曲线

1. 指出下列方程的图形:
方程 x5
平面解析几何中 空间解析几何中 平行于 y 轴的直线 平行于 yoz 面的平面
x2 y2 9 圆心在(0,0) 半径为 3 的圆
以 z 轴为中心轴的 圆柱面
y x 1 斜率为1的直线 平行于 z 轴的平面
55
例4:求抛物柱面 x 2y2 和平面 x z 1
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2

y2 b2
1
x2 a2

y2 b2
1
• 椭圆锥面:
x2 a2

y2 b2

z2
53
3、几种常用的空间曲线
• 空间曲线 • 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
54
思考与练习
解:绕 x 轴旋转 所成曲面方程为
x2 a2

y2 z2 c2
1
绕 z 轴旋转所成曲面方程为
x2 y2 a2

z c
2 2
1
x
y
z
这两种曲面都叫做旋转双曲面.
20
二、柱面
z
引例. 分析方程
表示怎样的曲面 .
M
解:在 xoy 面上,
表示圆C,
C
o
M1
y
在圆C上任取一点M1(x, y,0), 过此点作 x
o y
S : x2 z2 2 py
例如:将yoz平面上的抛物线C: y2 2 pz
x
绕z轴旋转一周所产生的抛物面为:
z
S : x2 y2 2 pz

二次曲面的标准方程

二次曲面的标准方程

二次曲面的标准方程二次曲面是代数几何学中一类重要的曲面。

它们的标准方程是二次方程,形式为Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,其中A、B、C、D、E、F、G、H、I、J为常数。

二次曲面可以分为三类:椭球面、双曲面和抛物面。

它们在三维空间中的几何形状各有特点。

首先,我们来讨论椭球面。

椭球面的标准方程为Ax^2 + By^2 + Cz^2 + D = 0,其中A、B、C、D为常数,且A、B、C不能同时为零。

椭球面可以分为三种情况:1. A、B、C的符号相同。

这种情况下,椭球面的几何形状是一个椭球。

椭球的中心在原点(0,0,0)。

如果A、B、C均大于0,则椭球面的形状是一个椭球;如果A、B、C均小于0,则椭球面的形状是一个椭球的内部部分;如果A、B、C两两异号,则椭球面的形状是一个双曲椭球面。

2. A、B、C的符号不完全相同。

这种情况下,椭球面的几何形状是一个椭圆柱体。

与椭球类似,如果A、B、C均大于0,则椭圆柱面的形状是一个椭圆柱体;如果A、B、C均小于0,则椭圆柱面的形状是一个椭圆柱体的内部部分;如果A、B、C两两异号,则椭圆柱面的形状是一个双曲椭圆柱面。

3.有一个变量的系数为零。

这种情况下,椭球面的几何形状是一个平面。

当A、B或C等于零时,椭球面变成一个二次曲面;当D、E、F等于零时,椭球面变成一个抛物面;当G、H、I等于零时,椭球面变成一个双曲抛物面。

接下来,我们来讨论双曲面。

双曲面的标准方程为Ax^2 + By^2 - Cz^2 + D = 0,其中A、B、C、D为常数,且A、B、C不能同时为零。

双曲面分为两种情况:1. A、B、C的符号相同。

这种情况下,双曲面的几何形状是一个双曲抛物面。

与椭球类似,当A、B均大于0时,双曲抛物面的形状是一个双曲抛物面;当A、B均小于0时,双曲抛物面的形状是一个双曲抛物面的内部部分。

空间解析几何二次曲面

空间解析几何二次曲面

二次曲面的性质
封闭性
01
二次曲面是封闭的,即它包围着一个确定的区域。
连续性
02
二次曲面在三维空间中是连续的,没有断裂或突起。
可微性
03
二次曲面在三维空间中是可微的,这意味着它的表面是平滑的。
02
二次曲面方程
二次曲面方程的建立
定义
二次曲面是三维空间中通过两个二次方程定义的 几何体。
形式
二次曲面的一般方程为 (Ax^2 + By^2 + Cz^2 + 2Fxy + 2Gxz + 2Hyz = D)。
优化方法
常用的优化方法包括数学规划、遗传算法、 模拟退火等,通过这些方法可以找到最优的 设计方案,提高产品的性能和降低成本。
感谢您的观看
THANKS
特点
二次曲面具有独特的形状和性质,其 形状由二次函数的系数决定。
二次曲面的分类
1 2
椭球面
当 $f$ 为正时,二次曲面呈现为椭球形状,其长 轴和短轴分别与 $x$ 轴和 $y$ 轴平行或垂直。
抛物面
当 $f$ 为一次函数时,二次曲面呈现为抛物线形 状,其开口方向与 $z$ 轴平行。
3
双曲面
当 $f$ 为负时,二次曲面呈现为双曲形状,其形 状取决于 $x$ 轴和 $y$ 轴的方向。
工程设计
二次曲面在工程设计中用于描述各种形状的表面,如球面、抛物 面等。
物理模拟
在物理模拟中,二次曲面用于描述粒子在力场中的运动轨迹和分 布。
数据分析
在数据分析中,二次曲面用于拟合数据,以揭示数据之间的内在 关系和规律。
03
二次曲面在三维空间中的 表示
二次曲面在三维空间中的投影

