浙江师范大学881高等代数2013到2004十套考研真题

合集下载

2004考研数学一真题及答案解析

2004考研数学一真题及答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

浙江师范大学中国文学史2013到2004十套考研真题

浙江师范大学中国文学史2013到2004十套考研真题
三、论述题(每题 35 分,共 70 分,其中古代文学 2 题,任选 1 题;现当代文 学 2 题,任选 1 题)
1.试论杜甫对《诗经》艺术精神的继承与发展。 2.试论《儒林外史》的讽刺艺术。 3.试论张爱玲小说艺术独特性。 4.试结合具体作品谈谈你对寻根文学审美特征的理解。
第 1 页,共 1 页
浙江师范大学 2011 年硕士研究生入学考试初试试题(A 卷)
一、名词解释题(共 4 小题,每小题 5 分,共 20 分) 1.永明体 2.临川四梦 3.语丝派 4.《在细雨中呼喊》
二、简答题(每小题 15 分,共 60 分;其中古代文学 3 小题,任选 2 题;现当 代文学 3 小题,任选 2 题)
1.简说《天问》的艺术特色。 2.简说欧阳修散文的“六一风神”。 3.简说柳永词的成就。 4.简述梁实秋散文艺术特色。 5.简析新写实小说艺术特色。 6.简论沈从文文学创作特色。
4. “孤岛文学”
二、简答题(每小题 15 分,共 60 分;其中古代文学 3 小题,任选 2 题;现代文学 3 小题,任选 2 题)
1.诗与词有什么不同? 2.为什么说《史记》是“史家之绝唱,无韵之《离骚》”? 3.什么是南戏?它在艺术形式上有什么特点?(以上任选两题)
二、简答题(每小题 15 分,共 60 分;其中古代文学 3 小题,任选 2 题;现代 文学 3 小题,任选 2 题)
1.试论《战国策》的艺术特点。 2.试论陶渊明田园诗的艺术风格。 3.宋词繁荣的主要表现有哪些? 4.简论新月派诗歌理论。 5.简论梁实秋散文艺术特色。 6.简论赵树理农村小说创作特色。
第 1 页,共 1 页
浙江师范大学 2009 年硕士研究生入学考试试题
科目代码:831
科目名称:中国文学

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

(整理)2004年数二真题及标准答案及解析.

(整理)2004年数二真题及标准答案及解析.

