第三章 材料力学性能及指标

合集下载

结构材料的力学性能资料

结构材料的力学性能资料

三、钢筋与混凝土相互作用
(一). 粘结力
胶合力


摩擦力
机械咬合力
主要作用
带肋钢筋的机械咬合力 > 光圆钢筋的机械咬合力 注意:钢筋表面的轻微锈蚀也增加它与混凝土的粘结力
(2)粘结应力分析 (以拉拔试验为例)
由试验可知: (1)最大粘结应力在离开端 部的某一位置出现,且随拔 出力的大小而变化,粘结应 力沿钢筋长度是曲线分布; d P (2)钢筋的埋入长度越长, 拔出力越大,但埋入长度过 大时,则其尾部的粘结应力 很小,基本不起作用; (3)粘结强度随混凝土强度 等级的提高而增大; (4)带肋钢筋的粘结强度高 于光圆钢筋,而在光圆钢筋 末端做弯钩大大提高拔出力
P
土的应变随时间继续增
长的现象被称为徐变。
二、混 凝 土
2. 混凝土的变形
长期荷载作用下混凝土的变形性能----影响徐变的因素
•应力: c<0.5fc,徐变变形与应力成正比----线性徐变 0.5fc<c<0.8fc,非线性徐变 c>0.8fc,造成混凝土破坏,不稳定 •加荷时混凝土的龄期,越早,徐变越大 •水泥用量越多,水灰比越大,徐变越大 •骨料越硬,徐变越小
解:1、直径为28mm>25mm,锚固长度需乘以修正系数取1.1;
2、 钢筋在锚固区的混凝土保护层厚度大于钢筋直径的3倍且配 有箍筋,锚固长度需乘以修正系数取0.8;
3、实配钢筋较多,需乘以1/1.05
故:
la lab 1.1 0.8
fy ft
d
1 360 0.14 32 663m m 1.05 2.04
纵向受力钢筋为HRB400级,直径为28mm,求纵 向受拉钢筋的锚固长度。

第三章 材料在冲击载荷下的力学性能-2

第三章 材料在冲击载荷下的力学性能-2
落锤冲击试验法:用于测定全厚钢板的NDT,即为零塑 性温度,用于材料的脆性转变温度。 试样的典型尺寸:25mm90mm 350mm、 19mm50mm 125mm、16mm50mm 125mm
落锤样坯
落锤试验过程
落锤样坯断裂形貌
3.3.6 影响韧脆转变温度的因素
(1)晶格类型的影响
(2)ky-------位错被第二相等钉扎的常数。对于BCC金属, Fe、Mo的 ky 高;Ni、Ti的 ky 低。在-Fe中,含N低碳 钢ky比C高。 ky随温度增加不明显。
(3)d-----晶粒直径/位错滑移距离。细晶冷脆转变温度。
(4)-----与应力有关的常数。对于扭转, =1;拉伸时 =0.5;缺口拉伸, 1/3。
•氮、碳等原子被吸收到Ni、Mn所造成的局部畸变 区中去,减少了它们对位错运动的钉扎作用。
•在钢中形成化合物的合金元素,如铬、钼、钛等, 是通过细化晶粒和形成第二相质点来响韧脆转变 温度的,它和热处理后的组织密切相关。Biblioteka (3)晶粒大小对TK的影响
• 晶界前塞积的位错数目较 少,有利于减少应力集中;
晶界对裂纹扩展有阻碍 作用。晶粒越细,则晶 界越多,阻碍作用越大。
晶界总面积增加,使晶界上杂质浓 度减少,避免产生沿晶脆性断裂又 提高了它的塑性和韧性。
形变强化、固溶强化、弥散强化(沉淀强化)等方法,在 提高材料强度的同时,总要降低一些塑性和韧性。
• 面心立方晶格金属塑性、韧性好,体心立方和密排六 方金属的塑性、韧性较差。
• 面心立方晶格的金属,如铜、铝、奥氏体钢,一般不 出现解理断裂而处于韧性状态,也没有韧-脆转变,其 韧性可以维持到低温。
• 体心立方晶格的金属,如铁、铬、钨和普通钢材,韧 脆转变受温度及加载速率的影响很大,因为在低温和 高加载速率下,它们易发生孪晶,也容易激发解理断 裂。