简单的二次曲面

简单的二次曲面

柱面上任取一点 P(x,y,z)
z
沿母线与 xoy平面的交点是 P?(x,y,0)
P(x,y,z)
P ?(x,y,0) 在准线上,从而柱面上 任一点 P 的坐标均满足方程
o
y
F(x,y)=0.
x
P?(x,y,0)
柱面方程:F(x,y)=0
准线方程
?F (x, y) ?
? ?
z
?
0.
0,
柱面的 特征:
? ?
y
?
a sin ?
?? z ? b?
(? ? ? t,
螺旋线的重要 性质:
b? v)
?
上升的高度与转过的角度成正比.
即 ? : ? 0 ? ? 0 ? ? , z : b? 0 ? b? 0 ? b? , ? ? 2? , 上升的高度 h ? 2b? 螺距
M f ( y, z) ? 0
(2)点 M 到 z 轴的距离
d ? x 2 ? y2 ? | y1 |
o
y
x
将 z1 ? z, y1 ? ? x 2 ? y2 代入 f ( y1 , z1 ) ? 0
将 z1 ? z, y1 ? ? x 2 ? y2 代入 f ( y1 , z1 ) ? 0
? ? 得方程 f ? x 2 ? y2 , z ? 0,
?
1
曲 面
? y2 z2
(2)椭圆
? ?
a
2
?
c2
?
1绕y
轴和z
轴;
?? x ? 0
绕 y 轴旋转
y2 x2 ? z2 a2 ? c2 ? 1
旋 转

绕z 轴旋转
x2 ? a2

第八节二次曲面

第八节二次曲面
(椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换 得到)
5 柱面
x2 y 2 椭圆柱面 2 2 1 母线平行于 z 轴 a b
双曲柱面
抛物柱面
x y 2 1 2 a b
2
2
母线平行于 z 轴
母线平行于 z 轴
x ay
2
内容小结
1. 空间曲面 • 旋转曲面 三元方程 F ( x , y , z ) 0
第八节 二次曲面
一、椭球面
二、抛物面
三、双曲面
第八章
二次曲面

空间直角坐标系中的空间曲面用方程F(x,y,z)=0表示. 若方程F(x,y,z)=0中的x、y、z是一次(或某些项为零)
的,则表示的曲面为平面,也称平面为一次曲面.
即:三元一次方程 A x +B y + C z +D = 0 所表示的平面
z
x 2 y2 2 z 2 a b
x
y
(2) 双曲抛物面(鞍形曲面)
x2 y2 z ( p , q 同号) 2p 2q
当z=h>0时,截线是双曲线
当z=h=0时,截线是xoy平面上的两条相交于原点的直线;
当z=h<0时,截线是双曲线,但实轴平行于x轴,虚轴 平行于y轴. 当x=h=0时,截线是yOz平面上的顶点为原点的抛物线 当y=h=0时,截线是xOz平面上的顶点为原点的抛物线, 且开口向下.
2 2 2
x y z 1, 2 2 a b
2
2
2
椭球面也可由下面方法伸缩变形而来 (1)将球面
x y z a
2 2 2
2
c a 沿 z 轴方向伸缩 倍: z z, 得旋转椭球面: a c 2 2 2 2 a x y z x2 y 2 2 z 2 a2 , 或 2 1 2 c a c a b y y, (2)再将旋转椭球面沿 y 轴方向伸缩 倍: b a

jia论文

jia论文

绪论二次曲面是空间解析几何学重要的组成部分,它包括椭球面、虚椭球面、单叶双曲面、双叶双曲面、二次锥面、椭圆抛物面、双曲抛物面、椭圆柱面、虚椭圆柱面、双曲柱面,抛物柱面等十几种曲面。