2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)lim ln (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln(1)x dx +⎰ [](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++[](12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰.(B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2004年考硕数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令220d ydx < ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解2】11201101)arcsin 2dt tt π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法.(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x zz e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e --∂=∂+,23213x z z y e-∂=∂+ 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x zx z e dx dy e dz --=+-2323(13)22x zx z edz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e--∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导.(5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x= 积分得 1ln ln ln 2y x c =+y ⇒=设(y c x =,代入方程得211(((22c x c x c x x x '= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx dx x x y e x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰11ln ln 22212x x ex edx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为 315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值.【详解1】 2ABA BA E **=+ 2A B A B A E **⇔-=,(2)A E BA E *⇔-=,21A E B A E *∴-==, 221111010(1)(1)392100001B A E AA *====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32AA EB A⇒-= 21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰,2x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302000lim limcos x x x t dtt dtγα++→→=⎰⎰30lim x +→=320lim lim 02x x x x++→→===, 即 o ()γα=.又2000tan lim lim x x x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ).【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点.又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点.所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)lim ln (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰ []B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的. 【详解】 22lim (1)n n→∞+212lim ln (1)(1)(1)nn nn nn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1)ln(1)(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1)nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质. 【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >, 0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质.(11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++[]A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=, 特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ixm y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为2(sin cos )y x A x B x *=+从而 21sin y y x x ''+=++ 的特解形式可设为xy2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A)11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D【分析】将二重积分化为累次积分的方法是:先画出积分区域的示意图,再选择直角坐标系和极坐标系,并在两种坐标系下化为累次积分.【详解】积分区域见图. 在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A =0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j i j i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫ ⎪+++ ⎪==⎪ ⎪ ⎪+++⎝⎭由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解. 三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex+⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x→+-=() 01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim 22cos 6x x x x →=-⋅=-+【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==-【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++.(Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域. 【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为 ()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()s i n 24f t d t πππ==⎰554433443()sin sin sin 24f t dt t dt t dt πππππππ==-=-⎰⎰⎰又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2, 故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系. 【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()limlim ()2xxtt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim222t t tt t t t e e e e e e ---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e ->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=, 当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=, 故 2224ln ln ()b a b a e->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得 dv mkv dt=-. 又 dv dv dx dv v dt dx dt dx=⋅=, m dx dv k∴=-, 积分得 ()m x t v C k=-+, 由于0(0)v v =,(0)0x =, 故得0m C v k=, 从而 0()(())m x t v v t k =-. 当()0v t →时, 069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得 dv mkv dt=-. 所以 dv k dt v m =-, 两边积分得 k t m v Ce-=, 代入初始条件 00t v v ==, 得0C v =,0()k t m v t v e-∴=, 故飞机滑行的最长距离为 0000() 1.05()k t m mv mv x v t dt e km k k+∞-+∞==-==⎰. 【详解3】根据牛顿第二定律,得 22d x dx m k dt dt=-, 220d x k dx dt m dt+=,其特征方程为 20k r r m +=, 解得10r =, 2k r m=-, 故 12k t m x C C e -=+,由(0)0x =, 2000(0)k t m t t kC dx v e v dt m -====-=,得012mv C C k=-=, 0()(1)k t m mv x t e k-∴=-. 当t →+∞时, 069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y ∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算.【详解】 122xy z x f ye f x∂''=+∂, 122xy z y f xe f y∂''=-+∂, 21112222[(2)]x y x y x y z x f y f x e e f x y e f x y ∂''''''=⋅-+⋅++∂∂2122[(2)]x y x y y e f y f x e''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型.(22)(本题满分9分)设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a a a a a B a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为12340x x x x +++=.由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数.当0a ≠时,111110000210021003010301040014001a a B ++⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444a a A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解.当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为 12340x x x x +++=.其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数.当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭91110000210021003010301040014001-⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为 2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化. 【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aa λλλλλλλ-----=------- 110100(2)143(2)13315115a a λλλλλλ-=--=--------- 2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方,从而18316a +=, 解得23a =-.当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2,故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。

浙江师范大学数学分析与高等代数2006真题

浙江师范大学数学分析与高等代数2006真题
浙江师范大学 2006 年研究生
入 学 考 试 试 题
考试科目: 数学分析与高等代数 报考学科、专业: 课程与教学论(数学教育学)
数 学 分 析 部 分
一、求下列极限(每小题 5 分,共 30 分) 1. n lim (1 1 ) n , 3. 5.
2n 1 1 lim , x 1 x 1 ln x n k lim k , n k 1 3 ln(1 x) , tan x n 1 4. n lim , k ( k 1) k 1 1 3 5 2 n 1 6. lim 。 x 2 4 6 2n
2.
a b b b a b b b a b b b
b b b a

七、当 a,b 取何值时,下列方程组有解,在有解的情况下,求解此 线性方程组,并写出方程组的一般解( 12 分)
2 x1 x2 3 x3 2 x4 6 , 3 x1 3 x2 3 x3 2 x4 5 , ax4 3 , x1 2 x2 5 x 4 x 6 x x b . 2 3 4 1
Q3 的一个线性变换 A,满足:
1 A(ε1,ε2,ε3)=(ε1,ε2,ε3) 2 3
1 1 3 7 , 2 4
(1) 求线性变换 A 在 Q 上的特征值与特征向量; ( 8 分) (2) 分别求线性变换 A 的值域 AV 与核 A-1(0)的一组基。 ( 8 分) 十、设 A 是一个实对称矩阵,在 Rn 上定义线性变换 A: Aα=Aα,
n 1
2.

