高等数学第一章测试卷
高数(一)第一章练习题

高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x 211- B.x 12- C.x 2)1x (2- D.x)1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数 20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。
高一数学必修一第一章综合测试卷

高一数学必修一第一章综合测试卷一、选择题已知函数f(x) = √(2x - 1) 的定义域是 ( )A. ( -∞, 1/2]B. [1/2, +∞)C. (0, +∞)D. (-∞, 0]答案:B已知集合 A 到 B 的映射 f:x → y = 2x + 1,那么集合 A 中元素 2 在 B 中对应的元素是 ( )A. 2B. 6C. 5D. 8答案:C设集合A = {x | 1 ≤ x ≤ 2},B = {x | x ≤ a}。
若 A ⊆ B,则 a 的取值范围是 ( )A. a < 2B. a ≤ 1C. a ≥ 2D. a ≤ 2答案:C函数 y = (k * 2)^x - 1 在实数集上是减函数,则 k 的取值范围是 ( )A. k < -2B. k ≤ -2C. k > -2D. k ≥ -2答案:B全集 U = {0, 1, 3, 5, 6, 8},集合 A = {1, 5, 8},B = {2},则∁_U(A ∩ B) = ( )A. {2}B. ∅C. {0, 3, 6}D. {0, 1, 3, 5, 6, 8}答案:B(注:此处∁_U 表示全集 U 的补集,A ∩ B 表示集合 A 与 B 的交集)二、填空题已知函数 f(x) = x^2 - 2x + 3 在区间 [0, a] 上的最小值为 2,则 a 的取值范围是 _______。
答案:[1, +∞)(注:因为 f(x) = (x - 1)^2 + 2,在 x = 1 时取得最小值 2,所以 a ≥ 1)设集合 A = {x | -3 ≤ x ≤ -1},B = {x | 1 ≤ x ≤ 2, x ∈ Z},则 A ∪B = _______。
答案:{-3, -2, -1, 1, 2}若函数f(x) = { x + 1, x ≤ 0 ; 2^x, x > 0 } ,则 f(f(-2)) = _______。
高等数学(A)第一章自测题

高等数学(A) 第一章自测题一、判断题(共5小题,每题3分,共15分):请在错误的题目后划×。
1.数列极限的ε-N 描述中,可以假设01ε<<( );2.无穷个无穷小的乘积仍为无穷小( ); 3.若1212,ααββ ,则1212ααββ-- ( ); 4.当x→∞时,sin x x ( );5.开区间上的连续函数不满足介值性( )。
二、单项选择题(共5小题,每题3分,共15分):请把唯一正确的选项填在括弧内: 1.若对任意x ,成立()()()g x f x h x ≤≤,且lim [()()]0x g x h x →∞-=,则lim ()x f x →∞( )。
(A )存在且等于0 (B )存在但不为0;(C )一定不存在 (D )不一定存在2.设2lim1()1nn xf x x →∞+=-,则1x =是()f x 的( )。
(A )连续点 (B )跳跃间断点(C )可去间断点 (D )第二类间断点3.函数()f x =的间断点的个数为( )(A ) 0 (B ) 1 (C ) 2 (D ) 3。
4.设函数()f x 在(,)-∞+∞上单调且有界,{}n x 为数列,则(A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛(C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛5.设{},{},{}n n n x y z 都是非负数列,lim lim lim 0,1,n n n n n n x y z →∞→∞→∞===∞,则( ) (A )nn x y <对任意n 成立 (B )n n y z <对任意n 成立(C )极限lim ()n n n x z →∞不存在 (D )极限lim ()n n n y z →∞不存在三、填空题(共5小题,每题4分,共20分):请将答案填在横线上。
高等数学第一章试题库

第一章试题库第一部分基础练习题一、选择题1.下列数列收敛的是()。
A.sin n x n = B.1sin n x n n = C.1ln n x n = D.1(1)n n-+2.0()f x +和0()f x -都存在是函数()f x 在0x x =处有极限的().A.充分条件B.必要条件C.充要条件D.无关条件3.下列函数中,相同的是().A.2()lg f x x =与()2lg g x x =B.()f x =()g x =C.()f x x =与()g x =D.()arcsin f x x =与()arcsin()g x x π=-4.设函数()f x 为奇函数,()g x 为偶函数,则()是奇函数。