它的性质、种类特别容易混淆。

尤其是它的图象。

传统的空间解析几何,对于二次曲面的教学,大多数是教师按教学大纲的要求,通过二次曲面的方程,利用代数的方法讨论它的形状。

这种教学方法优点是理论推推导严密,缺点是缺乏几何直观性。

学生很难通过方程想象出它的图形。

这给教学带来很发的困难。

随着科学技术的不断发展,计算机被引入到教学中来,使教学更加具体化、形象化。

Matlab和Mathematica软件是两种比较完善的数学软件。

Mathematica是由Wolfram公司设计开发的一个数学软件。

可以用来进行数值计算、符号运算和图形显示等各方面的工作。

Mathematica受到科学工作者。

工程技术人员,学生和教育工作者的欢迎,已经是全世界广泛应用的数学软件之一。

它的应用涉及科研、工程以及商务等各个领域。

Mathematica具有强大的绘图功能,几乎可以做出所有常见的一元、二元函数的图象,还可以制作多幅画面连续放像的动画函数图形,它在计算方面的功能也很突出,并且拥有自己的语言。

对于某种稍微复杂一点的问题,可以通过编程解决。

Matlab则是非常优秀的科学计算和图形显示软件。

它的自身的一套语言,与其他高级语言相比,Matlab提供了一个人机交互的数学环境,并且以矩阵作为基本的数据结构,可以大大节省编程时间。

另外,Matlab语法规则简单,容易掌握,调试方便。

还可以存储和提取中间计算结果数据。

这使得Matlab对各种公式曲面的绘制变得简便、快捷且精确。

二次曲面的作图比较复杂。

比如马鞍面。

通常可以采用拼接法绘制复杂曲面。

即把复杂的曲面划分成为若干个简单的曲面,分别绘制完成后再拼接到一起,但绘制方法繁琐,而且误差很大,而精确绘制各种公式曲面恰好正是Matlab的长项,是非常方便快捷的。

空间解析几何-第3章-常见的曲面2

空间解析几何-第3章-常见的曲面2
把方程的右边都化成1,则左边有两项正,一项负的, 就表示单叶双曲面. 而左边有两项负,一项正的,就表示 双叶双曲面.
把方程的左边都化成两项正,一项负,则右边是1的就 表示单叶双曲面,而右边是-1的,就表示双叶双曲面.
2°绘图时要注意区分“实轴”和“虚轴”,并且保证对坐 标轴的标注要符合右手系的原则.
1、椭圆抛物面
x2 a2
, 椭圆
z h.
O
结论:单叶双曲面可看作由一
个椭圆的变动(大小位置都改
x
y
变)而产生,该椭圆在变动中,
保持所在平面与xOy 面平行,
且两对顶点分别在两定双曲线
上滑动.
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2

y h.
①当 h b时
截线为双曲线
o
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
0,
y h.
③当 h =b 时
截线为直线
(0 , b , 0)
单叶双曲面: x2 y2 z2 1 a2 b2 c2
用y = h 截曲面
①当 h b 时
②当 h b 时
③当 h =b 时
x2 Cyh: a2
x2 Czh: a2
y2 b2
h2 c2
1,
z h.
结论:双叶双曲面可看作由 一个椭圆的变动(大小位置 都改变)而产生,该椭圆在 变动中,保持所在平面与 x
xOy 面平行,且两轴的端点
分别在两定双曲线上滑动.
z
o
y
(2)用 y t截曲面