n 1
n (n 1)!
四、设数列 an 满足 lim
a1 a2 an a a , a 为实数. 求证 lim n 0 。 n n n n

2004考研数一真题及解析

2004考研数一真题及解析

2004年全国硕士研究生入学考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

(NEW)浙江师范大学化学与生命科学学院871综合化学历年考研真题汇编

目 录
2013年浙江师范大学871综合化学(A卷)考研真题2004年浙江师范大学综合化学考研真题
2012年浙江师范大学871无机化学(A卷)考研真题2012年浙江师范大学872分析化学(A卷)考研真题2011年浙江师范大学871分析化学(A卷)考研真题2010年浙江师范大学871分析化学考研真题
2012年浙江师范大学873有机化学(A卷)考研真题2011年浙江师范大学872有机化学(A卷)考研真题2010年浙江师范大学872有机化学考研真题
2006年浙江师范大学有机化学考研真题
2004年浙江师范大学有机化学考研真题
2013年浙江师范大学871综合化学(A卷)
考研真题
2004年浙江师范大学综合化学考研真题
2012年浙江师范大学871无机化学(A卷)
考研真题
2012年浙江师范大学872分析化学(A卷)
考研真题
2011年浙江师范大学871分析化学(A卷)
考研真题。

浙江师范大学663艺术概论2013到2004十套考研真题


广播电视艺术学专业试题
一、名词解释 (每小题 7 分,共 42 分)
1.艺术生产
2.宗教艺术
3.电影艺术
4.蒙太奇
5.艺术体验
6.艺术风格
二、简述题(每小题 15 分,共 60 分)
1.简述艺术的基本特征
2.评述艺术起源于“模范”的观点
3.简述艺术的社会功能
4.简述道德与艺术的联系与区别
三、论述题(每小题 24 分,共 48 分)
1.举例论述现代科学技术对艺术的渗透和影响
2.举例论述造型艺术的审美特征
第 1 页 共1页
科目代码: 661
科目名称: 艺术概论
提示:
1、本科目适用专业:
美术学、广播电视艺术学 ;
2、请将所有答案写于答题纸上,写在试题上的不给分;
3、请填写准考证号后 6 位:____________。
美术学专业试题 一、简述题(每题 15 分,共 6 题,共 90 分)
1.简释“审美关系” 2.简释“艺术思潮” 3.简述艺术发展的历史继承性 4.简述艺术家应具有的修养 5.简述艺术创作活动过程 6.简述形象思维的特征 二、论述题(每题 30 分,共 2 题,共 60 分) 1.试析艺术的社会功能 2.试解释“艺术接受是一个无限的创造过程”
第 1 页,共 2 页
第二部分 一、名词解释(共 4 题,每题 8 分,共 40 分)
1.造型艺术 2.表情艺术 3.艺术流派 4.期待视野 5.审美直觉
二、简述题(共 4 题,每题 15 分,共 60 分)
1.简述艺术的主体性特征 2.简述艺术教育的任务和目标 3.简述艺术在人类文化中的地位 4.简述语言艺术的审美特征
二、论述题(每题 30 分,共 90 分) 1.论述各门艺术之间的关系 2.论述社会生活对艺术家的影响 3.针对历史上关于艺术发生的几种主要理论,谈谈你的认识

2004—数一真题、标准答案及解析


3AB = 6B + A , 即 (3A − 6E)B = A ,
第 6/22页
梦飞翔考研

梦飞翔考研论坛

再两边取行列式,有 3A − 6E B = A = 3 , 而 3A − 6E = 27 ,故所求行列式为 B = 1 .
4
3
2
X
=
⎧1, ⎩⎨0,
A发生, A不发生;
Y
=
⎧1, B发生, ⎩⎨0, B不发生.
求:(I)二维随机变量(X,Y)的概率分布;
(II)X 和 Y 的相关系数 ρ XY .
第 3/22页
梦飞翔考研