A.[()]f f x B.[()]g g x C.[()]f g x D.[()]g f x 5.下列变量中是无穷小量的是()A.1ln(1)1(0)x x +-→B.11sin ()x x x→∞C.()122x x →- D.11(0)x e x -→6.函数()cos f x x x =()A.x →∞时为无穷大量 B.x →∞时极限存在C.在(,)-∞+∞内有界 D.在(,)-∞+∞内无界7., 1, n n n x n n⎧⎪=⎨⎪⎩为奇数为偶数,当n →+∞时{}n x 是()A.无穷大量B.无穷小量C.有界变量D.无界变量8.下列关于无穷小的说法中,错误的是()A.有限个无穷小的乘积仍是无穷小B.无穷小与有界函数的乘积是无穷小C.两个无穷小的商仍是无穷小D.有限个无穷小的代数和仍是无穷小9.当x →∞时,函数()sin f x x x =是()。
A.无穷大量B.无穷小量C.无界函数D.有界函数10.下列函数在自变量的变化过程中为无穷小量的是()。
A )0(sin ln →x xxB )0(1→x e xC )1()1(12→-x x D)0(cot →x x 11.设45)(,0,0,)(2-=⎪⎩⎪⎨⎧<≥=x x g x x x x x f ,则=)]0([g f ()A.16-B.4-C.4D.1612.已知(21)f x -的定义域为[0,1],则()f x 的定义域为().A.[1/2,1]B.[-1,1]C.[0,1]D.[-1,2]13.下列各式计算正确的是()A.sin lim1x xx →∞= B.01lim sin 1x x x→= C.1lim sin1x x x→∞= D.011lim sin 1x xx→=14.函数⎪⎩⎪⎨⎧≤<+=<<-+=2020022)(2x x x x x x f 的定义域是()A.)2,2(-B.]0,2(-C.]2,2(-D.(0,2]15.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(lim 0x f x ()A.1B.0C.1-D.不存在16.下列函数在定义域内关于原点对称的是()A.22ln(1)x x +B.1xx +C.3x x e e -+D.ln(x +17.下列数列收敛的是().A.12,2,,(2),n ---L LB.135721,,,,,357921n n -+,L LC.1135721,,,,(1),357921n n n -----+L L ,D.1234,,,,(1),23451n n n ---+,L L 18.下列计算正确的的是().A.1lim(1)xx x e→∞+= B.01lim(1x x e x →+= C.1lim sin 1x x x →∞= D.sin lim 1x xx→∞=19.=-→xx x 21)1(lim ()A.21- B.e - C.21eD.20.22442lim ,313x ax x x x →∞-+=-+那么a 的值为()A.1B.0C.2D.321.当0x →时,tan sin x x e e -与n ax 为等价无穷小,则().A.1,1a n ==B.1,22a n ==C.1,32a n ==D.1,44a n ==22.当0x →时,下列函数哪一个是其他三个的高阶无穷小().A.2xB.1cos x -C.tan x x -D.2ln(1)x +23.当0x →时,与2x 等价的无穷小量是(A.2ln(1)x + B.21xe - C.1cos x-1-24.当0→x 时,1是x 的().A.高阶无穷小B.低阶无穷小C.等价无穷小D.同阶但非等价无穷小25.当0→x 时,)2sin(3x x +与x 比较是().A.高阶无穷小B.等价无穷小C.同阶无穷小,但不是等价无穷小D.低阶无穷小26.设2, 01()2, >1x x f x x x -⎧<≤=⎨⎩,则1x =是该函数的()A.可去间断点B.跳跃间断点C.第二类间断点D 连续点27.设1sin , 0()1, 0x x f x xx ⎧≠⎪=⎨⎪=⎩,则0x =是该函数的()A.可去间断点 B.跳跃间断点 C.第二类间断点 D.连续点28.0x =为函数1()sin f x x x=的()A.可去间断点B.跳跃间断点C.振荡间断点D.无穷间断点29.函数1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩在0x =处()A.无极限B.不连续C.连续D.以上都不对30.0x =是11()1x f x e =+的()。
高数(一)第一章练习题

高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x211- B.x 12- C.x 2)1x (2- D.x )1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x ++是( C ) A.奇函数 B.偶函数 C.有界函数 D.周期函数20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。
(高职)高等数学第一章测验题