第三章材料力学性能及指标

第三章材料力学性能及指标
我国上世纪50~60年代使用低碳钢筋(HPB235); 70年代通过低合金化(20MnSi)强度提高40%(HRB335) 80年代进一步微合金化(20MnSiV)强度又提高
20%(HRB400) 目前,强度再提高25%第的三章H材料R力B学性5能0及0指钢标 筋已具备生产能力.
1.1.1 钢筋的品种
建筑结构与选型Ⅰ
第一部分 建筑结构概论
第三章 结构材料的力学性能及指标
2021年2月23日
1 结构材料基本要求
第三章材料力学性能及指标
第三章材料力学性能及指标
1. 结构材料的基本要求
支撑起结构的自重及外加荷载; 能够承受一定的变形能力; 破坏要求预兆; 能够长时间使用; 能够被大量引用;
强度
弹性
1.1 钢 筋
除在构件的受拉区配筋外,还有许多其他配筋方式
受压构件中配置受压钢筋
梁中配置箍筋
受扭构件配筋
螺旋箍筋约束混凝土
图 1-3 第常三见章配材筋料方力式学性能及指标
1.1 钢 筋
除在构件的受拉区配筋外,还有许多其他配筋方式
第三章材料力学性能及指标
1.1.1 钢筋的品种
热轧钢筋、中高强钢丝和钢绞线、热处理钢筋和冷加工钢筋
1+1>2
第三章材料力学性能及指标
1 钢筋和混凝土材料的力学性能
材料的力学性能
钢筋
强度
混凝土
变形
两者间的粘结
粘结破坏的 过程和机理
第三章材料力学性能及指标
1.1 钢 筋
Steel Reinforcement (or Rebar)
◎ 抗拉和抗压强度都很高 Both tensile and compressive strengths are high

工程材料力学性能第三章资料

工程材料力学性能第三章资料

1.摆锤冲断试样失去的位能 Ak=GH1—GH2, 试样变形和断裂所消耗的功,称为冲击吸收功.单 位为J。 冲击韧性:指材料在冲击载荷作用下吸收塑性变形 功和断裂功的能力,常用标准试样的冲击吸收功Ak 表示。 2.冲击吸收功Ak的大小并不能 真正反映材料的韧脆程度, 部 分功消耗于试祥扔出、机身振 动、空气阻力以及轴承与测量 机构的摩擦消耗。


三 应变速率增加,抗拉强度增加,而且应变速率的 强度关系随温度的增加而增加。
图 应变速率对铜在各种温度下抗拉强度的影响
第二节

冲击弯曲和冲击韧性


不含切口零件的冲击:冲击能为零件的整个体积均 匀地吸收,从而应力和应变也是均匀分布的; 零件 体积愈大,单位体积吸收的能量愈小,零件所受的 应力和应变也愈小。 含切口零件的冲击:切口根部单位体积将吸收更多 的能量,使局部应变和应变速率大为升高。 另一个 特点是:承载系统中各零件的刚度都会影响到冲击 过程的持续时间、冲击瞬间的速度和冲击力大小。 这些量均难以精确测定和计算。且有弹性和塑 性。 因此,在力学性能试验中,直接用能量定性地表示 材料的力学性能特征;冲击韧性即属于这一类的力 学性能。
3.对于屈服强度大致相同的材料,根据Ak值评定材料 对大能量冲击破坏的缺口敏感性。 如弹壳、防弹甲板等,具有参考价值: 4.评定低合金高强钢及其焊缝金属的应变时效敏感性。
第三节 低温脆性 一、 低温脆性 低温脆性:一些具有体心立方晶格的金属,如Fe、 Mo 和W,当温度降低到某一温度时,由于塑性降低 到零而变为脆性状态。 从现象上看,是屈服强 度随温度降低而急剧增加的结果 倘若屈服强度随温度的下降而升高较快,而断裂 强度升高较慢,则在某一温度Tc以下,σs>σc, 金属在没有塑性变形的情况下发生断裂,即表现 为脆性的; 而在Tc以上,σs<σc,金属在断裂 前发生塑性变形,故表现为塑性的。 低温脆性对压力容器\桥梁和船舶结构以及在低温 下服役的机件是非常重要的.