梦飞翔考研论坛

∑ Y
=
1 n
n i =1
Xi
,则
(A)
Cov(
X1,Y )
=
σ2 n
.
(B) Cov( X1,Y ) = σ 2 .
(C)
D( X 1
+Y)
=
n
+ n

2.
(15)(本题满分 12 分)
(D)
D( X 1
−Y)
=
n +1σ n
2
.
[]
设e <
a
<b<
e2 ,
证明 ln 2 b − ln 2
a
>
4 e2
⎧x = 2 cosθ ,
⎨ ⎩y =
2 sinθ ,
θ :0→π . 2
π
∫ ∫ 于是 xdy − 2 ydx = 2 [ 2 cosθ ⋅ 2 cosθ + 2 2 sinθ ⋅ 2 sinθ ]dθ
L

2004—数一真题标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题一、填空题〔此题共6小题,每题4分,总分值24分. 把答案填在题中横线上〕〔1〕曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . 〔2〕xxxee f -=')(,且f(1)=0, 那么f(x)=__________ .〔3〕设L 为正向圆周222=+y x 在第一象限中的局部,那么曲线积分⎰-Lydx xdy 2的值为__________.〔4〕欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为. __________ . 〔5〕设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,那么=B __________ .〔6〕设随机变量X 服从参数为λ的指数分布,那么}{DX X P >= __________ .二、选择题〔此题共8小题,每题4分,总分值32分. 每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内〕〔7〕把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,那么正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] 〔8〕设函数f(x)连续,且,0)0(>'f 那么存在0>δ,使得(A) f(x)在〔0,)δ内单调增加. 〔B 〕f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ]〔9〕设∑∞=1n na为正项级数,以下结论中正确的选项是(A) 假设n n na ∞→lim =0,那么级数∑∞=1n na收敛.〔B 〕 假设存在非零常数λ,使得λ=∞→n n na lim ,那么级数∑∞=1n na发散.(C) 假设级数∑∞=1n na收敛,那么0lim 2=∞→n n a n .(D) 假设级数∑∞=1n na发散, 那么存在非零常数λ,使得λ=∞→n n na lim . [ ]〔10〕设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,那么)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ]〔11〕设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 那么满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ]〔12〕设A,B 为满足AB=O 的任意两个非零矩阵,那么必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ]〔13〕设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,假设α=<}{x X P ,那么x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ]〔14〕设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,那么(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] 〔15〕〔此题总分值12分〕设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 〔16〕〔此题总分值11分〕某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞翻开后,飞机所受的总阻力与飞机的速度成正比〔比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. 〔17〕〔此题总分值12分〕 计算曲面积分其中∑是曲面)0(122≥--=z y x z 的上侧.〔18〕〔此题总分值11分〕设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.〔19〕〔此题总分值12分〕设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 〔20〕〔此题总分值9分〕 设有齐次线性方程组试问a 取何值时,该方程组有非零解,并求出其通解.〔21〕〔此题总分值9分〕设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)〔此题总分值9分〕 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 求:〔I 〕二维随机变量(X,Y)的概率分布; 〔II 〕X 和Y 的相关系数.XY ρ〔23〕〔此题总分值9分〕设总体X 的分布函数为其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:〔I 〕 β的矩估计量; 〔II 〕 β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题〔此题共6小题,每题4分,总分值24分. 把答案填在题中横线上〕〔1〕曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 此题为根底题型,相当于切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 此题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .此题比拟简单,类似例题在一般教科书上均可找到. 〔2〕xxxee f -=')(,且f(1)=0, 那么f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,那么t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 此题属根底题型,导函数求原函数一般用不定积分.〔3〕设L 为正向圆周222=+y x 在第一象限中的局部,那么曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的局部,可表示为于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 此题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.〔4〕欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,那么dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-, ][11122222222dt dydty d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydt y d ,解此方程,得通解为 .221221xc x c e c ec y t t+=+=-- 【评注】 此题属根底题型,也可直接套用公式,令te x =,那么欧拉方程)(222x f cy dx dybx dx y d ax=++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- 〔5〕设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,那么=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.