高等数学第一章测验题班级 学号 姓名一、选择题:1.下面哪一个函数不是初等函数( )A .xln(x-1)B .2x e +sinxC .tgx+2cos3xD .f(x)=⎩⎨⎧≥-<1x ,21x ,22. 当2→x 时,无穷小量)2sin(-x 是较42-x 的( )A. 高阶无穷小B. 低阶无穷小C.同阶无穷小 ,但非等价无穷小D. 等价无穷小 3.设f(x)=⎩⎨⎧≥+<+0x ,1x 0x ,1x 2则)x (f lim 0x →=( )A .1B .0C .-1D .不存在 4.=+-++∙+∙+∙∞→))n )(n ((n 12121751531311lim ( )A .0B .21C .1D .25.设⎪⎩⎪⎨⎧<≥-+=01sin 022x ,x x x ,)c x ()x (f 要使f(x)在点x=0连续,则c=() A .-2 B .0 C .1 D .26.下列函数中,在x=0处不连续的是( ) A.⎪⎩⎪⎨⎧=≠=0,10,||sin )(x x x x x f B.⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f C.⎪⎩⎪⎨⎧>≤=0,sin 0,)(x x x x e x f xD.⎪⎩⎪⎨⎧=≠=-0,00,)(21x x e x f x7.4213lim 221x ++-→x x x =( )A .72B .3C .4D .∞8.函数f(x)=⎩⎨⎧≥+≤≤-1x ,3x 1x 0,1x 2在x=1处间断是因为( )A.f(x)在x=1处无定义B.)x (f lim 1x -→不存在C. )x (f lim 1x +→不存在D. )x (f lim 1x →不存在9.当x →0时,下列函数中为无穷小量的是( )(A)e (B)x xsin (C)cosx (D)sinx10.设f(x)=1x 1x 01=≠⎩⎨⎧,则=→)x (f lim 0x ( )A.不存在B.∞C.0D.1 二、填空题 1.323)2(123lim ++-∞→x x x x =______。
(完整版)高一数学第一章试题及答案
高中数学集合检测题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 A M B {}1,4 C {}1 D Φ2. 设全集U =R ,集合2{|1}A x x =≠,则U C A =A. 1B. -1,1C. {1}D. {1,1}-3. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A = A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >4. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =A .{0}B .{}3,4--C .{}1,2--D .∅5.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是 A .3 B .4 C .5 D .66. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A7.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B AA.}32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 8.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为 A .-3或1 B .2 C .3或1 D .1 10. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是A. 1B. 2C. 7D. 811.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有 A .1a <- B .1a >- C . 1a ≤- D .1a ≥-12、已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃= A{}0,1,8,10 B {}1,2,4,6 C {}0,8,10D Φ选择题答案二、填空题:13.设U ={三角形},A ={锐角三角形},则U C A = . 14. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 。
高等数学第一章测试题(10判断)
高等数学第一章测试题一、判断。
(A 为正确,B 为错误)1、凡是分段函数都不是初等函数。
() 答案:B解析:分段函数有多个解析式,因此它们一般都不是初等函数。
但不是绝对的。
,0,,0x x y x x x >⎧==⎨-<⎩如是分段函数,但也是初等函数。
[()]2()y f g x g x =、复合函数的定义域即是的定义域.() 答案:B[()]()y f g x g x =解析:复合函数的定义域包含着的值域。
()(,)()(,3)y f x a b f x a b =、若在内有定义,则在内一定有界。
() 答案:B()[,]()[,]y f x a b f x a b =解析:若在内有定义,则在内一定有界。
()().(),lim 4x x f x A f x A →==则、若答案:B解析:函数在某点的极限不一定等于函数在该点的函数值。