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)

材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。

材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。

其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。

应力软性系数:最大切应力与最大正应力的相对大小。

1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

ae=1/2σeεe=σe2/2E。

取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。

需通过合金强化及组织控制提高弹性极限。

2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。

①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。

金属中点缺陷的移动,长时间回火消除。

弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。

吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。

②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

(反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。

03-材料的力学性能

03-材料的力学性能

其它塑性材料拉伸时的力学性能
σ /MPa
900 700 500 300 100 0 10 20 30 40 50 60
σ 锰钢
b a σ 0.2
镍钢
青铜 ε(%) 0.2 ε (%)
断裂破坏前产生很大塑性变形; 没有明显的屈服阶段。
名义屈服 极限σ 0.2
脆性材料拉伸时的力学性能
σ /MPa
500 400 300 200 100 0 0.2 0.6 1.0 1.4
ε(%)
铸铁压缩时的σ ~ ε 曲线
反映材料力学性能的主要指标
强度性能 反映材料抵抗破坏的能力,塑性材料: σs 和 σb ,脆性材料:σb ; 弹性性能 反映材料抵抗弹性变形的能力:E; 塑性性能 反映材料具有的塑性变形能力: δ和ψ 。
塑性材料在断裂时有明显的塑性变形;而脆性材料 在断裂时变形很小。 塑性材料在拉伸和压缩时的弹性极限、屈服极限和 弹性模量都相同,它的抗拉和抗压强度相同。而脆性 材料的抗压强度远高于抗拉强度。
b a
拉伸试验结果分析(低碳钢)
虎克定律: 虎克定律:当σ ≤ σp ( σe ) 时,应力与应变成直 线关系,即
σ = Eε σ E = = tgϑ ε
E称为材料的弹性模量, 单位:N/m2, Pa, MPa
拉伸试验结果分析(低碳钢)
E的物理意义 的物理意义 P ∆l σ= ε= 将 A0 l0 代入
现象:试件某个部位突然变细,出现局部收缩——颈缩。 现象
特点: 特点 a、df曲线开始下降,产生变形所需拉力P逐渐减小; b、实际应力继续增大,但σ 为名义应力,A变小没 有考虑,所以d点后σ ~ ε曲线向下弯曲; c、到达f点时,试件断裂。
拉伸试验结果分析(低碳钢)