〔6〕设随机变量X 服从参数为λ的指数分布,那么}{DX X P >=e1 . 【分析】 连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 此题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题〔此题共8小题,每题4分,总分值32分. 每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内〕〔7〕把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,那么正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比拟,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 202002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 此题是无穷小量的比拟问题,也可先将γβα,,分别与nx 进行比拟,再确定相互的上下次序. 〔8〕设函数f(x)连续,且,0)0(>'f 那么存在0>δ,使得(A) f(x)在〔0,)δ内单调增加. 〔B 〕f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. 〔9〕设∑∞=1n na为正项级数,以下结论中正确的选项是(A) 假设n n na ∞→lim =0,那么级数∑∞=1n na收敛.〔B 〕 假设存在非零常数λ,使得λ=∞→n n na lim ,那么级数∑∞=1n na发散.(C) 假设级数∑∞=1n na收敛,那么0lim 2=∞→n n a n .(E) 假设级数∑∞=1n na发散, 那么存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,假设不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,那么n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n n n a 发散,排除(A),(D);又取nn a n 1=,那么级数∑∞=1n n a 收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B). 【评注】 此题也可用比拟判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). 〔10〕设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,那么)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x:否那么,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.〔11〕设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 那么满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 此题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. 〔12〕设A,B 为满足AB=O 的任意两个非零矩阵,那么必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行〔或列〕满秩或Ax=0〔Bx=0〕是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,那么由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有TB 的列向量组,从而B 的行向量组线性相关,故应选(A).【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.〔13〕设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,假设α=<}{x X P ,那么x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是 即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 此题αu 相当于分位数,直观地有α 〔14〕设随机变量1(,,,21>n X X X n 令∑==ni i X n Y 11,那么(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 此题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 此题(C),(D) 两个选项的方差也可直接计算得到:如=222233σσn n n n n +=+, =.222222σσn n n n n -=- 〔15〕〔此题总分值12分〕设2e b a e <<<, 证明)(4ln ln 222a b e a b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得设t t t ln )(=ϕ,那么2ln 1)(t t t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b e a b ->-. 【证法2】 设x ex x 224ln )(-=ϕ,那么24ln 2)(e x x x -='ϕ, 2ln 12)(x xx -=''ϕ,所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'ee e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 此题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. 〔16〕〔此题总分值11分〕某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞翻开后,飞机所受的总阻力与飞机的速度成正比〔比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 此题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dtdv m-=. 又 dx dv v dt dx dx dv dt dv =⋅=, 由以上两式得dv k m dx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v km C =,从而 当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 kv dt dv m-=, 所以 .dt mk v dv -= 两端积分得通解t m k Cev -=,代入初始条件00v v t ==解得0v C =, 故 .)(0t m k e v t v -=飞机滑行的最长距离为 或由t m ke v dt dx -=0,知)1()(000--==--⎰t m k t t m k e m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→ 【详解3】 根据牛顿第二定律,得 dt dx k dtx d m -=22, 022=+dt dx m k dtx d , 其特征方程为 02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk e C C x -+= 由 002000,0v e m kC dt dx v x t t mk t t t =-====-===,得 ,021k mv C C =-= 于是 ).1()(0t m ke k mv t x --=当+∞→t 时,).(05.1)(0km kmv t x =→ 所以,飞机滑行的最长距离为1.05km.【评注】 此题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. 