如:01,0,()()1,(0)0.0,0lim x x x f x f x f x →-≠⎧==-=⎨=⎩而5.()()(.())lim lim lim x x x x x x f x f x f x -+→→→若极限与都存在,则必存在答案:B()()().lim lim lim x x x x x x f x f x f x -+→→→解析:当与都存在但不相等时,不存在00()()0()0.()()6limlim lim x x x x x x f x g x f x g x →→→==、若极限存在,且,则答案:A()()0()0().lim lim limx x x x x x f x f x g x g x →→→≠=解析:若,当时,不存在sin sin sin s 7in lim lim lim lim lim x x x x x x x x xx x x x→∞→∞→∞→∞→∞--=++、极限式不存在.()答案:Bsin sin 2sin sin sin lim lim x x x x x x x x x x x →∞→∞-+-=++解析:2sin (1)101sin lim x x x x →∞=+=+=+ 8、1(1)lim xx e x →∞-= () 答案:B1(1)lim xx e x →∞+=解析:333000sin 00sin ~,90.()lim lim lim x x x x x x x x x x x x x →→→--→===、因时,故答案:B33322000sin sin 1sin 1()()limlim lim x x x x x x x x x x x x x x →→→-=-=⋅-解析:2200110lim lim x x x x→→=-=()[,][,]0()1y f x a b f x a b =、设在上连续,且无零点,则在上恒为正或恒为负.()答案:A 解析:略.。
试题库(高数(1))第一章
第一章客观题及答案1.xx y 1arctan 3+-=的自然定义域是( C ) A .{}3<x x B .{}0≠x x C .{}0,3≠<x x x D .{}30<<x x2.若x x g x x f lg 2)(,lg )(2==,则下列叙述正确的是( B )A .)()(x g x f =B .)()(x g x f ≠C .)()(x g x f >D .)()(x g x f <3.x x f =)(,下列说法正确的是( D )A .是分段函数B .是非初等函数C .是可导函数D .是初等函数4.若函数)(x f 的定义域[]2,0=D ,则)(2x f 的定义域是( A ) A .[]2,2- B .[]2,0 C .[]4,0 D .[]4,4- 5.下列说法错误的是( B )A .两个偶数的和是偶数,两个奇数的和是奇数B .两个偶数的积是偶数,两个奇数的积是奇数C .偶数与奇数的积是奇数D .偶数与一个非奇非偶的函数的和奇偶性不定6.若[]n nx n n 11)1(++-=,则关于{}nx 的极限下列说法正确的是( A ) A .极限不存在 B .极限为1 C .极限为0 D .极限为27.n n n x 312+=的极限是( B ) A .0 B .32 C .不存在 D .1 8.设a x n n =∞→lim ,下列说法不正确的是( C ) A .在a 的任意去心邻域内都含有{}n x 中的无数多个点B .在a 的任意邻域外都至多含有{}n x 中的有限多个点C .存在N ,对任意的正数ε,当N n >时,都有ε<-a x nD .对任意的正数ε,存在正数N ,当N n >时,都有ε<-a x n9.设0lim >=∞→a x n n ,下列说法不正确的是( D ) A .数列{}n x 有界 B .存在正数N ,当N n >时,0>n xC .a x n n =∞→lim D . 对任意n ,0>n x 10.a x n n ≠∞→lim 的充要条件的是( D ) A .{}n x 中任意子列都收敛 B .{}n x 中任意子列都收敛于aC .{}n x 中奇数项子列与偶数项子列都收敛于aD .存在{}n x 中的两个子列收敛于不同的极限11.若0)(lim >=∞→a x f x ,则下列说法不正确的是( B ) A .a x f x f x x ==+∞→-∞→)(lim )(lim B .0)(>x f C .M x st M >>∃,,0时,)(x f 有界 D .a y =是)(x f 的水平渐近线12.0)(lim 0>=→a x f x x ,下列说法正确的是( A ) A .左、右极限都存在,且都等于aB .{}n x 是)(x f 定义域内任一收敛于0x 且不等于0x 的数列,都有{})(n x f 收敛C .0x x =是)(x f 的垂直渐近线D .0)(>x f 13.=+-+-∞→1521lim 233n n n n n ( B ) A .0 B .1 C .∞ D .21 14.=+++∞→112lim 322n n n n ( A ) A .0 B .1 C .∞ D .21 15. =--∞→nn n n 51lim 23( C ) A .0 B .1 C .∞ D .21 16.=>∞→n n a a lim ,0( B )A .0B .1C .∞D .2117.当0→x 时,113-+x ~( D )A .xB .x +1C .∞D .x 3118.当0→x 时,x 2cos 1-~( D )A .xB .x 2C .221x D .22x19.=→x xx 5sin 2tan lim 0( B ) A .0 B .52C .∞D .∞-20.=--+→1cos 1)21(lim 3120x x x ( C )A .0B .1C .34-D .21-21.当0→x 时,x x x 1cos sin 2+是)1ln()cos 1(x x ++的( A )A .同阶无穷小B .高阶无穷小C .等价无穷小D .低价无穷小22.