二次曲线的分类和二次曲面的分类-概述说明以及解释

二次曲线的分类和二次曲面的分类-概述说明以及解释

二次曲线的分类和二次曲面的分类-概述说明以及解释1.引言1.1 概述概述:二次曲线和二次曲面是解析几何学中重要的研究对象,它们具有许多美妙的几何性质。

在本文中,我们将讨论二次曲线和二次曲面的分类,包括椭圆、抛物线、双曲线、椭球面、抛物面和双曲面等。

通过对这些曲线和曲面的特点和性质进行深入的研究,我们可以更好地理解它们在几何学中的应用和意义。

本文将分析这些曲线和曲面的方程、图像和几何特征,帮助读者全面了解它们的分类和区分。

希望本文能够对二次曲线和二次曲面的研究有所启发,并为相关领域的学习和研究提供参考和帮助。

文章结构部分内容如下:1.2 文章结构:本文主要分为引言、正文和结论三个部分。

在引言部分,将概述二次曲线和二次曲面的概念,说明文章结构和目的。

在正文部分,将详细讨论二次曲线和二次曲面的分类,包括椭圆、抛物线、双曲线以及椭球面、抛物面、双曲面的形态和特点。

最后在结论部分,对文章进行总结,并探讨二次曲线和二次曲面在实际应用中的意义,展望未来可能的发展方向。

整个文章结构严谨有序,逻辑清晰,旨在帮助读者更深入地了解二次曲线和二次曲面的分类和特性。

文章1.3 目的:本文旨在对二次曲线和二次曲面进行分类和介绍,帮助读者更好地理解和区分不同类型的二次曲线和曲面。

通过本文的阐述,读者将了解椭圆、抛物线、双曲线、椭球面、抛物面和双曲面的定义、性质和特点。

同时,本文也旨在展示二次曲线和曲面在数学、物理和工程等领域的应用,以及未来对其研究的展望。

通过本文的阅读,读者将深入了解二次曲线和曲面的重要性和应用价值。

": {}}}}请编写文章1.3 目的部分的内容2.正文2.1 二次曲线的分类二次曲线是一个二次方程所描述的平面曲线。

在代数几何学中,二次曲线可以分为三种基本类型:椭圆、抛物线和双曲线。

这些曲线在平面上具有不同的几何性质和形态。

2.1.1 椭圆椭圆是一个闭合的曲线,其定义为所有到两个定点的距离之和等于一个常数的点的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业:
P36: 2 P45:8,10,11,13(2),14,15,16, 17,20
特殊地:当 p q 时,方程变为
x2 y 2 2 z 2 p p
( p 0)
旋转抛物面
2 xoz x (由 面上的抛物线 2 pz 绕它的轴 旋转而成的) 与平面 z z1 ( z1 0) 的交线为圆.
x y 2 pz1 z z1
2 2
当 z1 变动时,这种圆 的中心都在 z 轴上.
一、基本内容
二次曲面的定义: 三元二次方程所表示的曲面称之. 相应地平面被称为一次曲面. 讨论二次曲面性状的截割法: 用坐标面和平行于坐标面的平面与曲面 相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌. 以下用截割法讨论几种特殊的二次曲面.
椭球面
x2 y2 z2 2 2 1 2 a b c
z
截痕法
用z = a截曲面
用y = 0截曲面 用x = b截曲面
x 0 y
(三)双曲面
x2 y2 z2 2 2 1 单叶双曲面 2 a b c
z
o x
y
x y z 2 2 1 2 a b c
2
2
2
双叶双曲面
o x
y
小结
椭球面、抛物面、双曲面、截痕法.
(熟知这几个常见曲面的特性)
(马鞍面) 双曲抛物面
x2 y2 2 z 2 p q
z
截痕法
用z = a截曲面
用y = 0截曲面 用x = b截曲面
x
0 y
(马鞍面) 双曲抛物面
x2 y2 2 z 2 p q
z
截痕法
用z = a截曲面
用y = 0截曲面 用x = b截曲面
x
0
y
(马鞍面) 双曲抛物面
x2 y2 2 z 2 p q
方程可写为 x 2 y 2 z 2 a 2 .
椭圆抛物面
x2 y2 2 z 2 p q
z
截痕法
用z = a截曲面 用y = b截曲面
用x = c截曲面
x
y 0
椭圆抛物面
x2 y2 2 z 2 p q
z
截痕法
用z = a截曲面 用y = b截曲面
用x = c截曲面
x
y 0
.

c
截痕法
用z = h截曲面 用y = m截曲面
a
x
o
b
y
用x = n截曲面
椭球面的几种特殊情况:
x2 y2 z2 (1) a b, 2 2 1 旋转椭球面 2 a a c 2 2 x z 由椭圆 2 2 1 绕 z 轴旋转而成. a c x2 y2 z2 2 1 方程可写为 2 a c
旋转椭球面与椭球面的区别: 与平面 z
z1 ( | z1 | c )的交线为圆.
2 2 a 2 2 2 x y 2 (c z1 ) . 截面上圆的方程 c z z1
( 2) a b c ,
x2 y2 z2 2 2 1 球面 2 a a a
相关文档
最新文档