〔17〕〔此题总分值12分〕计算曲面积分其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围局部的下侧,记Ω为由∑与1∑围成的空间闭区域,那么由高斯公式知=rdz r z dr d r )(620101022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r 而 ⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 此题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧〔或内侧〕,再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).〔18〕〔此题总分值11分〕设有方程01=-+nx x n ,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n nx α收敛. 【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比拟法判定.【证】 记 .1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n 存在惟一正实数根.n x由01=-+nx x n 与0>n x 知n n x x n n n 110<-=<,故当1>α时,αα)1(0nx n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 此题综合考查了介值定理和无穷级数的敛散性,题型设计比拟新颖,但难度并不大,只要根本概念清楚,应该可以轻松求证.〔19〕〔此题总分值12分〕设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以02262=∂∂-∂∂--xz z x z y y x , 0222206=∂∂-∂∂--+-y z z y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z x z 得 ⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x 将上式代入0182106222=+--+-z yz y xy x ,可得 ⎪⎩⎪⎨⎧===3,3,9z y x 或⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xz z x z x z y , 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yz z y z y z y y z y z , 所以 61)3,3,9(22=∂∂=x z A ,21)3,3,9(2-=∂∂∂=y x z B ,35)3,3,9(22=∂∂=y z C ,故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由 61)3,3,9(22-=∂∂=---x z A ,21)3,3,9(2=∂∂∂=---y x z B ,35)3,3,9(22-=∂∂=---y z C , 可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 此题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.〔20〕〔此题总分值9分〕设有齐次线性方程组试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 此题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为由此得根底解系为于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为 由此得根底解系为 T n ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an n n n aaA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为由此得根底解系为于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数. 当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为由此得根底解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A 〔21〕〔此题总分值9分〕设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为=).3188)(2(51341011)2(2a a ++--=------λλλλλλ 当2=λ是特征方程的二重根,那么有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.假设2=λ不是特征方程的二重根,那么a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a 当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)〔此题总分值9分〕设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 求:〔I 〕二维随机变量(X,Y)的概率分布;〔II 〕X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 〔I 〕 由于121)()()(==A B P A P AB P , 所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , =32)()()(1=+--AB P B P A P 〔或32121611211}0,0{=---===Y X P 〕, 故(X,Y)的概率分布为YX 0 10 32 121 1 61 121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P43 41 P 65 61 那么61,41==EY EX ,163=DX ,DY=365, E(XY)=121, 故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而 【评注】 此题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比拟好地将概率论的知识前后连贯起来,这种命题方式值得注意.〔23〕〔此题总分值9分〕设总体X 的分布函数为其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:〔I 〕 β的矩估计量;〔II 〕 β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为〔I 〕 由于1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX ,令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 〔II 〕似然函数为当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ,令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为【评注】 此题是根底题型,难度不大,但计算量比拟大,实际做题时应特别注意计算的准确性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 证明: P 22 关于矩阵的加法和数乘构成线性空间;
第 1 页,共 2 页
(2) 设 B = 12 43 ,定义线性变换 f : P22 → P22 为 f ( X ) = BX ,求 f 在基
1 0
0 0
0 1
0 0
E11 = 0 0, E21 = 1 0 , E12 = 0 0, E22 = 0 1
下的矩阵 A ,线性变换 f 的特征值和相应的特征向量。
五(满分 15 分)、设 n 级矩阵 A 满足 A2 = A ,证明: r( A) + r( A − E) = n ,其中, r( A) 表示矩阵 A 的秩。 六(满分 15 分)、设 R[x] 表示实数域 R 上全体多项式组成的线性空间, D 是 R[x] 的线性
3. 如果 A 是 n 阶实对称正定矩阵,则 A 的特征多项式:
f (x) = n + a1n−1 + L + an−1 + an 的所有系数至少有________个 0 。
4.