当0→x 时,34)1(x xx ++是x 的( B )A .高阶无穷小B .同阶无穷小C .等价无穷小D .低价无穷小23.下列说法正确的是( D )A .若)(x f 在0x 的左、右极限都存在,则)(x f 在0x 连续B .若)(x f 在0x 的极限存在,则)(x f 在0x 连续C .一切的初等函数在其定义域上都连续D .若)(x f 在0x 连续,则)(x f 在0x 的极限必存在24.若0x 是)(x f 的间断点,则下列说法中,0x 不是)(x f 的第一类间断点的是( B)A .)(x f 在0x 无定义B .)(x f 在0x 的左极限不存在C .)(x f 在0x 的左、右极限都存在,但不相等D .)(x f 在0x 的极限存在,但不等于)(0x f25.设⎪⎩⎪⎨⎧≥<+=-0,cos 0,)(21x x x a e x f x 在0=x 连续,则=a ( A )A .0B .1C .34-D .21- 26.若⎪⎪⎩⎪⎪⎨⎧>+=<=0),1ln(10,00,sin )(x x x x x x x x f ,则0=x 是)(x f 的( B ) A .连续点 B .可去间断点 C .跳跃间断点 D .第二类间断点27.下列说法错误的是( C )A .若)(x f 在0x 即左连续又右连续,则)(x f 在0x 点连续B .若)(x f 在0x 的连续,则)(x f 在0x 的连续C .若)(x f 在0x 的连续,则)(x f 在0x 的连续D .若)(x f 在0x 有定义,则0x 不是连续点就是间断点28.下列述叙错误的是( D )A .若)(),(x g x f 在0x 连续,则)()(x g x f ±在0x 点连续B .若)(),(x g x f 在0x 连续,则)()(x g x f ⋅在0x 点连续C .若)(),(x g x f 在0x 连续,则0)(,)()(0≠x g x g x f 在0x 点连续D .若)(),(x g x f 在0x 连续,则))((x g f 在0x 点连续29.=+→xx x 2cot 20)tan 31(lim ( C )A .0B .1C .3eD .430.若11)(11+-=x xe e xf ,则0=x 是)(x f 的( A )A .可去间断点B .连续点C .跳跃间断点D .第二类间断点 31.))21(cos 11sin (lim 2-+∞→--++e x x x x x x xx x =( B )A .0B .1C .2eD .不存在32.下列说法正确的是( C )A .若)(x f 在[]b a ,连续,则)(x f 在[]b a ,必有零点B .若)(x f 在[]b a ,有间断点,则)(x f 在[]b a ,必无界C .若)(x f 在[]b a ,连续,则)(x f 必取得介于最大值与最小值之间的任何值D .若)(x f 在[]b a ,连续,则)(x f 在),(b a 必有最大值与最小值33.数列{}n x 有界是数列{}n x 收敛的( B )A .充分条件B .必要条件C .充要条件D .无关条件34.)(x f 在0x 有定义是)(x f 在0x 收敛的( D )A .充分条件B .必要条件C .充要条件D .无关条件35.设(Dirichlet )函数⎩⎨⎧=是无理数时,当是有理数时当x x x D 0,1)(,则下列说法正确的是( A ) A .处处不连续 B .在有理点连续 C .在无理点连续 D .在0=x 连续36.=+∞→xx xx 2)1(lim ( D ) A .0 B .1 C .3e D .2e37. =-→x x x 1)21(lim ( C ) A .2e B .1 C .2-e D . 3e38.设,232)(-+=x x x f 则当0→x 时,有( )A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小39.)(x f 在0x 的某一去心邻域内无界是∞=→)(lim 0x f x x 的( B )条件 A .充分条件 B .必要条件 C .充要条件 D .无关条件40.设)(x f 的定义域是[]1,0,则)(ln x f 的定义域是( A )A .[]e ,1B .[]e ,0C .[]1,0D .[)+∞,041.设⎪⎩⎪⎨⎧=≠=-0,0,)(cos )(2x a x x x f x 在0=x 连续,则=a ( B ) A .0 B .1 C .34- D .21-42.=+++∞→1)1232(lim x x x x ( A ) A .e B .1 C . 2e D .2-e43.=++++++∞→)12111(lim 222n n n n n ( A )A .0B .1C . nD .∞+44.若)(x f 在0x 的某右邻域内单调递增,则下列说法证确的是( D )A .若有上限,则)(x f 在0x 点有极限B .若有下限,则)(x f 在0x 点有极限C .若有上限,则)(x f 在0x 点有右极限D .若有下限,则)(x f 在0x 点有右极限 45.0lim =∞→n n x 是0lim =∞→n n x 的( C ) A .充分条件 B .必要条件 C .充要条件 D .无关条件。
高等数学第一章练习题
第一章函数、极限、连续一、单项选择题1.区间[a,+∞),表示不等式()2.若3.函数是()。
(A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。