机械制造基础3_材料的力学性能指标

机械制造基础3_材料的力学性能指标

机械制造基础3_材料的力学性能指标材料的力学性能指标是指材料在力学加载下的表现和性能参数,用来评估材料的强度、刚度、韧性、耐磨性、抗疲劳性等。

以下将介绍常见的材料力学性能指标。

1.强度:材料的强度指的是其所能承受的最大应力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

屈服强度是材料在弹性阶段的抗拉、抗压应力,即在材料开始发生塑性变形之前所能承受的应力。

抗拉强度是材料在拉伸过程中所能承受的最大应力,抗压强度是材料在受压过程中的最大应力。

2.刚度:材料的刚度指的是其抵抗变形的能力。

常见的刚度指标有弹性模量、切变模量等。

弹性模量是材料在弹性阶段的刚度大小,可以描述材料在拉伸或压缩时的回复能力。

切变模量是材料在剪切变形时的刚度大小,可以衡量材料的抗扭转能力。

3.韧性:材料的韧性指的是其在断裂前能够吸收的能量。

常见的韧性指标有延伸率、冲击韧性、断裂伸长率等。

延伸率表示材料在受拉时能够延长的程度,冲击韧性表示材料在受冲击载荷下的抵抗性能,断裂伸长率是材料在断裂前拉伸的长度与初始长度之比。

4.耐磨性:材料的耐磨性指的是其抗磨损能力。

常见的耐磨性指标有硬度、摩擦系数等。

硬度表示材料抵抗表面划伤、模具磨损等形变的能力,摩擦系数表示材料表面与其他物体接触时的磨擦阻力。

5.抗疲劳性:材料的抗疲劳性指的是其抵抗循环加载下疲劳破坏的能力。

常见的抗疲劳性指标有疲劳极限、疲劳寿命等。

疲劳极限是材料在疲劳加载下所能承受的最大应力,疲劳寿命表示材料在循环加载下能够承受的加载次数。

除了上述指标外,材料还有其他性能指标,如导热性能、热膨胀系数、电导率等,这些性能指标主要用于材料的特殊应用领域。

总而言之,材料的力学性能指标是评估材料力学特性的重要依据,不同的材料具有不同的力学性能指标,根据具体应用需求选择合适的材料和合适的力学性能指标是非常重要的。

材料力学性能-第三章-冲击载荷

材料力学性能-第三章-冲击载荷

高当于低某于一某温一度温,度材时,
温度
料材吸料收吸能收量的也冲基击本功不基变本,
形不成随一温个度平变台化,,称形为成一 “平 在高台此阶,区能称 间”为 冲,“ 击此吸低区收阶间功能冲很”, 击低吸,收表功现很为高完,全材的料脆表性 现断为裂完,全这韧一性温断度裂称,为此无 低阶能
温塑度性称转为变塑或性零断塑裂性转转变变
温度
0 高阶能
冲击功 结晶区面积(%)
以低阶能和高阶能
平均值对应的温度作
为Tk——FTE。
❖以结晶区面积占断口 面积50%的温度作为 Tk——FATT50。但此方 法人为因素较大。
低阶能
NDT FTE
100 FTP 50%FATT
图3-7 系列温度冲击试验曲线
2021年10月24日 第三章 冲击载荷下材料的力学性能 星期日
2021年10月24日 第三章 冲击载荷下材料的力学性能 星期日 bcc金属具有低温脆性的原因: 1.bcc金属的p-n 比fcc金属高很多,并且在影响屈服强 度的因素中占有较大比例。而p-n 属短程力,对温度 十分敏感,因此bcc金属具有强烈的温度效应。 2.bcc金属具有迟屈服现象,即对材料施加一大于屈 服强度的高速载荷时,材料需要经过一段孕育期(也 称为迟屈服时间)才开始塑性变形,而在孕育期内只 发生弹性变形。由于没有塑性变形消耗能量,有利于 裂纹扩展,易产生脆性破坏。
NDT
冲击功 结晶区面积(%)
0 高阶能
FTP
100
温度FNTDPT(F(Nraicl tDuruectility
图3-7 系列温度冲击试验曲线
TreamnpsietriaotnurPel)astic)。
2021年10月24日 第三章 冲击载荷下材料的力学性能 星期日
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【回顾】
1.什么是结构?建筑结构是如何分类的?
由若干构件连接而成的能承受荷载和其他间接作用的体系,叫
做建筑结构。
2.结构必须满足哪些功能要求?
安全性、适用性、耐久性
3.什么是作用?什么是结构抗力?
施加在结构上的集中力或分布力,称为作用。
结构或结构构件承受效应的能力,叫结构抗力。
4.什么是结构的极限状态?
bc—屈服阶段
e
cd—硬化阶段
de—颈缩阶段
fb fy
b b
a c a’ a dc
d
f
e
s
d c
a—弹性极限fp c—屈服强度fy d—极限强度fb
o
e
s0.2
0
某些无明显屈服点的材料,以残余变形0.2%对应应力
作为名义屈服强度。 0.2%
e
b. 弹性与塑性
材料在外力作用下产生变形,当外力除去后能完全恢复到原 始形状的性质,称为弹性。 s e f d 弹性模量: Es s e u fbf a’ dc
y
f
e
b
材料在外力作用下产生变形,
当外力除去后,部分变形恢
复的性质,称为塑性。
a
残余变形 弹性变形
e
c. 冲击韧性 冲击韧性是指材料抗冲击而不破坏的能力。
d. 徐变和应力松弛
混凝土的徐变是指混凝土在长期的、不变的、较高的荷载作用 下,其变形随时间的增长而增加的现象,称为徐变。
变 形 卸荷后的瞬时回缩 永久变形 时间 5d 20d
c. 结构材料要有相应的重度; d. 结构材料要有相对低廉的价格; e. 结构材料要有良好的环保性能。
以材料的力学性能指标评定
1.1.1 材料的基本力学指标
变和松弛
包括:强度、弹性、塑性、冲击韧性与冷脆性、徐
a. 强度 ——材料抵抗破坏能力的指标
包括:抗压、抗拉、抗剪、抗扭、疲劳强度 s oa—弹性阶段 fu
60d
80d
在恒定温度和应变条件下,构件或材料的应力随时间而见小的 现象,称为应力松弛。容易引起预能力 耐久性 可加工性 取材便宜,价格合理,经济实用
1.2 木材
一、衡量木材的力学性能的指标有哪些?
密度:构成木材细胞壁物质的密度。 含水率:木材中水分质量占干燥木材质量的百分比。 湿胀干缩性:木材在纤维饱和点以下时吸湿具有明显膨胀现象,解
吸时具有明显收缩变形现象。
强度:材料抵抗破坏能力的指标
抗压、抗拉、抗弯、抗剪 各向异性-------顺纹/横纹 影响因素:含水率、环境温度、负荷时间、表观密度、疵病
二、木材的防护

木材的腐朽与防腐 木材的防虫 木材的防火


整个结构或结构的一部分超过某一特定状态,或不能满足设计规
定的某一功能要求的特定状态。
CH.3 结构材料的力学性能及指标
1. 结构材料的基本要求 2. 木材
CH.3 结构材料的力学性能及指标
1.1 结构材料的基本要求
a. 结构材料要有足够的、有一定环境适应度的强度;
b. 结构材料要有足够的刚度;
相关文档
最新文档