A

n
阶矩阵,X

2n
n矩阵,则矩阵方程来自 A A2A2 A3
X
=
0 其中的一
个解为_________。
a11 a12 a13 a14
八(满分 15 分)、设V 实数域 R 上的 n 维线性空间, f : V → R 称为V 上的线性函数,如
果 满 足 : 对 任 意 的 , V , k R f ( + ) = f ( ) + f ( ), f (k ) = kf ( ) , 记
V = { f | f 为V 上的线性函数}。对任意的 f , g V , k R ,定义
i= j i j
,证明: f1, f2, L
, fn 是V 的一组基。
第 2 页,共 2 页
浙江师范大学 2011 年硕士研究生入学考试初试试题(A 卷)
科目代码: 881 科目名称: 高等代数 适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分;
( f + g)( ) = f ( ) + g( ) , (kf )( ) = kf ( ) 。
(1) 证明:V 是 R 上的线性空间;
设 e1, e2, L , en 是 V 的 一 组 基 , 定 义 V 上 的 线 性 函 数 fi (i = 1, 2,L , n) 为
1 fi (e j ) = 0
6. 如果 1 是 n 阶矩阵 A 的特征值,那么 E − A2 = _________。
2、请填写准考证号后 6 位:____________。
一.填空题(共 8 小题,每小题 5 分,共 40 分) 1. 设 f (x), g(x), h(x) 都 是 数 域 P 上 的 多 项 式 , f (x) = g(x)h(x) +1 , 则 ( f (x), g(x)) = _________。
变换且满足:(1) D(x) = 1;(2) D( f (x)g(x)) = D( f (x))g(x) + f (x)D(g(x)) ,证明:
D 就是求导变换。 七(满分 15 分)、设 ai 0 (i = 1,2, , n) ,计算
1 + a1 1 1
D = 2 2 + a2
2
nn
n + an
坐标是

4.设1, 2, L , n 称为线性空间V 的一组基,如果满足:

5.设方阵 A 可逆,则 ( A )−1 =

6.设 A 是 4 5 矩阵且 A 的秩等于 3, 1, 2 , 3 是线性方程组 Ax = 的三个线性无关
的解,则线性方程组 Ax = 的通解为

7.欧氏空间V 上的线性变换 若满足
,则 称为正交变换。
8.设 A 是 3 级矩阵且 A = 2 ,则 2 A - 2 A−1 =

二(满分 15 分)、设1 = (1, 2, 3, 0)' ,2 = (−1, − 2, 0, 3)' ,3 = (2, 4, 6, 0)' ,
4 = (1, − 2, −1, 0)' ,5 = (0, 0, 1, 1)' ,试求向量组的一个极大线性无关组并把其余向量
5.
如果
a21
a22
a23
a24
是正交矩阵,那么齐次线性方程组
a31 a41
a32 a42
a33 a43
a34 a44
aa1211xx11
+ +
a12 x2 a22 x2
+ +
a13 x3 a23 x3
+ a14 x4 + a24 x4
=0 =0
第 1 页,共 4 页
的一个基础解系是_________。
用此极大线性无关组表示。
三(满分 15 分)、用正交线性替换 X = QY ,把二次型
f (x1, x2 , x3 ) = −4x12 − 4x22 − 4x32 − 4x1x2 − 4x1x3 − 4x2 x3 化为标准形并写出相应的正交矩阵 Q 。
四(满分 20 分)、设 P 22 表示数域 P 上的二阶方阵全体所成的集合。
浙江师范大学 2012 年硕士研究生入学考试初试试题(A 卷)
科目代码: 881 科目名称: 高等代数 适用专业: 070100 数学、071101 系统理论、071400 统计学
提示: 1、请将所有答案写于答题纸上,写在试题纸上的不给分; 2、请填写准考证号后 6 位:____________。
一、填空题(共 8 小题,每小题 5 分,满分共 40 分)
1.设 p(x) P[x] , p(x) 称为数域 P 上的不可约多项式,如果 p(x) 满足

2.设 A 是三阶实矩阵且满足 E + 2A = 0, E + 3A = 0, E + 4A = 0 。则 E + A = .
3.设1, x −1, (x −1)2 , (x −1)3 是 P4[x] 的一组基,则 f (x) = x3 + 3x2 + x + 2 在此基下的
2. 如果 n −1次可微函数组 f1(x), f2(x),L , fn (x) 在实数域上线性相关,那么 行列式
f1 ( x)
f1 ( x)
L
f (n−1)
1
(
x)
f2(x) L f2(x) L LL f2(n−1) (x) L
fn (x)
f
n
(
x)
= _________。
L
fn(n−1) (x)
相关文档
最新文档