5.函数6.函数7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点()(A)必不存在(B)至多只有有限多个(C)必定有无穷多个(D)可以有有限个,也可以有无限多个8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数)(A)数列{ x n }必有极限,但不一定等于a(B)数列{ x n }极限存在且一定等于a(C)数列{ x n }的极限不一定存在(D)数列{ x n }一定不存在极限9.数列(A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限10.极限定义中ε与δ的关系是()(A)先给定ε后唯一确定δ(B)先确定ε后确定δ,但δ的值不唯一(C)先确定δ后给定ε(D)ε与δ无关11.任意给定12.若函数f(x)在某点x0极限存在,则()(A) f(x)在 x0的函数值必存在且等于极限值(B) f(x)在x0的函数值必存在,但不一定等于极限值(C) f(x)在x0的函数值可以不存在(D)如果f(x0)存在则必等于极限值13.如果14.无穷小量是()(A)比0稍大一点的一个数(B)一个很小很小的数(C)以0为极限的一个变量(D)0数15.无穷大量与有界量的关系是()(A)无穷大量可能是有界量(B)无穷大量一定不是有界量(C)有界量可能是无穷大量(D)不是有界量就一定是无穷大量16.指出下列函数中当X→0+ 时,()为无穷大量。
17.若18.设19.求21.求22.求23.求24.无穷多个无穷小量之和()(A)必是无穷小量(B)必是无穷大量(C)必是有界量(D)是无穷小,或是无穷大,或有可能是有界量25.两个无穷小量α与β之积αβ仍是无穷小量,且与α或β相比()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学第一章测试卷(B)
一、选择题。(每题4分,共20分)
1.假设对任意的xR,都有)()()(xgxfx,且0)]()([limxxgx,则
)(limxf
x
( )
A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在
2.设函数nnxxxf211lim)(,讨论函数)(xf的间断点,其结论为( )
A.不存在间断点 B.存在间断点1x C.存在间断点0x D. 存在间断点
1x
3.函数222111)(xxxxxf的无穷间断点的个数为( )
A. 0 B. 1 C. 2 D. 3
4.设函数)(xf在),(内单调有界,}{nx为数列,下列命题正确的是( )
A.若}{nx收敛,则{)(nxf}收敛 B.若}{nx单调,则{)(nxf}收敛
C.若{)(nxf}收敛,则}{nx收敛 D.若{)(nxf}单调,则}{nx收敛
5.设}{},{},{nnncba均为非负数列,且nnnnnncbalim,1lim,0lim,则( )
A. nnba对任意n成立 B. nncb对任意n成立
C. 极限nnncalim不存在 D. 极限nnncblim不存在
二、填空题(每题4分,共20分)
6.设xxxfxfx2)1(2)(,2,则)(xf____________。
7.][x表示取小于等于x的最大整数,则xxx2lim0__________。
8.若1])1(1[lim0xxeaxx,则实数a___________。
9.极限xxbxaxx))((lim2___________。
10.设)(xf在0x处可导,bff)0(,0)0(且,若函数
00sin)()(xA
x
x
xaxf
xF
在0x处连续,则常数A___________。
三、计算题(每题8分,共24分)
11.求极限 3sin1tan1limxxxx
12.求极限 xxx20)]1ln(1[lim
13.求极限 220)sin1ln(2coslnlimxxxx
四、解答题(共56分)
14.(本小题满分12分)
确定常数ba,的值,使函数01sin100)21(ln12)(2221xxxxaxbxxeexfxx,在0x处连续.
15.(本小题满分14分)
设,0,)2(2lim)(2xxxxfnnnn求)(xf的显式表达式.
16. (本小题满分14分)
设)(xf是定义在R上的偶函数,其图像关于直线1x对称,对任意]21,0[,21xx都
有)()()(2121xfxfxxf,且0)1(af.
(1)求)41(),21(ff
(2)证明:)(xf是周期函数
(3)记)212(nnfan,求)(lnlimnna.
17.(本小题满分16分)
设),3,2,1()3(,3011nxxxxnnn,证明数列}{nx的极限存在,并求此极限.
参考答案
一、 选择题。
1. D
2. B
3. B
4. B
5. D
二、填空题。
6.)22(312xx
7. 2
8. 2
9. bae
10. ab
三、计算题。
11. 41
12. 2e
13. 3
四、解答题。
14.35,31ba
15.2221101)(2xxxxxxf (提示:运用夹逼准则)
16.(1)4121aa
(2))2()(),()(xfxfxfxf)2()(xfxf,)(xf是周期为2的函数。
(3)0)ln21(lim)(lnlimanannn
17.先用数学归纳法证}{nx有界,再证明数列是单调增加的,23limnnx